Discrete Mathematics 66 (1987) 91–102 North-Holland

CAYLEY DIGRAPHS AND (1, j, n)-SEQUENCINGS OF THE ALTERNATING GROUPS A_n

91

Ronald J. GOULD* and Robert ROTH*

Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, U.S.A.

Received 29 February 1984 Revised 22 August 1986

The problem of finding a sequencing $\Pi_1, \Pi_2, \ldots, \Pi_{|\mathcal{A}_n|}$ for the elements of the alternating group A_n which minimizes the cost function

$$C = \sum_{i=1}^{|A_n|-1} c(\Pi_i^{-1} \circ \Pi_{i+1}),$$

where $c(\Pi) = |\{j: \Pi(j) \neq j\}|$, is solved. For $n \ge 3$ the sequencing is constructed by finding a directed Hamiltonian path in the Cayley digraph D_n of A_n , determined by the generating set $B_n = \{(1, j, n): j \in \{2, 3, \ldots, n-1\}\}$. We further consider the question of finding a directed Hamiltonian cycle in D_n .

1. Introduction

Recently interest has arisen (see [10, 11, 8 and 9]) in generating a sequencing of the elements of a permutation group subject to various constraints. Of special interest is the problem of generating a sequencing $\Pi_1, \Pi_2, \ldots, \Pi_{|G|}$ of the elements of a permutation group G so that the total cost

$$C = \sum_{i=1}^{|G|-1} c(\Pi_i^{-1} \circ \Pi_{i+1})$$

is minimized, where $c: G \to \mathbb{R}^+$ is a cost function. Of course $\Pi_i \circ (\Pi_i^{-1} \circ \Pi_{i+1}) = \Pi_{i+1}$, so that $c(\Pi_i^{-1} \circ \Pi_{i+1})$ is the cost of "proceeding by multiplication" from Π_i to Π_{i+1} in the sequencing.

In particular, Tannenbaum in [10] raised the question of finding such a sequencing when $G = A_n$ $(n \ge 3)$ with its natural action on $\{1, 2, \ldots, n\}$, $c(\Pi) = |\{j : \Pi(j) \ne j\}|$ so that $c(\Pi) \ge 3$ for each non-identity element $\Pi \in A_n$, and the set of allowable multipliers for use in the sequencing is

$$B_n = \{(1, j, n): j \in \{2, 3, \ldots, n-1\}\},\$$

which is a minimal generating set of A_n . In this paper we construct many such sequencings for each $n \ge 3$. Terms not defined in this article can be found in [1] or [7].

0012-365X/87/\$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland)

^{*} Supported in part by an Emory University Summer Research grant.

2. Notation and definitions

In writing permutations explicitly we use the standard cycle notation and the composition, $\Pi_1 \circ \Pi_2$, of Π_1 and Π_2 will always mean Π_1 followed by Π_2 . The identity permutation will be denoted by i. We write $\Pi(h)$ for the image of h under Π and we often abbreviate $\Pi(h) = k$ by writing " Π sends $h \mapsto k$ ". We define

$$\Sigma_n(h_1, h_2, \ldots, h_m; k_1, k_2, \ldots, k_m) = \{ \Pi \in A_n : \Pi(h_r) = k_r, r \in \{1, 2, \ldots, m\} \}.$$

Of course $\Sigma_n(k;k)$ is the stabilizer of k in A_n . We also let $\tau_j = (1, j, n)$ with n being unambiguously determined by the context in which we write τ_j . Given a digraph D and $\Sigma \subseteq V(D)$, we let $\langle \Sigma \rangle$ denote the subgraph of D induced by Σ .

For $n \ge 3$, we let D_n denote the Cayley digraph of A_n with respect to B_n . That is, D_n is the digraph with $V(D_n) = A_n$ and $E(D_n) = \bigcup_{j=2}^{n-1} E_j$, where $E_j = \{(\Pi, \Psi) : \Pi, \Psi \in A_n \text{ and } \Pi \circ \tau_j = \Psi\}$. The elements of E_j will be called j-edges. We let $Aut(D_n)$ denote the automorphism group of D_n .

We note that the existence of a sequencing of A_n in which all multipliers are permutations in B_n is equivalent to the existence of a directed Hamiltonian path in D_n . We shall also consider the existence of a directed Hamiltonian cycle in D_n . (The Hamiltonian problem for various Cayley digraphs has been studied in [5, 2, 4, and 12].)

We shall henceforth refer to directed paths and directed cycles as dipaths and dicycles, respectively. We call a dipath with initial vertex x and terminal vertex y an x-y dipath; and we write I(P) and I(P) to denote the initial and terminal vertices, respectively, of a dipath P. When P and Q are dipaths with I(P) = I(Q) we write PQ to denote the concatenation of P and Q.

For each $\sigma \in A_n$, we let the mapping $m_{\sigma}: A_n \to A_n$ (pre-multiplication by σ) be defined by $m_{\sigma}(\Pi) = \sigma \circ \Pi$. We let $\mathcal{M} = \{m_{\sigma}: \sigma \in A_n\}$. For each $\sigma \in S_{n-2}$, where S_{n-2} acts on $\{2, 3, \ldots, n-1\}$, we let the mapping $c_{\sigma}: A_n \to A_n$ (conjugation by σ) be defined by $c_{\sigma}(\Pi) = \sigma^{-1} \circ \Pi \circ \sigma$. (Recall that the cycle types of Π and $c_{\sigma}(\Pi)$ are the same.) We let $\mathscr{C} = \{c_{\sigma}: \sigma \in S_{n-2}\}$.

3. Preliminary lemmas

The first two lemmas are standard results and we omit their proofs.

Lemma 1. If $n \ge 3$, then $\mathcal{M} \le \operatorname{Aut}(D_n)$ and m_{σ} preserves each E_j set-wise. Furthermore, the mapping $m: A_n \to \mathcal{M}$ defined by $\sigma \mapsto m_{\sigma}$ is an anti-isomorphism.

