Discre hematics 66 (1987) 91-102 91
North-Holland

CAYLEY DIGRAPHS AND (1,j, n)-SEQUENCINGS OF
THE ALTERNATING GROUPS A,

Ronald J. GOULD* and Robert ROTH*

Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322,
7.5.A.

Received 29 February 1984
Revised 22 August 1986

The problem of finding a sequencing I1,, I,, . . ., IT},) for the elements of the alternating
group A, which minimizes the cost function
{d,l-1

C= 2 C(Hi_l° 1)

=1

where c(IT) = [{j: IT{7} #]}|, is solved, For n =3 the sequencing is constructed by finding a
directed Hamiltonian path in the Cayley digraph D, of A,,, determined by the generating set
B, ={(L,j,n:je{2,3,...,n—1}}. We further consider the guestion of finding a directed
Hamiltonian cycle in D,.

1. Introduction

Recently interest has arisen (see [10, 11, 8 and 9]) in generating a sequencing of
the elements of a permutation group subject to various constraints. Of special
interest is the problem of generating a sequencing II,, IL,, ..., II,; of the
elements of a permutation group G so that the total cost

1G|-1

C= 2} C(Hf_l" 1'+1)

is minimized, where c:G—R" is a cost function. Of course IL = (IT; *o [T, ;) =
I, so that ¢(IT; ' IT,,,) is the cost of “proceeding by multiplication” from I7;
to IT,., in the sequencing.

In particular, Tannenbaum in [10] raised the question of finding such a
sequencing when G =A, (n=3) with its natural action on {1,2,...,n},
c(IT) = |{j: II(j) #j}| so that ¢(IT) =3 for each non-identity element [T € A,, and
the set of allowable multipliers for use in the sequencing is

Bn={(1:j: n):jE{2> 3. >n“1}}’

which is a minimal generating set of A,. In this paper we construct many such
sequencings for each n = 3. Terms not defined in this article can be found in [1] or
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2. Notatior and definitions

In writing permutations explicitly we use the standard cycle notation and the
composition, I, ¢ IT,, of II, and IT, will always mean IT, followed by IT,. The
identity permutation will be denoted by .. We write IT(%) for the image of A
under I7 and we often abbreviate IT(h) =k by writing “IT sends h—k”. We
define

(b, hoy o By Ry K, ) ={ITe A TR =k, ref{l,2,...,m}}

Of course 2,(k; k) is the stabilizer of k in A,. We also let 7,=(1, j, n) with n
being unambiguously determined by the context in which we write ;. Given a
digraph D and X c V(D), we let (X} denote the subgraph of D induced by X,

For n =3, we let D, denote the Cayley digraph of A, with respect to B,. That
is, D, is the digraph with V(D,)=A, and E(D,)=J E;, where E;=
{{IL, W) II, W€ A, and ITe ;= W}. The clements of E; will be called j-edges.
We let Aut(D,) denote the automorphism group of D,.

We note that the existence of a sequencing of A, in which all multipliers are
permutations in B, is equivalent to the existence of a directed Hamiltonian path
in D,. We shall also consider the existence of a directed Hamiltonian cycle in D,.
(The Hamiltonian problem for various Cayley digraphs has been studied in
{5,2,4, and 12].)

We shall henceforth refer to directed paths and directed cycles as dipaths and
dicycles, respectively. We call a dipath with initial vertex x and terminal vertex y
an x—y dipath; and we write I(P) and T(P) to denote the initial and terminal
vertices, respectively, of a dipath P. When P and Q are dipaths with 7(P) = I{Q)
we write PQ to denote the concatenation of P and Q.

For each o € A,, we let the mapping m, : A, — A, (pre-multiplication by ) be
defined by m,(IT) =0 Il We let #l={m,:0€A,}. For each €S, ., where
S,z acts on {2,3,...,n—1}, we let the mapping ¢,: A4, A, (conjugation by
o) be defined by ¢,(IT) = 0™ o IT > 5. (Recall that the cycle types of IT and ¢, (IT)
are the same.) We let € ={c,: 0 € 5,_,}.

3. Preliminary lemmas

The first two lemmas are standard results and we omit their proofs.

