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We examine several extremal problems for graphs satisfying the prop-
erty [N(x) U N{y)| = s for every pair of nonadjacent vertices x, y € V(G).
In particular, values for s are found that ensure that the graph contains
an s-matching, a 1-factor, a path of a specific length, or a cycle of a
specific length.

Graph theory literature abounds with results relating the degrees of the vertices
of a graph to various graph properties and parameters. In particular, Ore [7] in-
troduced the idea of bounding the degree sum of pairs of nonadjacent vertices
while studying hamiltonian properties in graphs. This concept generalized natu-
rally to hamiltonian properties in digraphs (see [8] and [11]). Win [10] used de-
gree sums while stndying disjoint 1-factors, and Bondy and Chvital [5] solidified
this approach as a tool for studying many properties. Meanwhile, Anderson [2]
used the idea of bounding the cardinality of the neighborhood N(X), of a set
X C V(G), while studying 1-factors.

We examine a natural hybrid of these two ideas. Thart is, we consider graphs
with the property that for some positive integer s,

IN(x) U N(Y| = s for every pair of nonadjacent vertices x,y. (1)

For simplicity, we define NC to be the min|N{x) U N( y)\, where the minimum
is taken over all pairs of nonadjacent vertices x, y in the graph. In [6], bounds
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on NC were determined that ensured various hamiltonian properties. In particu-
lar, the following was shown:

Theorem A ([6]). Let G be a 2-connected graph of order p.

(i} If NC = (p — 1)/2, then G contains a spanning path.
(iiy ENC = (2p — 1)/3, then G is hamiltonian.

In [1], property (1) was examined in relation to cliques. We now consider
matchings, 1-factors, path lengths, and cycle lengths. Notation will follow {3].

1. MATCHINGS

In this section we consider the following question: If a graph satisfies the condi-
tion NC = s, how large a matching must it contain, and how is this effected by
imposing connectivity conditions? We summarize our results in the following
theorem. Here, 8,(G) denotes the edge-independence number of the graph G.

Thearem 1. Let G be a graph with p vertices satisfying NC = 5.

(a) If s S~(p — 2) then B(G) = s,
b) If s = 2(p — 1) and p is odd, then 8{(G) = 2(p - 3),
) If s > 2L3pj — 2 and p is odd, then B,(G) = z(p 1), unless p = 5

and s = 1.
(dY If s = :,_(p — 1) and p is odd and G is connected, then B,(G) =
z(P - 1)

() If s = p and p is even, then 3,(G) = 2(p - 2).
 Ifs > 3(p ~ 1) — 1 and p is even and G connected, then 3, (G)
(g Ifs = 2p and p is even and G is 2-connected, then BGY =

The remainder of this section will be dedicated to verifying these results, and
where possible, showing their sharpness. Before proving Theorem 1, we
present examples demonstrating the sharpness of these assertions.

Example 1. On the sharpness of Theorem 1.

(a} The complete bipartite graph X, s,p-s Shows that the conclusion in (a) is
best possible, even for graphs with connectivity as high as s,

(b) Consider graphs of the form K, U K, U K., where a, b, and ¢ are all
odd. Then these graphs show that the conclusion in (b) is best possible,
even for graphs with s as high as 2{ p/3] — 2.

(c) The graph K| , shows the excluded case. Otherwise, the conclusion is
obviously best possible since 8,(G) =< p /2.

{d) Again this is clearly best possible.

(e} Consider graphs of the form K, U K, where a and b are odd. Clearly
such graphs show that the conclusion in (g) is best possible, even for
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graphs with s as high as p — 2 (its maximum value for noncomplete
graphs). The graphs K, K, and K, with a single vertex identified {with
an odd number of a, b, and ¢ being even) show that the conclusion is
best possible, even if s is as high as (p — 1) — L.

Both (f) and (g) are clearly best possible.

Before proving Theorem 1, we need the following lemma:
Lemma 2, Let s be a fixed positive integer and let G be a graph of order p
with 8,(G) = t such that NC = s,

() FL=<s<s then2t + 3 = p.

(i) If§=r < 3s5/4, then 2t + 2 = p.

Proof. (1) Consider a maximal independent set A of edges in G- Let [A| = ¢
and let B = V(G) — V(A). We show that |[B| = 3. Suppose this is not the case,
that is, suppose there exists x,y, z, w € B, Partition A into the following sets:
for each a € {x,v,z,w} = T, let

A, ={mw EAu CNa),butu,v ENT — {af)} and C=A — UA,,

, and that

Assume without loss of generality that |A | = [4,] = |4,] = |A,
IC] = c.