Lemma 2. If $n \ge 3$, then D_n is vertex transitive.

Lemma 3. If $n \ge 3$, then $\mathscr{C} \le \operatorname{Aut}(D_n)$ and the mapping $c: S_{n-2} \to \mathscr{C}$ given by

_				
1				
4) 11 61				
Ē.				
;				
i i				
į				
!				
:				
\$				
·:				

93

 $\sigma \mapsto c_{\sigma}$ is an isomorphism. If $n \ge 4$, if $j_1, j_2 \in \{2, 3, ..., n-1\}$ are distinct, and if $\alpha = (j_1, j_2)$, then c_{α} preserves E_j set-wise for $j \notin \{j_1, j_2\}$ and interchanges E_{j_1} and E_{j_2} .

Proof. The proof of the lemma is immediate for n = 3; so we assume that $n \ge 4$ and that $j_1, j_2 \in \{2, 3, ..., n-1\}$ are distinct.

Since $c_{\gamma \circ \beta} = c_{\gamma} \circ c_{\beta}$, \mathscr{C} is a group of permutations of $V(D_n)$ and c is an epimorphism. If $j \notin \{j_1, j_2\}$, then α fixes j (and 1 and n); hence, if $\Pi \circ \tau_j = \Psi$, then $c_{\alpha}(\Pi) \circ \tau_i = c_{\alpha}(\Psi)$. Thus, E_i is preserved set-wise by c_{α} .

Similarly, if $\Pi \circ \tau_{j_1} = \Psi$, then $c_{\alpha}(\Pi) \circ \tau_{j_2} = c_{\alpha}(\Psi)$ and the same is true when the roles of j_1 and j_2 are reversed. Hence, c_{α} interchanges E_{j_1} and E_{j_2} .

So we see that $c_{\alpha} \in \operatorname{Aut}(D_n)$ and since S_{n-2} is generated by the set of its transpositions, $\mathscr{C} \leq \operatorname{Aut}(D_n)$.

All that remains to be shown is that c is injective. We note that $c_{\sigma_1} = c_{\sigma_2}$ if and only if $\sigma_1 \circ \sigma_2^{-1} \in Z(A_n)$, the center of A_n . An easy exercise in group theory shows that $Z(A_n)$ is trivial for $n \ge 4$. Hence, $c_{\sigma_1} = c_{\sigma_2}$ implies that $\sigma_1 = \sigma_2$ so that c is indeed an isomorphism. \square

We remark that since c_{α} fixes i, c_{α} interchanges the j_1 -edge and the j_2 -edge leaving i.

Lemma 4. If $n \ge 3$, then D_n is edge-transitive.

Proof. Given $(\Pi_1, \Psi_1) \in E_{j_1}$ and $(\Pi_2, \Psi_2) \in E_{j_2}$, let $\alpha = (j_1, j_2)$ and let $a = m_{\Pi_1^{-1}} \circ c_{\alpha} \circ m_{\Pi_2}$. A routine computation shows that $a(\Pi_1) = \Pi_2$ and $a(\Psi_1) = \Psi_2$. Since $a \in \operatorname{Aut}(D_n)$ by Lemma 1 and Lemma 3, the proof is complete. \square

Lemma 5. If $n \ge 4$ and $k \in \{1, 2, ..., n\}$, then the left cosets of $\Sigma_n(k; k)$ in A_n are precisely the sets $\Sigma_n(1; k), \Sigma_n(2; k), ..., \Sigma_n(n; k)$.

If $k \in \{2, 3, ..., n-1\}$, then

- (i) each of the n subgraphs $\langle \Sigma_n(1;k) \rangle$, ..., $\langle \Sigma_n(n;k) \rangle$ is isomorphic to D_{n-1} ,
- (ii) if $j \neq k$, then every j-edge of D_n is an edge in exactly one of these n subgraphs, and
- (iii) if $(\Pi, \Psi) \in E_k$ and $\Pi \in \Sigma_n(h_1, h_2, h_3; k, 1, n)$, then $\Psi \in \Sigma_n(h_2, h_3, h_1; k, 1, n)$.

Proof. If $\omega \in A_n$ and ω sends $h \mapsto k$, then for $\sigma \in \Sigma_n(k; k)$, $\omega \circ \sigma$ sends $h \mapsto k$ so that the left coset $\omega \Sigma_n(k; k) = \Sigma_n(h; k)$.

We now assume that $k \in \{2, 3, ..., n-1\}$. Consider the action of A_{n-1} on the set $\{1, 2, ..., n\} \setminus \{k\}$, and let $A : A_{n-1} \to \Sigma_n(k; k)$ be the mapping given by $a \mapsto a$, where $a \in a$ for $a \neq k$ and $a \in a$. It is immediate that $a \in a$ group isomorphism and since $a \in a$ for $a \in a$, we see that $a \in a$ digraph isomorphism from $a \in a$ for $a \in a$, let

 $\sigma \in A_n$ be any permutation which sends $h \mapsto k$ and (recalling Lemma 1) consider the automorphism m_{σ} of D_n . The restriction of m_{σ} to $\Sigma_n(k;k)$ is a bijection from $\Sigma_n(k;k)$ to $\Sigma_n(h;k)$ and hence is a digraph isomorphism from $\langle \Sigma_n(k;k) \rangle$ to $\langle \Sigma_n(h;k) \rangle$. This completes the proof of (i).

If $j \neq k$, if Π sends $h \mapsto k$, and if $\Pi \circ \tau_j = \Psi$, then since $\tau_j(k) = k$, Ψ sends $h \mapsto k$ so that the j-edge (Π, Ψ) is an edge of the digraph $\langle \Sigma_n(h; k) \rangle$.

