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ABSTRACT

Various Hamiitonian-like properties are investigated in the squares of
connected graphs free of some set of forbidden subgraphs. The star
Ki.4. the subdivision graph of K, 5, and the subdivision graph of K, ; minus
an endvertex play central roles, In particular, we show that connected
graphs free of the subdivision graph of K;; minus an endvertex have
vertex pancyclic squares.

In this article, all graphs are finite, undirected, without loops or multiple
edges. Terms not defined here can be found in [1]. If U is a nonempty
subset of the vertex set V(G) of a graph G, then the subgraph (U} of
induced by U is the graph with vertex set U and whose edge set consists
of those edges of G incident with two elements of U, A graph is Hamiltonian
if it contains a cycle through all its vertices. A graph is vertex pancyclic
if each of its vertices lies on a cycle of length €, for each €, 3 < ¢ <
[V(G)|. The square of a graph G, denoted G, is that graph obtained from
G by inserting an edge between any two vertices at distance 2 apart in
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G. A graph G is (H,, H,, ..., H,)-free (k = 1), if G contains no induced
subgraph isomorphic to H,, foranyi = 1,2, ..., k. If k = 1, we simply
say G is H-free. .

The investigation of Hamiltonian properties in the square of a graph
was spurred by the classical result of Fleischner [2].

Theorem A [2]. If G is a 2-connected graph, then G? is Hamiltonian.

Harary and Schwenk [5] were able to characterize when the square
of a tree is Hamiltonian based on the subdivision graph of K|, (see
Fig. 1).

Theorem B (Harary and Schwenk [5D). For any tree T, T? is Hamiltonian
if and only if T is S(K,;)-free.

Until recently, few results had been obtained on the large class of
connected graphs not covered by Theorems A and B. Then Matthews
obtained the following. - .

Theorem C (Matthews [6]). If G is a connected K, ;-free graph, then G*
is vertex pancyclic.

The purpose of this paper is to extend the result of Matthews and
obtain other Hamiltonian-like results on the square of a connected graph.
We begin with a useful lemma.

Lemma 1. Let G be a K| free graph. For each vertex v of G, its neigh-
borhood N(v) can be partitioned into at most three sets so that the graph
induced by each set contains a spanning path.

Proof. If deg v =< 3 the result is immediate. So suppose deg v = 4 and
that N() = {v, va, ..., v} (k = 4). Let Py v, -+ v; be a path of
maximum length in (N(v)). If P, contains all of N(v) we are done, so
assume v,y & Py, Let Py ¢ v, 054, v; be a path of maximum length
starting with v, in (N(v) — V(P,)). If N@u) = V(P) U V(P,) then we
are done, so let §, denote the vertices that remain; that is, §; = N(v)

K13 8%y )

FIGURE 1. The star &, ; and its subdivision. graph S{K; 5).



HAMILTONIAN PROPERTIES 149

— V(P) — V(P,). Clearly V(P,) U V(P;) U §; partitions N(v), and
(V(P,)) and {V(P,)} each contain spanning paths. If |S;| = I we are again
done, so we suppose that Wi, W, € 8y,

Now consider the graph H = (v, v, v, wy, wy). The graph H is
isomorphic to X, unless w,w, is an edge of G. This follows since v,
(and similarly v,) cannot be adjacent to any vertex off the path P, (and
similarly 2,). This implies that (S3) is complete and hence contains a
spanning path. |

We note that this technique could be used to extend Lemma 1 to
K, ~free graphs; however, this would not add to the results to follow.

Theorem D (Fleischner [3]). If G is a graph, then G* is Hamiltonian if
and only if G* is vertex pancyclic.

In attempting to generalize Theorem C, and in view of Theorem B,
stars and the graph S(X ;) naturally come to mind. Further, using the
characterization of square traceable graphs [4], one realizes that even
K, 4free trees are not necessarily square traceable. We now present a
generalization of Theorem C, based on the graph Y of Figure 2.

- Theorem 2. If G is a connected Y-free graph, then G? is vertex pancyclic.

Proof. From Theorem D, it suffices to show that G2 is Hamiltonian.
Thus we choose a longest cycle C in G2 Tf C contains all vertices of G*
we are done, so we assume there exists x € V(G?) such that x is not on
C. Since G is connected, we may choose x so that it is adjacent in G
to some vertex of C. Further, without loss of generality we may assume
x is adjacent in G to x, and that the cycle Cis

C o oxpxaxs o x,x,.

Since C is a longest cycle in G2, x,x, € E(G? — E(G), for otherwise
xx; € F(G% and a cycle longer than C would result. We note that for
every uv € E(G") — E(G) which lies on C, there exists a vertex W on
C adjacent in G to both « and v. If w was not on C, then a longer cycle
would be immediate.