From the maximality of A, it is clear that N(x) C V((4, U C}), and that simi-
lar statements hold for N(y), N(z), and N(w). It is also clear that |4, U A,] =
(t — ¢)/2 sothat |A, U A, = (¢t — ¢)/2. But by the maximality of ¢, the ver-
tices z and w must be nonadjacent. Also, from the maximality of ¢ and the defi-
nition of C, [N.(z) U N,(w) < ¢. Hence s = [N(z) U Nw)| = 2(r — ¢)/2 +
¢ = t, contradicting the fact that 1 < s,

(ii) An analogous argument may be used.

Proof of Theorem 1. Parts (a) and (b) follow from Lemma 2. To prove (c},
- suppose that the result fails to hold, Now recall Berge’s defect form of Tutte’s
condition for the existence of a 1-factor (see |41 and [9]), which says that if p is
odd, then 8,(G) = %( 7 — 1) unless there is some set of r vertices whose re-
moval leaves a graph with at least » + 3 odd components. But this impHes that

+3(p—r)+r—2

since the hypothesis that s > 2|1p] — 2 ensures that G cannot have three odd
components, and we have that r = 1. Further, we clearly have that r =
%{ p — 3). Thus, we have an immediate contradiction, except when p = 5 and
5= 1.
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To prove (d), note that the connectivity of ¢ implies ¥ = 1, so we may apply
the last argument. '

Part (e) also follows from Lemma 2.

To prove (f), suppose the results fails to hold. By Tutte’s condition [9], since
p is even and there is not a 1-factor, then there must exist some set of r vertices
whose removal leaves a graph with at least r + 2 odd components. But this
implies that

2
=—" (p—pr+y—
s r+2(p A =2
2
=(p - [} — 1
3(19 I) ,

singe G is connected, r = 1 and clearly r < %( 7 — 2). But this contradicts
the fact

2
s>?(!)*1)*1-

If G is 2-connected, then 7 = 2 and so s = (p — 2); thus, applying the pre-
vious argument, (g) follows as well. §

We conclude this section by noting that the conditions of Theorem A(ii), im-
mediately imply that the graph contains two disjoint 1-factors.

2. PATHS AND CYCLES

In this section we consider the question, If a graph satisfies the condition
NC = s, how long a path must it contain, how long a cycle must it contain,
and how much are these parameters increased by imposing connectivity condi-
tions? We summarize the results of this section in the following theorem:

Theorem 2, Let (¢ be a graph with p vertices satisfying NC = 5.

(a) If G is 2-connected, then 7 contains a path of order at least %s + 2o (if
p <35 +2) G is traceable.

{b) If G is 2-connected, then G contains a cycle of order at least s + 2 or (if
p < s + 2) G is complete. If in addition, sis odd and p > 5 + 2, then
G contains a cycle of order at least s + 3.

(c) H G is connected, then G contains a path of order at least s + 2 or (if
p <s + 2) G is complete. If, in addition, s is even and. p > 5 + 2,
then G contains a path of order at least s + 3.

(d) If G is connected and s = 3, then G contains a cycle of order at least
s+ orfp <s5s +2)Gis complete.
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{e) If G is not connected, then at most one component of G has fewer than
(s + 2) vertices and if there is one, then it is complete, Every other
component has at least 3(s + 2) vertices, and either is complete or con-
taing a path of order at least s + 2 and (if s = 3) a cycle of order at
least %(s -+ 2},

Before proving Theorem 2, we consider examples that demonstrate the
sharpness of these results.

Example 2. On the sharpness of Theorem 2,

(a) Consider graphs consisting of four or more copies of K4, (s even) or
K5 (5 0dd) with exactly two vertices in common, These graphs show
the results in (a) are best possibie,

(b) Use the examples of (a).

(¢) Graphs consisting of three or more copies of K5, (s odd) or K4,
(s even) with a single vertex in common show the conclusions of {(c) are
best possible for arbitrarily large values of p.

(d) Graphs consisting of copies of K5, (s even) or K., (s odd} arranged
in a row, with a single edge connecting each two consecutive complete
graphs, show that the conclusion of (d) is best possible for arbitrarily
large values of p. These examples reduce to paths if s = 1 or 2 and
show the need for s = 3 to force a cycle.

Proaof of Theorem 2.  'We begin with a proof of (b) because it will make the
proof of (a) somewhat easier.