If $\Pi \in \Sigma_n(h_1, h_2, h_3; k, 1, n)$ and $\Pi \circ \tau_k = \Psi$, then it is immediate that $\Psi \in \Sigma_n(h_2, h_3, h_1; k, 1, n)$ and so the k-edge (Π, Ψ) leaves the subgraph $\langle \Sigma_n(h_1; k) \rangle$ and enters the subgraph $\langle \Sigma_n(h_2; k) \rangle$. \square

A standard exercise in group theory (see [7]) shows that A_n is generated by its set of 3-cycles for $n \ge 3$. Since (j_1, j_2, j_3) , $(1, j_1, j_2)$, and (j_1, j_2, n) can be written as products of elements of B_n , B_n is indeed a generating set for A_n . The following lemma is a graph theoretic restatement of this fact.

Lemma 6. If $n \ge 3$, then D_n is strongly connected.

The proof that B_n generates A_n shows that if $n \ge 3$, then the diameter of D_{n+1} is at most 3 more than the diameter of D_n . We state here without proof (see [3]) that the diameters of D_4 , D_5 , D_6 , D_7 , and D_8 are 4, 5, 6, 8 and 10 respectively. Determination of the diameter of D_n in the general case seems to be an interesting problem.

4. The main results

A directed graph D is homogeneously traceable if for each $v \in V(D)$ there exists a Hamiltonian dipath, P, in D with I(P) = v. We now investigate the existence of Hamiltonian dipaths in the directed graphs D_n $(n \ge 3)$. The digraphs D_3 and D_4 are investigated by hand and D_5 is investigated by computer search. For $n \ge 6$ we use induction and automorphisms to insure the existence of many Hamiltonian dipaths in the digraphs $\langle \Sigma_n(h;k) \rangle$, $h \in \{1,2,\ldots,n\}$, for a particular $k \in \{2,3,\ldots,n-1\}$ depending on a vertex ω which sends $1 \mapsto n$. We then piece these together to form the desired ℓ - ω Hamiltonian dipath in D_n . The method required to effect this piecing is less straightforward than one might expect.

In fact, for $n \neq 4$ we are able to choose ω so that the $i-\omega$ Hamiltonian dipath can be extended to a Hamiltonian dicycle.

Theorem 7. For n = 3 and $n \ge 5$, given any $\omega \in A_n = V(D_n)$ such that ω sends $1 \mapsto n$, there exists an $i-\omega$ Hamiltonian dipath. For n = 4, there exists an i-(1, 4)(2, 3) Hamiltonian dipath.

:			
3-			
0.4800			
GLOCK!			
į			
e e			
:			
:			
- 1 d - 1 d - 1 d			
Ŕ			
i.			
,			
•			
*			
;			
ļļ.			

Proof. For n = 3, $\omega = (1, 3, 2)$ is the only permutation which sends $1 \mapsto 3$ and since D_3 is the directed 3-cycle [i, (1, 2, 3), (1, 3, 2), i], there is an $i-\omega$ Hamiltonian dipath in D_3 .

For n=4, we use the numbering of the elements of A_4 shown in Appendix A. Here Π_5 , Π_7 , and Π_{12} all send $1\mapsto 4$, but a routine hand computation shows that there are exactly 4 Hamiltonian dipaths in D_4 having i as initial vertex and each of these has Π_{12} as terminal vertex. These four paths are P_1 and P_2 (listed in Appendix C) and the images, $c_{(2,3)}(P_1)$ and $c_{(2,3)}(P_2)$, of P_1 and P_2 under the automorphism $c_{(2,3)}$. Thus since D_4 is vertex transitive, D_4 is homogeneously traceable but not Hamiltonian.

For n = 5, we use the numbering of the elements of A_5 shown in Appendix B. By implementing a "foresightful" backtracking algorithm on a computer we find the three Hamiltonian dipaths in D_5 listed as R_1 , R_2 , and R_3 in Appendix D.

By Lemma 3, if R is a Hamiltonian dipath in D_5 and $\sigma \in S_3$ (acting on the set $\{2,3,4\}$) then the image $c_{\sigma}(R)$ is also a Hamiltonian dipath in D_5 . The Hamiltonian dipaths $c_{(2,4)}(R_1)$, $c_{(3,4)}(R_1)$, $c_{(2,4)}(R_2)$, $c_{(3,4)}(R_2)$, $c_{(2,3)}(R_2)$, $c_{(2,3)}(R_2)$, and $c_{(2,3)}(R_3)$ all have $\Pi_1 = i$ as initial vertex; and their terminal vertices are Π_{17} , Π_{13} , Π_{45} , Π_{27} , Π_{35} , Π_{39} , Π_{43} , Π_{57} , and Π_{54} respectively. Thus, for each of the twelve vertices, ω , of D_5 which send $1 \mapsto 5$ we have exhibited an $i-\omega$ Hamiltonian dipath.

Having proved the theorem for n=5, we now assume that $n \ge 6$ and that the theorem is true for n-1. We are given $\omega \in A_n = V(D_n)$ such that ω sends $1 \mapsto n$ and we shall construct an $i-\omega$ Hamiltonian dipath P in D_n . Since ω is an even permutation, there exists $k \in \{2, 3, \ldots, n-1\}$ such that $\omega(k) \ne k$. We fix this k for the remainder of the proof and we let $h^* = \omega^{-1}(k)$ (of course $h^* \ne k$ and $\omega \in \Sigma_n(h^*; k)$). We shall be concerned with the induced subgraphs $\langle \Sigma_n(1; k) \rangle$, $\langle \Sigma_n(2; k) \rangle$, ..., $\langle \Sigma_n(n; k) \rangle$ and we begin by proving the following claim involving the homogeneous traceability of these subgraphs.

