Forbidden Subgraphs and Hamiltonian Properties in the Square of a Connected Graph Ronald J. Gould DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, EMORY UNIVERSITY, ATLANTA, GEORGIA 30322 Michael S. Jacobson DEPARTMENT OF MATHEMATICS, UNIVERSITY OF LOUISVILLE, LOUISVILLE, KENTUCKY 40292 ## **ABSTRACT** Various Hamiltonian-like properties are investigated in the squares of connected graphs free of some set of forbidden subgraphs. The star $K_{1,4}$, the subdivision graph of $K_{1,3}$, and the subdivision graph of $K_{1,3}$ minus an endvertex play central roles. In particular, we show that connected graphs free of the subdivision graph of $K_{1,3}$ minus an endvertex have vertex pancyclic squares. In this article, all graphs are finite, undirected, without loops or multiple edges. Terms not defined here can be found in [1]. If U is a nonempty subset of the vertex set V(G) of a graph G, then the subgraph $\langle U \rangle$ of G induced by U is the graph with vertex set U and whose edge set consists of those edges of G incident with two elements of U. A graph is Hamiltonian if it contains a cycle through all its vertices. A graph is vertex pancyclic if each of its vertices lies on a cycle of length ℓ , for each ℓ , $3 \le \ell \le |V(G)|$. The square of a graph G, denoted G^2 , is that graph obtained from G by inserting an edge between any two vertices at distance 2 apart in G. A graph G is $(H_1, H_2, ..., H_k)$ -free $(k \ge 1)$, if G contains no induced subgraph isomorphic to H_i , for any i = 1, 2, ..., k. If k = 1, we simply say G is H_1 -free. The investigation of Hamiltonian properties in the square of a graph was spurred by the classical result of Fleischner [2]. **Theorem A** [2]. If G is a 2-connected graph, then G^2 is Hamiltonian. Harary and Schwenk [5] were able to characterize when the square of a tree is Hamiltonian based on the subdivision graph of $K_{1,3}$ (see Fig. 1). **Theorem B** (Harary and Schwenk [5]). For any tree T, T^2 is Hamiltonian if and only if T is $S(K_{1,3})$ -free. Until recently, few results had been obtained on the large class of connected graphs not covered by Theorems A and B. Then Matthews obtained the following. **Theorem C** (Matthews [6]). If G is a connected $K_{1,3}$ -free graph, then G^2 is vertex pancyclic. The purpose of this paper is to extend the result of Matthews and obtain other Hamiltonian-like results on the square of a connected graph. We begin with a useful lemma. **Lemma 1.** Let G be a $K_{1,4}$ -free graph. For each vertex v of G, its neighborhood N(v) can be partitioned into at most three sets so that the graph induced by each set contains a spanning path. **Proof.** If deg $v \le 3$ the result is immediate. So suppose deg $v \ge 4$ and that $N(v) = \{v_1, v_2, ..., v_k\}$ $(k \ge 4)$. Let $P_1 : v_1v_2 \cdots v_i$ be a path of maximum length in $\langle N(v) \rangle$. If P_1 contains all of N(v) we are done, so assume $v_{i+1} \notin P_1$. Let $P_2 : v_{i+1}v_{i+2} \cdots v_j$ be a path of maximum length starting with v_{i+1} in $\langle N(v) - V(P_1) \rangle$. If $N(v) = V(P_1) \cup V(P_2)$ then we are done, so let S_3 denote the vertices that remain; that is, $S_3 = N(v)$ FIGURE 1. The star $K_{1,3}$ and its subdivision graph $S(K_{1,3})$. $-V(P_1)-V(P_2)$. Clearly $V(P_1)\cup V(P_2)\cup S_3$ partitions N(v), and $\langle V(P_1)\rangle$ and $\langle V(P_2)\rangle$ each contain spanning paths. If $|S_3|=1$ we are again done, so we suppose that $w_1, w_2 \in S_3$. Now consider the graph $H = \langle v, v_i, v_j, w_1, w_2 \rangle$. The graph H is isomorphic to $K_{1,4}$ unless w_1w_2 is an edge of G. This follows since v_i (and similarly v_j) cannot be adjacent to any vertex off the path P_1 (and similarly P_2). This implies that $\langle S_3 \rangle$ is complete and hence contains a spanning path. We note that this technique could be used to extend Lemma 1 to $K_{1,n}$ -free graphs; however, this would not add to the results to follow. **Theorem D** (Fleischner [3]). If G is a graph, then G^2 is Hamiltonian if and only if G^2 is vertex pancyclic. In attempting to generalize Theorem C, and in view of Theorem B, stars and the graph $S(K_{1,3})$ naturally come to mind. Further, using the characterization of square traceable graphs [4], one realizes that even $K_{1,4}$ -free trees are not necessarily square traceable. We now present a generalization of Theorem C, based on the graph Y of Figure 2. **Theorem 2.** If G is a connected Y-free graph, then G^2 is vertex pancyclic. **Proof.** From Theorem D, it suffices to show that G^2 is Hamiltonian. Thus we choose a longest cycle C in G^2 . If C contains all vertices of G^2 we are done, so we assume there exists $x \in V(G^2)$ such that x is not on C. Since G is connected, we may choose x so that it is adjacent in G to some vertex of C. Further, without loss of generality we may assume x is adjacent in G to x_1 and that the cycle C is $$C: x_1x_2x_3 \cdots x_nx_1$$. Since C is a longest cycle in G^2 , $x_1x_2 \in E(G^2) - E(G)$, for otherwise $xx_2 \in E(G^2)$ and a cycle longer than C would result. We note that for every $uv \in E(G^2) - E(G)$ which lies on C, there exists a vertex w on C adjacent in G to both u and v. If w was not on C, then a longer cycle would be immediate. We proceed by showing that this finite cycle C contains an infinite sequence of distinct vertices x_{i_1}, x_{i_2}, \ldots , with the following properties FIGURE 2. The graph $Y = S(K_{1,3})$ minus an endvertex. holding for each x_i : (a) $$x_{i_k} \neq x_{i_j}$$ and $x_{i_{k+1}} \neq x_{i_j}$ for each $k < j$, (b) $$x_1x_{ii} \in E(G)$$, (c) $$x_{ij}x_{ij+1} \in E(G^2) - E(G)$$, (d) $$x_{i_{j+1}} x_{i_j}$$ and $x_{i_{j+1}} x_{i_{j+1}} \in E(G)$. By the previous observations, let x_{i_1} be a vertex on C with $x_{i_1}x_1$ and $x_{i_1}x_2$ edges in G. If $x_{i_1}x_{i_1+1} \in E(G)$, then $x_2x_{i_1+1} \in E(G^2)$ and since xx_{i_1} $\in E(G^2)$ then $$x_1xx_{i_1}x_{i_1-1}\cdots x_2x_{i_1+1}x_{i_1+2}\cdots x_nx_1$$ would be a cycle in G^2 longer than C. Thus, $x_{i_1}x_{i_1+1} \in E(G^2) - E(G)$, and we see that x_{i_1} meets conditions (a)-(d) [meeting (d) vacuously]. Since $x_{i_1}x_{i_1+1} \in E(G^2) - E(G)$, there exists x_{i_2} on C with $x_{i_1}x_{i_2}$ and $x_{i_1+1}x_{i_2}$ edges of G [thus x_{i_2} meets property (d)]. We note that by the maximality of C, $x_{i_2} \neq x_1$ and $x_{i_2} \neq x_2$. Consider in G the graph $H \cong \langle \{x, x\} \rangle$ $(x_1, x_2, x_{i_1}, x_{i_1+1}, x_{i_2})$. Since $H \cong Y$, further edges must be present in Gbetween vertices of H. We already know $xx_2 \notin E(G)$. If $xx_{i_1} \in E(G)$, then $xx_2 \in E(G^2)$ and again a longer cycle results. If $xx_{i_1+1} \in E(G)$, then