Lemma 1. If n=3, then M<Au(D,) and m, preserves each E; set-wise.
Furthermore, the mapping m: A, — M defined by o—m, is an anti-isomorphism,

Lemma 2. If n=3, then D, is vertex transitive.

Lemma 3. If n =3, then €= Aut(D,) and the mapping c'8, ,— € given by
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o> C, is an isomorphism. If n 24, if j;, jo€{2,3,. .., n — 1} are distinct, and if
o = (J1, J), then ¢, preserves E; set-wise for j ¢ {ji, j.} and interchanges E; and
E;,.
Proof. The proof of the lemma is immediate for n = 3; so we assume that n = 4
and that j;, j,e€{2,3,..., n— 1} are distinct.

Since ¢, g=c,°cg, € is a group of permutations of V(D,) and ¢ is an
epimorphism. If j ¢ {j, j.}, then « fixes j (and 1 and n); hence, if Te7,= ¥,
then ¢, (I1) > 7; = ¢,{¥). Thus, E; is preserved set-wise by c,.

Similarly, if 1T 7, = ¥, then ¢, (IT) ° 7;,= ¢, (¥} and the same is true when the
roles of j; and j, are reversed. Hence, c, interchanges E; and E,,.

So we see that ¢, € Aut(D,) and since S, , is generated by the set of its
transpositions, € = Aut(D, ).

All that remains to be shown is that ¢ is injective. We note that ¢, = ¢,, if and
only if o;°07" € Z(4,), the center of A,. An easy exercise in group theory shows
that Z(A,) is trivial for n=4. Hence, c,, =c,, implies that ¢; = ¢, so that c is
indeed an isomorphism. O

We remark that since ¢, fixes ¢, ¢, interchanges the j;-edge and the j,-edge
leaving .

Lemma 4. [f n =3, then D, is edge-transitive.

Proof. Given (i1, W\)ckE; and (II,, ¥;)eE;,, let o= (j;, ;) and let a=
Mr;1°C, °Myy,. A Toutine computation shows that a(fI;) = I, and a(¥;) = ¥,.
Since g € Aut(D,) by Lemma 1 and Lemma 3, the proof is complete. O

Lemma 5, Ifn=4and ke {l,2,...,n}, then the left cosets of Z,{k; k) in A, are
precisely the sets 2,(1; k), 2,(2; k), ..., Z,(n; k).
Ifke{2,3,...,n—1}, then
(i) each of the n subgraphs {Z.(1;k)}, ..., (Z,(n; k)} is isomorphic to D, _,,
(il) if j+k, then every j-edge of D, is an edge in exactly one of these n
subgraphs, and
(i) if (II, WYeE, and ITe X, (hy, hy, ha; k, 1, n), then WeZ,(hy, hs, hy;
k, 1, n).

Proof. If w €A, and w sends A—k, then for o€ Z,(k; k), w° o sends A—k so
that the left coset wX, (k; k) = Z,(h; k).

We now assume that k€ {2, 3, ..., # —1}. Consider the action of 4,_, on the
set {1,2,...,n}\{k}, and let A:A,_ = Z,(k;k) be the mapping given by
o>, where &6(h)=o(h) for h#k and &(k) =k It is immediate that A is a
group isomorphism and since 7, =(1,j,n) €A, , and %;,=(1, j, n) € A, for j #k,
we see that A is a digraph isomorphism from D, _, to {3,(k; k)). For h #k, let
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o€ A, be any permutation which sends s+ k and (recalling Lemma 1) consider
the automorphism m,, of D,. The restriction of m, to Z,(k; k) is a bijection from
Z.(k; k) to Z,(h; k) and hence is a digraph isomorphism from (Z,(k;k)) to
(Z,(h; k)). This completes the proof of (i).

It j#k, if IT sends h—k, and if ITo7;= W, then since 7(k)=4k, ¥ sends
h—k so that the j-edge (IT, ¥) is an edge of the digraph (X, (h; k)).