Claim. If $h \in \{1, 2, 3, ..., n\}$, if $\Pi \in \Sigma_n(h; k) = V(\langle \Sigma_n(h; k) \rangle)$, and if $\mathscr{E}(\Pi) = \{\Psi \in \Sigma_n(h; k): \text{ there exists a } \Pi - \Psi \text{ Hamiltonian dipath in } \langle \Sigma_n(h; k) \rangle \}$, then $\mathscr{E}(\Pi) \supseteq \Sigma_n(h, \Pi^{-1}(1); k, n)$.

Proof. Note first that since the theorem is true for n-1 and since $\langle \Sigma_n(k;k) \rangle \cong D_{n-1}$ by Lemma 5, $\mathcal{E}(i) \supseteq \Sigma_n(k, 1; k, n) = \Sigma_n(k, i^{-1}(1); k, n)$. That is, the claim is true for $\Pi = i$.

Next we observe that $\Sigma_n(h, \Pi^{-1}(1); k, n) = m_{\Pi}(\Sigma_n(k, 1; k, n))$. This follows immediately from the following facts: m_{Π} is injective, $|\Sigma_n(h, \Pi^{-1}(1); k, n)| = |\Sigma_n(k, 1; k, n)|$, and $\Sigma_n(h, \Pi^{-1}(1); k, n) \supseteq m_{\Pi}(\Sigma_n(k, 1; k, n))$.

Now given $\Psi \in \Sigma_n(h, \Pi^{-1}(1); k, n)$ we know from the previous observation that there exists $\sigma \in \Sigma_n(k, 1; k, n)$ such that $\Pi \circ \sigma = \Psi$. Since the theorem is true for n-1 and since $\langle \Sigma_n(k; k) \rangle \cong D_{n-1}$ by Lemma 5, $\sigma \in \Sigma_n(k, 1; k, n) \subseteq \mathscr{E}(i)$ so that there exists an $i-\sigma$ Hamiltonian dipath, P, in $\langle \Sigma_n(k; k) \rangle$. By Lemma 1,

96

 $m_{\Pi} \in \operatorname{Aut}(D_n)$ and hence $m_{\Pi}(P)$ is a simple dipath in D_n . In fact, if $\alpha \in \Sigma_n(k;k)$ then $m_{\Pi}(\alpha) \in \Sigma_n(h;k)$; so since all the vertices of P are in $\Sigma_n(k;k)$, all the vertices of $m_{\Pi}(P)$ are in $\Sigma_n(h;k)$ and hence $m_{\Pi}(P)$ is a Hamiltonian dipath in $\langle \Sigma_n(h;k) \rangle$. Since $I(m_{\Pi}(P)) = \Pi \circ i = \Pi$ and $I(m_{\Pi}(P)) = \Pi \circ \sigma = \Psi$, $\Psi \in \mathscr{E}(\Pi)$. Therefore, $\mathscr{E}(\Pi) \supseteq \Sigma_n(h, \Pi^{-1}(1); k, n)$ and the proof of the claim is complete. \square

We shall now construct the desired dipath P. A schematic diagram of the construction is presented in Fig. 1. We let $\Pi = (1, k, n)$ and we note that

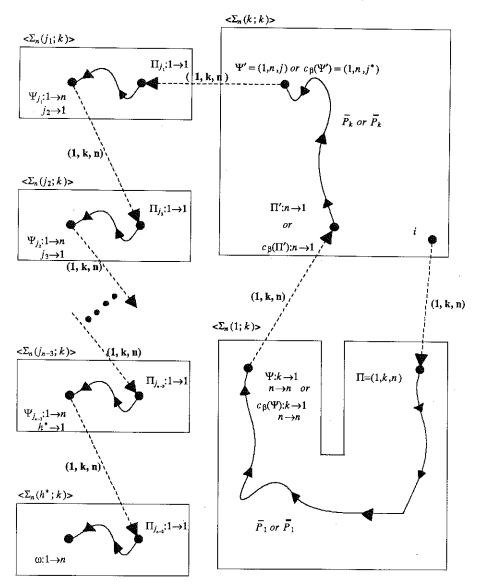


Fig. 1.

 $\Pi \in \Sigma_n(1; k)$. By the claim, $\mathscr{E}(\Pi) \supseteq \Sigma_n(1, n; k, n)$ and hence there exists $\Psi \in \Pi$ $\Sigma_n(1, k, n; k, 1, n)$ such that there is a $\Pi - \Psi$ Hamiltonian dipath \bar{P}_1 in $\langle \Sigma_n(1; k) \rangle$. We let $\Pi' = \Psi \circ (1, k, n)$ and we note that $\Pi' \in \Sigma_n(k, n; k, 1)$. By the claim, $\mathscr{E}(\Pi') \supseteq \Sigma_n(k, n; k, n)$ and hence there exists a $\Pi' - i$ Hamiltonian dipath \bar{Q}_k in $\langle \Sigma_n(k,k) \rangle$ since $i \in \Sigma_n(k,n;k,n)$. We let Ψ' be the penultimate vertex in \bar{Q}_k and we let \bar{P}_k be the initial segment of \bar{Q}_k which satisfies $T(\bar{P}_k) = \Psi$ (that is, deleting the last edge, (Ψ', i) , of \bar{Q}_k results in \bar{P}_k). Now, for some $j \in \{2, 3, \ldots, n-1\} \setminus$ $\{k\}$ we have $\Psi' \circ (1, j, n) = i$ and hence $\Psi' = (1, n, j)$. If $j = h^*$ (recall that $h^* = \omega^{-1}(k)$) we fix $j^* \in \{2, 3, ..., n-1\} \setminus \{k, j\}$ and we let $\beta = (j, j^*)$. We now consider the mapping c_{β} : we note that if $\alpha \in \Sigma_n(1; k)$, then $c_{\beta}(\alpha) \in \Sigma_n(1; k)$ and if $\alpha \in \Sigma_n(k;k)$, then $c_{\beta}(\alpha) \in \Sigma_n(k;k)$. So by letting $\bar{P}_1 = c_{\beta}(\bar{P}_1)$ and $\bar{P}_k = c_{\beta}(\bar{P}_k)$ we conclude (since $c_{\beta} \in \operatorname{Aut}(D_n)$ by Lemma 3 and since $c_{\beta}(\Pi) = \Pi$) that \bar{P}_1 is a $\Pi - c_{\beta}(\Psi)$ Hamiltonian dipath in $\langle \Sigma_n(1;k) \rangle$ and (since $c_{\beta}(\Psi') = (1, n, i^*)$) that \bar{P}_k is a $c_{\theta}(\Pi') - (1, n, j^*)$ dipath in $\langle \Sigma_n(k; k) \rangle$ that includes every vertex of $\langle \Sigma_n(k,k) \rangle$ except $c_B(i) = i$. Furthermore, since (Ψ, Π') is a k-edge of D_n we know by Lemma 3 that $(c_{\beta}(\Psi), c_{\beta}(\Pi'))$ is also a k-edge of D_n .