Let G be a 2-connected graph of order p = 5 + 2 such that NC = s, Let
X4 Xy, . . ., X, be the vertices in order along a path P of maximum length in G.
Let x; and x; (possibly i = ;) be vertices on P that are adiacent to x,, and sup-
pose that, among all possible longest paths P and vertices x;, we have chosen
ones that maximize i. Then x, and x;_, are adjacent only to vertices in
{x),...,x} (since clearly x,_, is an end vertex of a path of the same length as
P). Suppose i = 5 + 1. Then since NC = 5, we sec that x, and x;_, must be

adjacent, Taking jto be i,i — 1, ... in turn, we see that x, is adjacent to all of
Xy, ..., x;. All vertices x;,...,x; | are thus end vertices of paths of the same
length as P, and so are adjacent only to vertices in {x,, ..., x;}, which contra-

dicts the 2-connectedness of G. Thus { = s + 2, and G contains a cycle of
length s + 2 or more.

To prove the second part of (b), suppose that 5 is odd and p > 5 + 2, and
suppose that there is no cycle of order 5 + 3 or more. Then, with P and x; as
before, i = 5 + 2. Note that ¢t > s + 2, since G is connected and contains a
cycle of order s + 2, and so contains a path whose order is greater than s + 2.

Now x, and all successors along P of neighbors of x, are end vertices of paths
of the same length as P. If none of these vertices are adjacent to any of
X ... ,%_,, then we can repeat the previous argument at the other end of P to
deduce that G contains another cycle of order s + 2 that has at most one vertex
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(namely x;) in common with the first; whence, since G is 2-connected, it cer-
tainly contains a cycle of ordér s + 3 or more (and, we note for future refer-
ence, a path of order at least %s + 2},

So we may suppose that at least one of these vertices, without loss of gener-

ality, x, itself, is adjacent to r = 1 vertices x;,...,x, 2 =j, < ... <), =

i — ). For use later, in the proof of (a), we note that we now assume only that
G contains no P, and no P, that starts with a cyle of order s + 3 or more.
Note that

E TS P S & Nix)) UN(x,), (1)
otherwise G would contain a C, (hence, a P,,,) or a P, with a longer initial cycle.
Choose k > j, minimal such that x, € N(x,). Since G contains a P, starting
with a cycle of order + — (¢ — j, — 1) (omitting Xitts o2 Xpmthy

r—k—j —1)=gs+2. )

By (1), (2), and the definition of k, and since NC = s and x, and x, &
N(x) U Nx,),

SENEIUNE) =t —r—(—j -2=<s+1-r. 3)
Thus » = 1 and we have equality throughout. In particular (writing j for j, = j,),

N(x:) g {xj!'xf»xiﬂs' v ,):‘.,1},
r—k+jtl=s5+2, )

and the path
XisXgye o ,xj,x,,x,,“ PR o S S NN ,xj+1 (5)

starts with a cycle of order 5 + 2.
We can now apply the same argument to path (5) to deduce (inter alia) that

N(xj+1) c {xjsxksxk—ls <o !-xj+2}'
It follows that
NQx) U NG CHx, X Xeas oo X Koy Ky s - - o5 X}
so that, since NC = s,

s=t—j—1—max(0,i —1— k).

Since the cycle x;, X1, ...,%,,x;has order f — j + 1 = 5 + 2, we must have
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t—j+1=s+2andk =iori— 1. Butifk =i — 1, then the cycle
XXty oo s Xy X1 Xy Kpapy oo X0 X
hasordert —j + 2= + 3, Thusk = i and
t—j+l=i=t—i+j+l=5+2
(using (4)}, whence (summing)

2t +2=35s +6. (6)

This is clearly impossible if s is odd, and so the proof is complete.

Let us now turn to (a). Suppose G is a 2-connected graph of order p satisfy-
ing NC = s and containing no path of order greater than ¢ < min(p,3s + 2).
Since G is connected, it does not contain a C, (otherwise it would contain a
P,.1). Suppose that G contains a C,_,. Then every component of G — €,_, is a
single vertex. Let x and v be two of them (note p — (¢t — 1) = 2), and observe
that, since NC = 5, N(x) U N(y) contains two consecutive vertices of C,_|,
which is impossible since this implies that G contains a P,,, or a C,. (This does
not work if 2s = ¢ — 1, thatis, s = 1 and 2s = — 1 = 2, but then C,_, is
meaningless anyway.) Thus G does not contain a C,ora C,_,.