It HeX, (hy, ho, hs; k,1,n) and ITet, =W, then it is immediate that
Ve (hy ha, hyy k,1,1n) and so the k-edge (I, W) leaves the subgraph
(Z,(hy; k)) and enters the subgraph (2,(hy; k)). O

A standard exercise in group theory (see [7]) shows that A, is generated by its
set of 3-cycles for n =3. Since (1, ja, ja), (1, j1, J2), and (fi, jo, #) can be written
as products of elements of B,, B, is indeed a generating set for 4,. The following
lemma is a graph theoretic restatement of this fact.

Lemma 6. If n =3, then D, is strongly connected.

The proof that B, generates A, shows that if n >3, then the diameter of D,
is at most 3 more than the diameter of D,. We state here without proof (see [3])
that the diameters of D,, D5, Dy, D;, and Dy are 4, 5, 6, 8 and 10 respectively.
Determination of the diameter of D, in the general case seems to be an
inferesting problem,

4. The main results

A directed graph D is homogeneously traceable if for each v e V(D) there
exists a Iamiltonian dipath, P, in D with I{P)=v. We now investigate .the
existence of Hamiltonian dipaths in the directed graphs D, (n > 3). The digraphs
Dy and D, are investigated by hand and D; is investigated by computer search,
For n =6 we use induction and automorphisms to insure the existence of many
Hamiltonian dipaths in the digraphs (2, (h;k)), he{1,2, ..., n}, for a particu-
lar k€{2,3,...,n—1} depending on a vertex @ which sends 1~>n. We then
piece these together to form the desired /~@ Hamiltonian dipath in D,. The
method required to effect this piecing is less straightforward than one might
expect.

In fact, for n #4 we are able to choose @ so that the /—w Hamiltonian dipath
can be extended to a Hamiltonian dicycle. '

Theorem 7. For n=73 and n =35, given any w € A, = V(D,) such that w sends
1—n, there exists an —@ Hamiltonian dipath. For n=4, there exists an
—(1, 4)(2, 3) Hamiltonian dipath.
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Proof. For n=3, w={(1, 3, 2) is the only permutation which sends 1—3 and
since D, is the directed 3-cycle [+, (1,2,3), (1,3,2), ¢}, there is an i~
Hamiltonian dipath in D;.

For n =4, we use the numbering of the elements of A, shown in Appendix A.
Here II5, IT;, and I1;; all send 1+ 4, but a routine hand computation shows that
there are exactly 4 Hamiltonian dipaths in D, having ¢ as initial vertex and each of
these has IT;, as terminal vertex. These four paths are P, and P, (listed in
Appendix C) and the images, ¢ 5(P) and ce 3(P,), of P, and P, under the
automorphism ¢ 5. Thus since D, is vertex transitive, D, is homogeneously
traceable but not Hamiltonian. ‘

For n =35, we use the numbering of the elements of A5 shown in Appendix B.
By implementing a ‘““foresightful” backtracking algorithm on a computer we find
the three Hamiltonian dipaths in Ds listed as R;, R;, and R; in Appendix D.

By Lemma 3, if R is a Hamiltonian dipath in Ds and ¢ € §; (acting on the set
{2,3,4}) then the image c,(R) is also a Hamiltonian dipath in Ds. The
Hamiltonian dipaths ce4(R1), caalRi), cpalR2), cao(R2), €@3(R2),
casa(Ra) €o43(R2), cou(Rs), and ¢ 3)(Ra) all have [T, =/ as initial vertex;
and their terminal vertices are IT,;, ITs, Ilss, Il Ilys, ITs, I, Is;, and Ils,
respectively. Thus, for each of the twelve vertices, w, of D5 which send 1—35 we
have exhibited an /—@ Hamiltonian dipath.

Having proved the theorem for #» =5, we now assume that » = 6 and that the
theorem is true for n — 1. We are given w € A, = V(D,) such that @ sends 1+>n
and we shall construct an /—@ Hamiltonian dipath P in D,. Since @ is an even
permutation, there exists k€ {2, 3, ..., n —1} such that w(k) # k. We fix this k
for the remainder of the proof and we let 1* =@ (k) (of course A* #k and
weZ,(h*;k)). We shall be concerned with the induced subgraphs (Z,(1; k)),
(Z,(2;k)),...,{Z,(n;k)) and we begin by proving the following claim
involving the homogeneous traceability of these subgraphs.