We are now prepared to define the initial segment of our path P. If $j \neq h^*$ we let $P_{1,k} = [i, \Pi] \bar{P}_1[\Psi, \Pi'] \bar{P}_k$. If $j = h^*$ we let $P_{1,k} = [i, \Pi] \bar{P}_1[c_\beta(\Psi), c_\beta(\Pi')] \bar{P}_k$. In both cases $P_{1,k}$ is a Hamiltonian dipath in the subgraph $\langle \Sigma_n(k;k) \cup \Sigma_n(1;k) \rangle$ of D_n . $I(P_{1,k}) = i$ and $T(P_{1,k}) = (1, n, j_1)$, where $j_1 \in \{2, 3, \ldots, n-1\} \setminus \{k, h^*\}$ (in fact $j_1 = j$ if $j \neq h^*$ and $j_1 = j^*$ if $j = h^*$).

We now define the other segments of our dipath P. We let $(j_1, j_2, \ldots, j_{n-2})$ be a fixed ordering of the elements of $\{2, 3, \ldots, n-1\} \setminus \{k\}$, where $j_{n-2} = h^*$ and of course j_1 is determined by the terminal vertex, $(1, n, j_1)$, of $P_{1,k}$. We let $H_{j_1} = (1, n, j_1) \circ (1, k, n)$ and we let Ψ_{j_1} be a fixed element of $\Sigma_n(j_1, j_2, 1; k, 1, n)$. Next we proceed inductively as follows: for $i \in \{2, 3, \ldots, n-3\}$, having defined $H_{j_{i-1}}$ and $\Psi_{j_{i-1}}$ we let $H_{j_i} = \Psi_{j_{i-1}} \circ (1, k, n)$ and we let Ψ_{j_i} be a fixed element of $\Sigma_n(j_i, j_{i+1}, 1; k, 1, n)$. Finally we let $H_{j_{n-2}} = \Psi_{j_{n-3}} \circ (1, k, n)$. We note that for each $i \in \{1, 2, \ldots, n-3\}$, $H_{j_i} \in \Sigma_n(j_i, 1; k, 1)$. By the claim, $\mathscr{C}(H_{j_i}) \supseteq \Sigma_n(j_i, 1; k, n)$ and since $\Psi_{j_i} \in \Sigma_n(j_i, 1; k, n)$ we conclude that there exists a $H_{j_i} - \Psi_{j_i}$ Hamiltonian dipath \tilde{P}_{j_i} in $\langle \Sigma_n(j_i; k) \rangle$. Also, we note that $H_{j_{n-2}} \in \Sigma_n(h^*, 1; k, n)$ and since $\omega \in \Sigma_n(h^*, 1; k, n)$ we conclude that there exists a $H_{j_{n-2}} - \omega$ Hamiltonian dipath $\tilde{P}_{j_{n-2}}$ in $\langle \Sigma_n(h^*, k, k) \rangle$. We let $P_{j_i} = [(1, n, j_1), H_{j_i}]\tilde{P}_{j_i}$ and for $i \in \{2, 3, \ldots, n-2\}$, we let $P_{j_i} = [\Psi_{j_{i-1}}, H_{j_i}]\tilde{P}_{j_i}$.

Finally we let $P = P_{1,k}P_{j_1}P_{j_2}\dots P_{j_{n-3}}P_{j_{n-2}}$. Thus, P is an $i-\omega$ Hamiltonian dipath in D_n and the proof is complete. \square

Corollary 8. The digraph D_4 is homogeneously traceable but not Hamiltonian; and for n = 3 and $n \ge 5$, D_n is Hamiltonian.

Proof. The statement concerning D_4 was verified in the proof of Theorem 7. Thus we assume that n=3 or $n \ge 5$ and we let $\omega = (1, n, j)$ where $j \in \{2, 3, \ldots, n-1\}$. Since ω sends $1 \mapsto n$, we conclude by Theorem 7 that there is

-			
1			
-			

an $i-\omega$ Hamiltonian dipath P in D_n . The dipath $P[\omega,i]$ is a Hamiltonian dicycle in D_n . \square

Theorem 7 made verification of Corollary 8 easy since we knew the final vertex of P would be of the form (1, n, j). It seems natural to investigate possible restrictions on terminal vertices of Hamiltonian dipaths in D_n . Thus for $\Pi \in A_n$ we let $\mathcal{F}(\Pi) = \{ \Psi \in A_n : \text{there exists a } \Pi - \Psi \text{ Hamiltonian dipath in } D_n \}$.

Corollary 9. If $\Pi \in A_n$, then

98

- (a) if n = 3, $\mathcal{F}(\Pi) = \{\Pi \circ (1, 3, 2)\},\$
- (b) if n = 4, $\mathcal{F}(\Pi) = \{\Pi \circ (1, 4)(2, 3)\}$,
- (c) if $n \ge 5$, $\mathcal{F}(\Pi) \supseteq \{ \Psi \in A_n : \Psi^{-1}(n) = \Pi^{-1}(1) \}$.