We now follow an argument very similar to that in (b). Let x,,x,,...,x, be
the vertices in order along a path P of maximum length in G, and let P and
X, € N(x,) be chosen so that { is as large as possible. As in (b), we may sup-
pose without loss of generality that x, is adjacent to r = 1 vertices Koo s X,
@=j <+ <j =i~ 1) The following four remarks all follow from the
fact that G does not contain a C,, a C,_,, or a P,,,, or a P, with an initial cycle

~of more than 7 vertices:

(1) Nox;,,, is adjacent to any vertex outside P orto anyx,, i + 1 < m = ¢)
(otherwise we could incorporate x,,, . ..,x, into the initial cycle of P).
Hence, no two x;, s are consecutive in P.

(ii) The vertices X% 415 Xpgats -+ X 4, X, are mutually nonadjacent,

(iifi) If x, & N(x,) then'x, , and x,_, & N(x,).

(iv) If x, € N(x) and k =< j,, then x,_; and x,_, & N(x, ).

If x, € N(x)) and k > j,, then x,,, and x;,; & N(x,,)).

Now let § = N(x)), R = N(x,,,), T = N(x,), and let

A={x xy, €ESand2 =k =j}U{x, ESandj, +2 =k =i},
B={xx ERand2=Fk < }U{x_;ix, ERand j, + 2 =k = i},
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Using (1)—(iv) we see that

|A| = ‘Sl = d(-xl)a IBI = IRI = d(xjr + 1)’ |TI = d(xr),
ANB =04,

X4 Xjarn v 5 Xj 41 €A UB, and

XX , X, €A UB if and only if they are in R N 7.

rr &g e

It follows that

1l

R+ S| - RNT|=AUB|—|RNT|=i—(¢—-1)—r

P—2r+1. N

Also, since x; £ §,
Tl=r—i+r and [T|-|SNT|=t—-i+r—1. (8)
Since NC = s, using (7) and (8), we obtain

2 =RUT|+SUT|
=R+ S| +2T|—RNT| -8 NT]
=i —-2r+1+20-i+r-1=2t—1i &)
Now, in view of the previous proof of (b), we may suppose thati = s + 2,
and i = 5 + 3 if 5 is odd. Thus if the result does not hold then we must have

i=45+ 2(seven) and s + 3 (s odd), and we must have equality throughout
the argument that gave rise to (9). In particular,

X1 € N 1), (10)
since otherwise either x;, — 1 & A UBorx, . €5 N T, and in either case we

would have strict ineguality in (9).
If 5 is even, we can now get the result simply by following the proof of the

second part of (b) down as far as (6), which is the needed contradiction. If s is
odd, we start to modify the proof of the second part of (b). With & as in that
proof, the path

TS 7NN TEOS THRTS JPPUDIN SIS 2P A TRREES CTE. S TRRRPE 1ot (11)
starts with a cycle of order # — (k — j, — 2, so that (2) is replaced by
t—k—j —2)=s +3. (12)

Equation (3) is thus unchanged, and so, as before, » = 1 and we have equality
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in (12). Thus
. 1 1
d(x,)sr—z+r:E(3s+3)—(s+3)+1=E(s — 1}.
But path (11) also starts with an (s + 3)-cycle, and so, by the same reasoning,
1
d(xj,+2) = ’2—(5' - 1.

Thus x, and x; ,, violate the condition NC = s. This completes the proof of (a).
Note that (c) can be proved directly; however, it follows immediately from (b).
Next we consider (d). Suppose (d) fails to hold, and let P:x,x,, ... ,x, be a
path of maximal length in G. Since G is connected, we know x, and x, are not
adjacent, or a longer path would exist. Since each is adjacent only to vertices of
P, both IN(x,)| = (s — 1)/2, and [N(x,)| = (s — 1)/2, or otherwise they would
lie on a cycle with at least (s/2) + 1 vertices. Butthen [N(x,) U N(x,)| = 5 — 1,
a contradiction. Finally, (e} follows directly from (c) and (d). This completes
the proof,

REMARKS

It would be interesting to further explore the effect of higher connectivity and
neighborhood unions on path and cycle length. For example, if G is 3-con-
nected (with sufficiently large order) and NC = 5, then does G contain a cycle
of order at least 3(s + 1) and a path of order at least 2s + 17 Further, if G is
4-connected (with sufficiently large order), then does G contain a 2s cycle?
This is best possible, even for graphs with connectivity as high as s, as the
complete bipartite graph X, , , shows. We also conjecture that Theorem 2(a)
can be extended in the case s is odd and p = %(s + 1) + 2 to show that G
contains a path of order at least 3(s + 1) + 2.
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