Chaim. If he{l,2,3,...,n}, if ITeZ,(h;k)=V({Z,(; k), and if EUIT)=
{WeZ,(h;k): there exists a II-¥ Hamiltonian dipath in (3,(h;k))}, then
€N 2 Z,(h, O Y1)k, n).

Proof. Note first that since the theorem is true for n — 1 and since (Z,(k; k)) =
D,_, by Lemma 5, é(:) 2 3,(k, 1; k, n) = 3,(k, . '(1); k, n). That is, the claim is
true for IT =¢.

Next we observe that X, (k, [T7'(1); k, n) =mp(Z,(k, 1; k, n)). This follows
immediately from the following facts: my; is injective, |Z,(h, IT'(1); k, n)| =
|Z.(k, 1; k, n)|, and 3, (h, T-'(1); k, n) 2 mp(Z,(k, 1; k, n)).

Now given ¥We X (h, IT"'(1); k, n) we know from the previous observation
that there exists o € X, (k, 1; k, n) such that ITe o = W. Since the theorem is true
for n —1 and since (Z,(k;%))=D,_; by Lemma 3, 0 X,(k, 1; k, n) < €() so
that there exists an (o Hamiltonian dipath, P, in (Z,(k;k)). By Lemma 1,
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myr € Aut(D,) and hence my;(P) is a simple dipath in D,. In fact, if @ € Z,(k; k)
then my; (@) € 2,(h; k), so since all the vertices of P are in X,(k; k), all the
vertices of my(F) are in 2,(h; k) and hence mp(P) is a Hamiltonian dipath in
(Z,(h; k)). Since I(my(PY)=IIoi=1II and T(mp(P))=II-0= ¥, We $(I).
Therefore, &(II)oX.(h, II"'(1); k,n) and the proof of the claim is

complete. [

We shall now construct the desired dipath P. A schematic diagram of the
construction is presented in Fig, 1. We let II=(1, k, ) and we note that
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Fig. 1.
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ITeZ,(1; k). By the claim, (IT)> X, (1, n; k, n) and hence there exists ¥ e
2,(1, k, n; k, 1, n) such that there is a IT-¥ Hamiltonian dipath P, in {(Z,(1,; k)).
We let IT'=%¥<(1, k, n) and we note that IT' € X,(k, n; k, 1). By the claim,
E(II'Y2 2,(k, n; k, n) and hence there exists a JI'—. Hamiltonian dipath @, in
(Z,(k; k)) since < € Z,(k, n; k, n). We let W' be the penultimate vertex in (; and
we let B, be the initial segment of @, which satisfies T(B,) =W (that is, deleting
the last edge, (¥, ¢), of O, results in P,), Now, for some je {2,3,...,n~ 10
{k} we have ¥'o(1,j,n)=¢ and hence ¥’ =(1,n,j). If j=h* (recall that
h*=w7Y(k)) we fix j*€{2,3,...,n—1}\{k, j} and we let 8=, j*). We now
consider the mapping cs: we note that if o € 2,(1; k), then cs(@) € Z,(1; k) and if
@ € Z,(k; k), then cs(a) € Z,(k; k). So by letting P, = cz(P,) and P, = e5(P,) we
conclude (since ¢ € Aut(D,) by Lemma 3 and since ¢z(IT)=1IT) that P, is a
IT—cy (W) Hamiltonian dipath in (Z,(1; k)) and (since ¢z(¥") = (1, n, j*)) that P,
is a ¢g(IT')—(1, n, j*) dipath in (X,(k;k)) that includes every vertex of
(Z.(k;k)) except cg(¢) =+ Furthermore, since (¥, IT') is a k-edge of D, we
know by Lemma 3 that (c(¥), cs(II")) is also a k-edge of D,.

We are now prepared to define the initial segment of our path P. If j#h* we
let Py =i, HP[W, IT']P,. 1f j=h* we let P, =i, II|P[es(¥), cu(IT)]P,. Tn
both cases P, , is a Hamiltonian dipath in the subgraph (2 (k; k) U 3,(1; k)) of
D,. I{Pz)=¢ and T(Py)=(1, n,j,), where j;€{2,3,...,n—1}\{k, h*} (in
factjy=jif j*h* and j, =j* if j = h*).