Proof. We first observe that for any $n \ge 3$, $\{\Psi \in A_n : \Psi^{-1}(n) = \Pi^{-1}(1)\} = m_{\Pi}(\Sigma_n(1;n))$. This follows immediately from the following facts: m_{Π} is injective, $|\{\Psi \in A_n : \Psi^{-1}(n) = \Pi^{-1}(1)\}| = |\Sigma_n(1;n)|$, and $\{\Psi \in A_n : \Psi^{-1}(n) = \Pi^{-1}(1)\} \supseteq m_{\Pi}(\Sigma_n(1;n))$.

We now assume n=3 or $n \ge 5$. Given $\Psi \in A_n$ such that $\Psi^{-1}(n) = \Pi^{-1}(1)$ we know that there exists σ_{Ψ} such that $\Pi \circ \sigma_{\Psi} = \Psi$ and $\sigma_{\Psi}(1) = n$. By Theorem 7 we know that there exists an $i-\sigma_{\Psi}$ Hamiltonian dipath, P, in D_n . By Lemma 1, $m_{\Pi} \in \operatorname{Aut}(D_n)$ so that $m_{\Pi}(P)$ is a Hamiltonian dipath with $I(m_{\Pi}(P)) = \Pi$ and $T(m_{\Pi}(P)) = \Pi \circ \sigma_{\Psi} = \Psi$. Hence $\Psi \in \mathcal{F}(\Pi)$ and thus $\mathcal{F}(\Pi) \supseteq \{\Psi \in A_n : \Psi^{-1}(n) = \Pi^{-1}(1)\}$.

For n = 4, the above argument shows that for $\Pi \in A_4$, $\mathcal{F}(\Pi) \supseteq \{\Pi \circ (1, 4)(2, 3)\}$. Since $\mathcal{F}(\epsilon) = \{(1, 4)(2, 3)\}$ and since D_4 is vertex transitive (Lemma 2), we conclude that $\mathcal{F}(\Pi) = \{\Pi \circ (1, 4)(2, 3)\}$. For n = 3, equality is immediately observed. \square

5. Queries and remarks

In view of Corollary 9, a natural question to ask is, "Is it true that for $n \ge 5$, $\mathcal{F}(\Pi) = \{ \Psi \in A_n : \Psi^{-1}(n) = \Pi^{-1}(1) \}$?" Since D_n is vertex transitive, it suffices to consider the question of equality between $\mathcal{F}(\iota)$ and $\{ \Psi \in A_n : n = \Psi(1) \}$. The question appears to be difficult and of considerable interest. We were unable to construct Hamiltonian dipaths in D_n by any direct construction having a "theoretical" basis. Our inductive method of proving Thorem 7 does not work for D_5 using D_4 because of the small size of the sets $\mathcal{F}(\Pi)$ in D_4 .

Our backtracking algorithm for D_5 was "foresightful" in the following way (see Fig. 2). In extending a dipath Q with $T(Q) = \Pi$, a vertex σ not in Q is called bad if the edges leaving σ are (σ, α_1) , (σ, α_2) , and (σ, α_3) and all of α_1 , α_2 , and α_3 are already in Q. If the edges leaving Π are (Π, Ψ_1) , (Π, Ψ_2) , and (Π, Ψ_3) , then

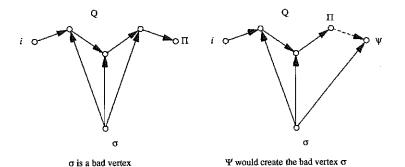


Fig. 2.

in trying to extend Q by adding the edge (Π, Ψ_i) we of course check that Ψ_i is not already in Q, but we also check to make sure that the dipath consisting of Q followed by the edge (Π, Ψ_i) would have no more than one bad vertex (since if this dipath is to be extended to a Hamiltonian dipath, P, a bad vertex must be T(P)). This additional heuristic check speeds up the program and enables us to generate approximately 24 000 Hamiltonian dipaths in D_5 using approximately 144 minutes of CPU time on a VAX 750 computer. Each of these dipaths has i as its initial vertex and one of the twelve vertices of D_5 which sends $1\mapsto 5$ as its terminal vertex. This suggests that $\mathcal{F}(i) = \{\Psi \in A_5: 5 = \Psi(1)\}$, but certainly is not conclusive since we estimate that we produced approximately $1/15\,000$ of all Hamiltonian dipaths in D_5 with initial vertex i. We also mention that for each $j \in \{2, 3, 4\}$, every $\Psi \in A_5$ which sends $1\mapsto 5$ is the terminal vertex of at least one Hamiltonian dipath in D_5 having (i, (1, j, 5)) as its initial edge.

We have seen that D_4 is a homogeneously traceable non-Hamiltonian directed graph of order 12 which has the following properties:

 P_1 : asymmetry, P_3 : vertex transitivity,

 P_2 : regularity, P_4 : edge transitivity.

Let P be a subset of $\{P_1, P_2, P_3, P_4\}$. We ask the following questions. Does D_4 have the smallest order among all homogeneously traceable non-Hamiltonian directed graphs having the properties in P? If so, is D_4 the unique such directed graph of order 12?

The Cayley digraph, D(G, S), of any group, G, with respect to a generating set, S, of G is vertex transitive (see the proofs of Lemma 1 and Lemma 2). Although the Lovász conjective (every connected vertex transitive graph has a Hamiltonian path) remains unsettled, Nijenhuis and Wilf [6] showed that for a particular S consisting of a 5-cycle and a transposition, $D(S_5, S)$ does not have a Hamiltonian dipath. Nevertheless, it is of great interest to determine which groups, G, have the property that D(G, S) has a Hamiltonian dipath (dicycle) for every generating set, S, of G. An excellent result in this area, due to Witte (see [12]), is that each D(G, S) has a Hamiltonian dicycle when G is a p-group. In

particular, determining those S for which $D(A_n, S)$ is traceable (Hamiltonian) seems to be an interesting problem.