We proceed by showing that this finite cycle € contains an infinite
sequence of distinct vertices x,, x,, ..., with the following properties

o o
FIGURE 2. The graph ¥ = S{K 3} minus an endvertex.
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holding for each x,:

(@ x, # xyand x,,,, # x;, for each k < j,
(b) xx; € E(G),

(© x,x,.1 € E(GY) - E(G),

(d) x,,, x,and x;_ x,,, € E(G).

By the previous observations, let X, be a vertex on C with x,x, and
X%, edges in G. If x;x,,, € E(G), then x,x,,, € E(G? and since xx;,
€ E(G? then '

XXX Xy 1 7 XXy Xy U XX

would be a cycle in G longer than C. Thus, XX+ € E(GYH - EG),
and we see that x, meets conditions (a)-(d) [meeting (d) vacuousiy].
Since x,x,., € E(G?) — E(G), there exists x, on C with X%, and
X+ 1%, edges of G [thus x, meets property (d)]. We note that by the
maximality of C, x;, # x, and x;, # x,. Consider in G the graph H = ({x,
X1y X2, Xigs Xya1, Xp}). Since H = ¥, further edges must be present in
between vertices of H. We already know xxy & E(G). If xx, € E(G),
then xx, € E(G") and again a longer cycle results. If xx, ., € E(G), then
since xx;, € E(GY, a longer cycle is again immediate. If xx, € E@),
then both xx;, and xx,., are edges of G* and once more a fonger cycle
is produced. Thus no further edge of H involves x.

Since x;, is not x, or x,, the edges XX 4 and x,x;, ., are not in G. i
XX, € E(G), we obtain a cycle longer than C since X2x; . would be an
edge of G*. Thus, since this induced subgraph is not isomorphic to ¥,
we must have that xx, € E(G), [and hence xx, € E(GY)]. Therefore,
X, meets properties (a) and (b).

Now suppose x,x,,, is an edge of G. This implies that x,, \x,,, €
E(G?%. Then

XXX Xy 7" Xy Xy 1Xigz "0 X

-

is a cycle in G* longer than C. Thus XX € E(GP) — E(G) and condition
(¢) is met; hence x, meets all properties {a)—(d).
Now suppose we have chosen Xys Xy oouy Xy, Satisfying conditions
(a)-(d). We now produce a vertex x,,, also satisfying these conditions.
Let x,,, be a vertex on C such that XXy and x;, x| are edges of
G [that is, property (d) hoids]. Further suppose that x, ., = x, for some
J < k. The vertex x;, was chosen on C with property {d); that is
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X+ tXy € E(G). Hence Xyr+ X441 € E(Gz)- Then
BT = 0 SIS Kipr+ 18y +2 0 Xy,

is a cycle longer than C. .

A similar argument shows that x,,,, # X;.+1, and so property (a) holds.
-Since (x, X, Xiy_+1, Xi» Xye1s X4,,) Cannot be isomorphic to ¥ in G, a
case analysis similar to that performed on H earlier shows that xx, ,, €
E(G), and thus property (b) holds. If x,, x,..1 € E(G), then
X+ 1% +1 € E(G?) and, as above, a cycle fonger than C results; thus
property (c) must hold as well. Hence x,,, exists and meets the stated
conditions. But this implies that there are infinitely many vertices in this
finite graph, a contradiction. Hence G* must be Hamiltonian and therefore
vertex pancyclic, |1 :

To further generalize Theorem C, we must include S(K, 3) in our set
of forbidden subgraphs. The graph S(K 1.3} itself shows that either it or
one of its subgraphs must be in any set of forbidden subgraphs. Qur
next result includes the graphs of Figure 3 in the set of forbidden subgraphs,

Theorem 3. If G is a connected (K14, S(K,3), F, W)-free graph of order
p = 3, then G? is vertex pancyclic.

Proagf. Again from Theorem D, it suffices to show G? is Hamiltonian.
We proceed by induction on the order of the graph. If G has three or
four vertices the result follows. easily. Hence we assume G has order at
least 5. If G has maximum degree 2, then G is a cycle or a path and the
result is again obvious. _

Thus assume there exists a vertex v of degree at least three in G. Let
N@) = {vy, v, .., 0}k = 3). By Lemma-1, N(v) can be partitioned
into at most three sets S, (i = 1, 2, 3) such that {S;) contains a spanning
path (i = 1, 2, 3). Let such a spanning path of (§,) be P,. Without loss
of generality say :

Pyoiowy ey, Py Ui iliez " Upy Py iUy U 1y

[renumber the vertices of N(v) if necessary].

. F W

FIGURE 3. The graphs F and W.
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Now consider a spanning tree T of G containing all edges from v to
vertices of N(v). Let G, be the subgraph of G induced by v and the
vertices of the branch of T containing v; (i = 1, 2, ey k). Since k = 3,
IV(G)| < [V(G)]. Further, G, clearly contains none of the graphs K, ,,
S(K,3), F, or W as induced subgraphs. Thus, by the induction hypothesis,
if [V(G,)| = 3, then G? contains a Hamiltonian cycle C, (i = 1, 2, ..., k).
We note that if [V(G))] = 2 then G? is merely traceable.