We now define the other segments of our dipath P. We let (jy, j, . . ., j._2) be
a fixed ordering of the elements of {2, 3, ..., n — 1}\{k}, where j, ,=h* and of
course J; is determined by the terminal vertex, (1,#,j;), of P .. We let
I1;, =(1, n, j1}° (1, k, n) and we let ¥; be a fixed element of 3,(ji, /2, 1; &, 1, ).
Next we proceed inductively as follows: for i€ {2, 3, ..., n — 3}, having defined
II,  and ¥,  we let I1; =W, <(1, k, n) and we let ¥, be a fixed element of
2. jivrs 1; k, 1, n). Finally we let o, =W, (1, k, n). We note that for
each ie{l,2,...,n—3}, IH;eX(j,1;k 1). By the claim, €(II,) >
2,(ju 15k, n) and since ¥, e X,(j;, 1;k, n) we conclude that there exists a
II,-W, Hamiltonian dipath P, in (Z,(j;;k)}. Also, we note that IT, e
Z,(h*, 1;k, 1) (since we required that j, ,=h*); by the claim, %(IT o) 2
Z.(h* 1k, n) and since we Z,(h* 1; k, n) we conclude that there exists a
I, ,—w Hamiltonian dipath P,  in (Z,(h*; k)). We let P, =[(1, n, jy), IT,|P,,
and forie{2,3,...,n—2}, welet P,=[%, , II|P,.

Finally welet P= P, . P; P;... .P; .P; ,. Thus, Pis an /—@ Hamiltonian dipath

17 gzt FLIE: S PR N
in D, and the proof is complete, 0O

Corollary 8. The digraph D, is homogeneously traceable but not Hamiltonian ; and
forn=3and n=35, D, is Hamiltonian.

Proof. The statement concerning D, was verified in the proof of Theorem 7.
Thus we assume that n=3 or n=5 and we let w=(1,n,j) where je
{2,3,...,n—1}. Since w sends 1—n, we conclude by Theorem 7 that there is
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an (—¢« Hamiltonian dipath P in D,. The dipath Plw, ¢] is a Hamiltonian dicycle
inD, O

Theorem 7 made verification of Corollary 8 easy since we knew the final vertex
of P would be of the form (I,#,j). It seems natural to investigate possible
restrictions on terminal vertices of Hamiltonian dipaths in D,. Thus for [Ie A4,
we let F(IT) = {¥ € A,: there exists a II-¥ Hamiltonian dipath in D,}.

Corollary 9. If [1 € A, then
(2) ifn=3, F(II)={I1=(1, 3, 2)},
(b) if n=4, F(ID)={II-(1, 4, 3)},
(©) ifn=S, F(ID2{PeA, W ' (n)=1'(1)}

Proof. We first observe that for any rn=3, {WeA, ¥ (n)=IIY(1)}=
my(Z,(1; n)). This follows immediately from the following facts: myy is injective,
H¥WeA, ¥ in)=I"1)}=|5(nr), and {YeA, W 'n)=H ')}
my(Za(1; ).

We now assume n =3 or n=5. Given ¥ € A, such that ¥ (n) =I1""(1) we
know that there exists oy such that IT ° oy = ¥ and 0w (1) = n. By Theorem 7 we
know that there exists an /oy Hamiltonian dipath, P, in D,. By Lemma 1,
myr € Aut(D,) so that my(P) is a Hamiltonian dipath with [(my(P))=II and
T(mg(P))=IIcoy=%. Hence WeZF(II) and thus F(IN)o{¥e
A, W Y n)=1T (1)}

For n=4, the above argument shows that for ITeA, FUNo{II-
(1, (2, 3)}. Since F() = {(1, 4)(2, 3)} and since D, is vertex transitive (Lemma
2), we conclude that F(IT) = {II - (1, 4)(2, 3)}. For n =3, equality is immediately
observed. 0O

5. Queries and remarks

In view of Corollary 9, a natural question to ask is, “Is it true that for =5,
FUAN ={WeA,: ¥ (n)=I (1)}?” Since D, is vertex transitive, it suffices to
consider the question of equality between F() and {WeA,:n=Y(1)}. The
guestion appears to be difficult and of considerable interest. We were unable to
construct Hamiltonian dipaths in D, by any direct construction having a
“theoretical” basis, Qur inductive method of proving Thorem 7 does not work for
Ds using D, because of the small size of the sets $(IT) in D,.