The authors would like to express their thanks to the referee for his helpful suggestions for improving this paper.

Appendix A

A numbering of the elements of A_4 .

$$\Pi_1 = i,$$
 $\Pi_5 = (1, 4, 3),$
 $\Pi_9 = (1, 3, 2),$
 $\Pi_{10} = (2, 3, 4),$
 $\Pi_{10} = (1, 2, 4),$
 $\Pi_{10} = (1, 2, 3, 4),$
 $\Pi_{11} = (1, 3, 2, 4),$
 $\Pi_{12} = (1, 3, 4),$
 $\Pi_{13} = (1, 3, 4),$
 $\Pi_{14} = (1, 3, 4),$
 $\Pi_{15} = (1, 2, 3),$
 $\Pi_{11} = (1, 3, 2, 4),$
 $\Pi_{12} = (1, 4, 2, 3).$

Appendix B

A numbering of the elements of A_5 .

```
\Pi_{41} = (1, 4, 2, 5, 3),
 \Pi_1 = i
                         \Pi_{21} = (1, 3, 2),
                        \Pi_{22} = (1, 2, 3, 4, 5),
                                                       \Pi_{42} = (1, 4, 2, 3, 5),
 \Pi_2 = (3, 4, 5),
                                                        \Pi_{43} = (1, 5, 3, 2, 4),
 \Pi_3 = (3, 5, 4),
                         \Pi_{23} = (1, 5, 4, 3, 2),
                                                        \Pi_{44} = (1, 4, 3, 2, 5),
                         \Pi_{24} = (1, 2, 3, 5, 4),
 \Pi_4 = (2, 4, 5),
                                                        \Pi_{45} = (1, 5, 2, 3, 4),
                        \Pi_{25} = (1, 4, 5, 3, 2),
 \Pi_5 = (2, 5, 4),
                                                        \Pi_{46} = (2, 3)(4, 5),
                        \Pi_{26} = (1, 2, 4, 3, 5),
 \Pi_6 = (2, 3, 5),
                        \Pi_{27} = (1, 5, 3, 4, 2),
                                                        \Pi_{47} = (2, 4)(3, 5),
 \Pi_7 = (2, 5, 3),
                                                        \Pi_{48} = (2, 5)(3, 4),
                        \Pi_{28} = (1, 2, 4, 5, 3),
 \Pi_8 = (2, 3, 4),
                                                        \Pi_{49} = (1, 3)(4, 5),
 \Pi_9 = (2, 4, 3),
                        \Pi_{29} = (1, 3, 5, 4, 2),
                                                        \Pi_{50} = (1, 4)(3, 5),
                        \Pi_{30} = (1, 2, 5, 3, 4),
\Pi_{10} = (1, 4, 5),
                        \Pi_{31} = (1, 4, 3, 5, 2),
\Pi_{11} = (1, 5, 4),
                                                        \Pi_{51} = (1, 5)(3, 4),
\Pi_{12} = (1, 3, 5),
                         \Pi_{32} = (1, 2, 5, 4, 3),
                                                        \Pi_{52} = (1, 2)(4, 5),
                                                        \Pi_{53} = (1, 4)(2, 5),
\Pi_{13} = (1, 5, 3),
                        \Pi_{33} = (1, 3, 4, 5, 2),
                                                        \Pi_{54} = (1, 5)(2, 4),
\Pi_{14} = (1, 3, 4),
                        \Pi_{34} = (1, 3, 2, 4, 5),
                                                        \Pi_{55} = (1, 2)(3, 5),
\Pi_{15} = (1, 4, 3),
                        \Pi_{35} = (1, 5, 4, 2, 3),
                        \Pi_{36} = (1, 3, 2, 5, 4),
                                                        \Pi_{56} = (1, 3)(2, 5),
\Pi_{16} = (1, 2, 5),
                                                        \Pi_{57} = (1, 5)(2, 3),
\Pi_{17} = (1, 5, 2),
                        \Pi_{37} = (1, 4, 5, 2, 3),
                        \Pi_{38} = (1, 3, 4, 2, 5),
                                                        \Pi_{58} = (1, 2)(3, 4),
\Pi_{18} = (1, 2, 4),
```

$$\Pi_{19} = (1, 4, 2), \qquad \Pi_{39} = (1, 5, 2, 4, 3), \qquad \Pi_{59} = (1, 3)(2, 4),$$

$$\Pi_{20} = (1, 2, 3), \qquad \Pi_{40} = (1, 3, 5, 2, 4), \qquad \Pi_{60} = (1, 4)(2, 3),$$

Appendix C

The Hamiltonian dipaths P_1 and P_2 in D_4 .