We now claim that the graph (G, — v)? contains a Hamiltonian path
from the vertex v, to a vertex w;, where dg (v, w;) = 2: that is, w; €
Nw) i =1,2,.., k. [Xf IV(G)| = 2, then the path is merely v, itself.]

To verify this claim, first suppose that C; contains the edge vy;. The
other edge of C; incident with v must be of the form vw, where w €
N(v;). But then, deleting v and its incident edges from C, leaves a Ham-
iltonian (v; — w)-path in (G, — v)’. Hence w; = w suifices.

Next suppose that the edge v, is not on C,. Say instead that yw and
vx are the edges of C, incident with v, where w, x € N(v,). If the edge
xv; (or similarly wv,) is on C;, then remove v and its incident edges and
consider the path from v, to w followed by the edge from w to x. This
is a Hamiltonian (v, — x)-path in (G; — v)%, so in this case w; = x (or
similarly w). Next suppose that neither wv, nor xu;is on Cp. If v, is
adjacent on C; to any other s € N(v;), then, assuming x is on the segment
of C; between v and s containing v;, proceed from U; to x, then to s along
the edge xs, then along the cycle C; from s to w. This is a Hamiltonjan
(; — w)-path in (G, — v)?, so we may let w, = w. We note a similar
argument applies to w.

Finally, suppose that no neighbor of v, is adjacent to v, on C,. Thus
v; must be adjacent with two vertices, say b, and b,; where dz (v;, b))
= 2, (j = 1, 2). Further, suppose the vertex adjacent to both v and b,
s @ (j = 1, 2). Without loss of generality we assume that C; appears

" as

C,' LU, W, Ll: b; v, bz, Lz, X, U

where L, and L, are paths joining w and 5, and b, and x, respectively.

Now, {v, a, a,, x, v,}) = K, 4 unless, in G, there exists at least one
additional edge joining two of these vertices. Since such an edge cannot
involve v, three subcases exist, i

Subcase 1. If xa, € F(G), then xb, € E(G?) and the path U, b2y Ly, x,
by, L, w suffices.

Subcase 2. If xa, € E(G), then v, v, x, a3, ay, b)) = W unless at
least one additional edge exists (and such an edge cannot involve v). If
any of the edges xa,, xb,, or bya, is in G, the path of Subcase 1 is again
obtained since xb, € E(G?). If aya, € E(G), then (v, v, ay, a,, by, b,})
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= F unless one of a,b,, bya,, or bk, is in G. In any case, bib, € E(G%
and we obtain the path

Uiy x,. Ly, by, by, Ly, w.
Subcase 3. If a\a, € E(G), the argument that ends Subcase 2 suffices.
Thus, in all cases we have found the desired path and the claim is verified.

We now construct a spanning path in (U{_, G; — v)* that begins at v,

[in N(v)] and ends with w; (at distance 2 from v), We call this path P#
and it contains the paths P,, P, ..., P; traversed in that order. This is
possible since do(w;, v.) <2 (G = 1,2, ...,/ — 1). We also note that
similar paths P¥ in (Uj_,,; G; — v)* and P¥ in (U, G, — v) also
exist. :
Our final goai is to link the paths P} P¥, and P¥ and the vertex v to
obtain a Hamiltonian cycle of G% (We note that two or fewer paths
make these arguments simpler.) To do this, recall that these paths end
with w;, w,, and w,, respectively. The graph ({v, Uiy Wi, Upy Wy, Up, Wil
2 S(K, ;) and so further edges must be present in G. Also, no other edge
may involve v (as we have identified and used all its neighbors). No
other edge may involve two of v, v,, and v, as this contradicts the fact
that maximal paths in N(v} were chosen (using the proof of Lemma i).
Thus, either an edge involving two of w;, w,, w, or an edge involving
one of v;, v,, v, and one of (of a different subscript) Wi, W, w, exists.
In either case, this implies that in G* the edge between the corresponding
w’s must exist, Without loss of generality suppose that ww, € E(G?). The
Hamiltonian cycle of G* is then (letting P be the reverse of the path P)
v, P¥, PF, P¥ v, '

Thus G* is Hamiltonian and hence vertex pancyclic. I

We conclude by noting that Theorem 2 and Theorem B lead us to the
following conjecture.

Conjecture 1. If G is a connected S(K, ;)-free graph, then G* is vertex
pancyclic.

A somewhat lesser result that still generalizes Theorem C and improves
upon Theorem 3 would also be of interest.

FIGURE 4. A nontraceable graph without K4, S(K.3), F, or W with vertex
pancyclic square.
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Conjecture 2. If G is a connected (S(K\3), K, ,)-free graph, then G? is
vertex pancyclic, .
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