Our backtracking algorithm for Ds was “foresightful” in the following way (see
Fig. 2). In extending a dipath Q with T(Q) = IT, a vertex o not in @ is called bad
if the edges leaving o are (0, @), (0, as), and (0, as) and all of a;, a,, and as
are already in Q. If the edges leaving IT are (11, ¥,), (II, ¥,), and (11, ¥5), then
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Q Q n

T o

o is a bad vertex ¥ would create the bad vertex o

Fig. 2.

in trying to extend Q by adding the edge (11, ¥;) we of course check that ¥, is
not already in @, but we also check to make sure that the dipath consisting of Q
followed by the edge (I, ¥;) would have no more than one bad vertex (since if
this dipath is to be extended to a Hamiltonian dipath, P, a bad vertex must be
T(P)). This additional heuristic check speeds up the program and enables us to
generate approximately 24 000 Hamiltonian dipaths in Ds using approximately
144 minutes of CPU time on a VAX 750 computer. Each of these dipaths has ¢ as
its initial vertex and one of the twelve vertices of D)5 which sends 15 as its
terminal vertex. This suggests that F(;) = { ¥ € A5: 5= ¥(1)}, but certainly is not
conclusive since we estimate that we produced approximately 1/15000 of all
Hamiltonian dipaths in Ds with initial vertex .. We also mention that for each
je{2,3, 4}, every ¥ e As which sends 1+ 5 is the terminal vertex of at least one
Hamiltonian dipath in Ds having (¢, (1, j, 5)} as its initial edge.

We have seen that D, is a homogeneously traceable non-Hamiltonian directed
graph of order 12 which has the following properties: '

P; asymmetry, P;: vertex transitivity,

P,: regularity, P, edge transitivity.

Let P be a subset of {P,, P, P», P,}. We ask the following questions. Does Dy
have the smallest order among all homogeneously traceable non-Hamiltonian
directed graphs having the properties in P? If so, is D, the unique such directed
graph of order 127

The Cayley digraph, D(G, S), of any group, G, with respect to a generating
set, §, of G is vertex transitive (see the proofs of Lemma 1 and Lemma 2).
Although the Lovdsz conjective {every connected vertex transitive graph has a
Hamiltonian path) remains unsettled, Nijenhuis and Wilf [6] showed that for a
particular S consisting of a 5-cycle and a transposition, D(Ss, S) does not have a
Hamiltonian dipath. Nevertheless, it is of great interest to determine which
groups, G, have the property that D(G, §) has a Hamiltonian dipath (dicycle) for
every generating set, S, of G. An excellent result in this area, due to Witte (see
[12]), is that each D(G, §) has a Hamiltonian dicycle when G is a p-group. In
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particular, determining those S for which D(A,, §) is traceable (Hamiltonian)
seems to be an interesting problem. _

The authors would like to express their thanks to the referee for his helpful
suggestions for improving this paper.

Appendix A

A numbering of the elements of A,.
=, IIs=(1, 4, 3}, ,=(1,3,2),
II,=(2,3,4), Og=(1, 2, 4), I,=(1,2)3 4),
m,=(2,4,3), II,=(1,4,2), I, =(1,3)2,4),
,=(1,3,4), I=(1,2,3), I,=(,4273)