Appendix D

```
Hamiltonian dipaths in A_5. For m \in \{1, 2, 3\}, R_m = R^*Q_m.
                        \Pi_1 \Pi_{16}\Pi_{17}\Pi_{6} \Pi_{20}\Pi_{57}\Pi_{7} \Pi_{55}\Pi_{13} \Pi_{2} \Pi_{30}\Pi_{27} \Pi_{8} \Pi_{22} \Pi_{45} \Pi_{48} \Pi_{58}
edges of R^*: \tau_2 \tau_3 \tau_2 \tau_3 \tau_2 \tau_3 \tau_2 \tau_4 \tau_2 \tau_4 \tau_2 \tau_3 \tau_2 \tau_3 \tau_2
Q_1:
                       \Pi_{58} \Pi_{51} \Pi_{3} \Pi_{32} \Pi_{52} \Pi_{24} \Pi_{35} \Pi_{46} \Pi_{36} \Pi_{29} \Pi_{49} \Pi_{14} \Pi_{12} \Pi_{56} \Pi_{21} \Pi_{34} \Pi_{43}
edges of Q_1: \tau_2 \tau_4 \tau_2 \tau_3 \tau_3 \tau_2 \tau_2 \tau_3 \tau_2 \tau_2 \tau_4 \tau_4 \tau_2 \tau_2 \tau_4 \tau_3 \tau_2
                            \Pi_{47} \Pi_{59} \Pi_{38} \Pi_{33} \Pi_{40} \Pi_{39} \Pi_{4} \Pi_{53} \Pi_{31} \Pi_{37} \Pi_{60} \Pi_{42} \Pi_{41}
                                \tau_3 \tau_4 \tau_2 \tau_4 \tau_3 \tau_3 \tau_4 \tau_3 \tau_3 \tau_2 \tau_2 \tau_3 \tau_2
                            \Pi_{25} \Pi_{50} \Pi_{15} \Pi_{44} \Pi_{23} \Pi_{9} \Pi_{26} \Pi_{28} \Pi_{18} \Pi_{54} \Pi_{5} \Pi_{19} \Pi_{10} \Pi_{11}
                                \tau_2 \tau_3 \tau_2 \tau_4 \tau_4 \tau_2 \tau_3 \tau_3 \tau_2 \tau_4 \tau_4 \tau_2 \tau_4
Q_2:
                        \Pi_{58} \Pi_{51} \Pi_{3} \Pi_{49} \Pi_{36} \Pi_{29} \Pi_{59} \Pi_{38} \Pi_{33} \Pi_{14} \Pi_{12} \Pi_{56} \Pi_{21} \Pi_{34}
edges of Q_2: \tau_2 \tau_4 \tau_3 \tau_2 \tau_2 \tau_4 \tau_4 \tau_2 \tau_2 \tau_4 \tau_2 \tau_2 \tau_4 \tau_2
                            \Pi_{40} \Pi_{39} \Pi_{9} \Pi_{26} \Pi_{28} \Pi_{43} \Pi_{47} \Pi_{41} \Pi_{25} \Pi_{50} \Pi_{15} \Pi_{10} \Pi_{11} \Pi_{5}
                               	au_3 	au_2 	au_2 	au_3 	au_2 	au_2 	au_4 	au_2 	au_2 	au_3 	au_3 	au_4 	au_2 	au_4
                            \Pi_{19} \Pi_{42} \Pi_{35} \Pi_{46} \Pi_{24} \Pi_{32} \Pi_{52} \Pi_{18} \Pi_{54} \Pi_{4} \Pi_{53} \Pi_{31} \Pi_{37} \Pi_{60} \Pi_{44} \Pi_{23}
                               	au_3 	au_4 	au_2 	au_2 	au_3 	au_3 	au_4 	au_2 	au_2 	au_4 	au_3 	au_3 	au_2 	au_3 	au_4
Q_3:
                       \Pi_{58} \Pi_{26} \Pi_{39} \Pi_{9} \Pi_{34} \Pi_{43} \Pi_{47} \Pi_{28} \Pi_{18} \Pi_{54} \Pi_{4} \Pi_{40} \Pi_{59} \Pi_{38} \Pi_{29}
edges of Q_3: 	au_4 	au_2 	au_2 	au_3 	au_3 	au_2 	au_2 	au_3 	au_2 	au_2 	au_3 	au_2 	au_4 	au_4 	au_2
                           \Pi_{49} \Pi_{11} \Pi_5 \Pi_{52} \Pi_{24} \Pi_{32} \Pi_{23} \Pi_3 \Pi_{15} \Pi_{44} \Pi_{31} \Pi_{37} \Pi_{53} \Pi_{19}
                                	au_3 	au_2 	au_2 	au_3 	au_3 	au_2 	au_2 	au_4 	au_2 	au_2 	au_3 	au_3 	au_2 	au_2
                          \Pi_{10} \Pi_{50} \Pi_{41} \Pi_{25} \Pi_{60} \Pi_{42} \Pi_{35} \Pi_{46} \Pi_{36} \Pi_{21} \Pi_{12} \Pi_{56} \Pi_{33} \Pi_{14} \Pi_{51}
                                \tau_3 \tau_2 \tau_2 \tau_3 \tau_2 \tau_4 \tau_2 \tau_3 \tau_4 \tau_2 \tau_2 \tau_4 \tau_2 \tau_3
```

References

- [1] M. Behzad, G. Chartrand, and L. Lesniak-Foster, Graphs and Digraphs, Wadsworth International Mathematics Series (1979).
- [2] E. Durnberger, Connected Cayley graphs of semi-direct products of cyclic groups of prime order by Abelian groups are Hamiltonian, Discrete Math. 46 (1983) 55-68.
- [3] R.J. Gould and R. Roth, On the diameter of the (i, j, n) Cayley Graph of A_n, in preparation.
 [4] J.B. Klerlein, Hamiltonian cycles in Cayley color graphs, J. Graph Theory 2 (1978) 65-68.
- [5] D. Marušič, Hamiltonian circuits in Cayley graphs, Discrete Math. 46 (1983) 49-54.
- [6] A. Nijenhuis and H. Wilf, Combinatorial Algorithms, second edition, NEXPER Chap. (Academic Press, New York, 1978).
- [7] J.J. Rotman, The Theory of Groups, second edition, Allyn and Bacon Ser. in Adv. Math. (1973).
- [8] R. Sedgewick, Permutation Generation Methods, Computer Surveys 9 (1977) 137-164.
- [9] P.J. Slater, Generating all Permutations by Graphical Transpositions, Ars Combin. 5 (1978)
- [10] P. Tannenbaum, Minimal Cost Permutation Generating Algorithms, Proc. Fourteenth SE Conf. on Combinatorics, Graph Theory, and Computing, to appear.
- [11] M. Tchuente, Generation of permutations by graphical exchanges, Ars Combin. 14 (1982)
- [12] D. Witte, Cayley digraphs of prime power order are Hamiltonian, to appear in Discrete Math.