Appendix B

A numbering of the elements of As.
II = I, =(1,3, 2), I, =0,4,2,53),
II,=(3,4,5), m,=(01,2,3,4,5), H:=(1,4,23175),
II,=(3,5,4), ,=(1,5,4,3,2), M:=(1,53,2,4),
In,=(2,4,5), In,=(1,2,3,5,4), m,.,=(1,4,3,2,5),
II;=(2,54), Is=(1,4,5,3,2), Ms=(1,5,2,3,4),
II,=(2,3,5), =(1,2,4,3,5), IIs=1(2,3)(4,5),
I, =(2,5,3), m,,=(1,5,3,4,2), =2, 4)(3,5),
I;=1(2,3, 4), Ty=(1,2,4,5,3), =2, 5)3,4),
I, =(2, 4, 3), II=1(1,354,2), IMe=(1, 3)4,5),
IIs=(1,4,5), M,=(1,2,5,3, 4), I =(1, H{3, 5),
Im,=(,5,4), 115:=(1,4,3,52), I, =(1, 53, 4),
I, = (1, 3, 5)1 Iy, = (1: 2,5, 4, 3); 5= (L 2)(4' 5);
Im;=(1,5,3), ;,=(1,3,4,5,2), Hs;=(1, £)(2, 5),
m,=(1,3, 4, 1,=(1,3,2,4,5), s =1(1,5)2, 4),
Ims=(1,4,3), 35=(1,5,4,2,3), s =(1, 2)(3, 5),
g, =(,2,5), Is=(1,3,2,5,4), s =(1, 3)(2, 5),
m,;=(1,5,2), I,=(1,4,5,2,3), e =(1,5){2, 3),
=12, 4), I=(1,34,2,5), H=(1, 2)(3, 4),
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H19 = (1) 4: 2)) H39 = (]-; 5.- 2) 4; 3)’ HSQ = (l.v 3)(20 4);
my=0,23), Ie=1(1,352,4), Il =(1, 4)(2, 3),
Appendix C

The Hamiltonian dipaths P, and P in D,.

P Im I I, I, I, I, 15 11, I, I 11,
edges of P;: T, T T3 Ty Ty Tp T3 Tp Ty T3 1z

Py iy Ig oIl I, I, I, 1D, IT, IO, I I,
edges of P: T, T3 Tp Tz T3 T To T3 T3 Tp T
Appendix D

Hamiltonian dipaths in A;. For m € {1, 2, 3}, R,, = R*0,,.
R*: I, ILigIL, Mg Il Il Iy Is Iy Ty Tl Ty Tl Tl s Tag sy
edgesof R*: 1T, T, T3 Ta To T3 Tp Tp Ts Ty T, T3 Tn T, T3 T
Ql: HSB HS'I H3 H32 H52 H24 HSS H46 H36 H29 H49 Hld H12 H56 H21 H34 H43
edgesof U1 T, Ty To Ta T3 Tp Ty Tz To To Ty T4 Tp Tp Ty Ty T
H47 HSQ HSS H33 H4ﬂ H39 H4 H53 H31 H37 HGO H42 H41
Tz Tq Tz Ty T3 Tz Ty Ty T3 Tp Ty Ta Ty
HZS HSO HIS H44 H23 HQ H26 H28 HlS H54 Hﬁ Hl9 Hl() Hli
Ta Tz Ta Ty Ty Tz T3 Tz Ty Ty Tqg Ty T4
QZ: HSS HSI HB H49 H36 HZQ HSQ H35 H33 HI4 HIZ H56 HZI H34
edgesof Q0 T, Ty Ty Ty Ty Ty T4 To T Ty Tz Tp Ty T

H40 H39 H9 H26 HZS H43 H47 H41 HZS HSO HlS HID Hll HS
Ty T2 T T3 Tp Tp T4 Ty Tz T3 Tz Ty T T4

H19 H42 H35 H45 H24 H32 HSZ HIS 1’1’54 H4 H53 H3]_ H37 Hﬁo H44 H23
Tz T4 Tp Ty T3 Tz Ta Tz Ty Tg T3 T3 Tp T3 T4
Q3: HSE H26 H39 H9 H34 H43 H47 st Hlﬂ H54 H4 H40 H59 H38 H29
edgﬂs of Q3: Ty Ty Tp T3 T3 Ta Tp Tz To To Ty Ty Ty Ty T
H49 Hll H5 II‘;Z H24 H32 H23 H3 Hls H44 H31 H37 H53 ng
Ty To Tp T3 Tz To Tp Ty Tp To T3 Ty Ty Ta

Hll] HSD H¢I H25 HGU H42 H35 H46 H36 HZI H12 Hsﬁ H33 H14 HSl
T3 Ta Tp Ty Ty Ty Tp Tz Ty Tz Ta Ty To T3
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