since $xx_{i_1} \in E(G^2)$, a longer cycle is again immediate. If $xx_{i_2} \in E(G)$, then both xx_{i_1} and xx_{i_1+1} are edges of G^2 and once more a longer cycle is produced. Thus no further edge of H involves x. Since x_{i_2} is not x_1 or x_2 , the edges $x_1x_{i_1+1}$ and $x_2x_{i_2+1}$ are not in G. If $x_2x_{i_2} \in E(G)$, we obtain a cycle longer than C since $x_2x_{i_1+1}$ would be an edge of G^2 . Thus, since this induced subgraph is not isomorphic to Y, we must have that $x_1x_{i_2} \in E(G)$, [and hence $xx_{i_2} \in E(G^2)$]. Therefore, x_{i_2} meets properties (a) and (b). Now suppose $x_{iz}x_{iz+1}$ is an edge of G. This implies that $x_{iz+1}x_{iz+1} \in$ $E(G^2)$. Then $$X_{i_1}XX_{i_2}X_{i_2-1}\cdots X_{i_1+1}X_{i_2+1}X_{i_2+2}\cdots X_{i_t}$$ is a cycle in G^2 longer than C. Thus $x_{i_2}x_{i_2+1} \in E(G^2) - E(G)$ and condition (c) is met; hence x_{i_2} meets all properties (a)-(d). Now suppose we have chosen $x_{i_1}, x_{i_2}, ..., x_{i_k}$ satisfying conditions (a)-(d). We now produce a vertex $x_{i_{k+1}}$ also satisfying these conditions. Let $x_{i_{k+1}}$ be a vertex on C such that $x_{i_{k+1}}x_{i_k}$ and $x_{i_{k+1}}x_{i_{k+1}}$ are edges of G [that is, property (d) holds]. Further suppose that $x_{i_{k+1}} = x_{i_l}$ for some j < k. The vertex x_{ij} was chosen on C with property (d); that is $x_{i_{j-1}+1}x_{i_j} \in E(G)$. Hence $x_{i_{j-1}+1}x_{i_{k+1}} \in E(G^2)$. Then $$x_{i_{j-1}}xx_{i_k}x_{i_k-1}\cdots x_{i_{j-1}+1}x_{i_{j-1}+2}\cdots x_{i_{j-1}}$$ is a cycle longer than C. A similar argument shows that $x_{i_{k+1}} \neq x_{i_{j+1}}$, and so property (a) holds. Since $\langle x, x_1, x_{i_{k-1}+1}, x_{i_k}, x_{i_{k+1}}, x_{i_{k+1}} \rangle$ cannot be isomorphic to Y in G, a case analysis similar to that performed on H earlier shows that $x_1x_{i_{k+1}} \in E(G)$, and thus property (b) holds. If $x_{i_{k+1}}x_{i_{k+1}+1} \in E(G)$, then $x_{i_{k+1}}x_{i_{k+1}+1} \in E(G^2)$ and, as above, a cycle longer than C results; thus property (c) must hold as well. Hence $x_{i_{k+1}}$ exists and meets the stated conditions. But this implies that there are infinitely many vertices in this finite graph, a contradiction. Hence G^2 must be Hamiltonian and therefore vertex pancyclic. To further generalize Theorem C, we must include $S(K_{1,3})$ in our set of forbidden subgraphs. The graph $S(K_{1,3})$ itself shows that either it or one of its subgraphs must be in any set of forbidden subgraphs. Our next result includes the graphs of Figure 3 in the set of forbidden subgraphs. **Theorem 3.** If G is a connected $(K_{1,4}, S(K_{1,3}), F, W)$ -free graph of order $p \ge 3$, then G^2 is vertex pancyclic. **Proof.** Again from Theorem D, it suffices to show G^2 is Hamiltonian. We proceed by induction on the order of the graph. If G has three or four vertices the result follows easily. Hence we assume G has order at least 5. If G has maximum degree 2, then G is a cycle or a path and the result is again obvious. Thus assume there exists a vertex v of degree at least three in G. Let $N(v) = \{v_1, v_2, ..., v_k\}(k \ge 3)$. By Lemma 1, N(v) can be partitioned into at most three sets S_i (i = 1, 2, 3) such that $\langle S_i \rangle$ contains a spanning path (i = 1, 2, 3). Let such a spanning path of $\langle S_i \rangle$ be P_i . Without loss of generality say $$P_1: v_1v_2 \cdots v_j, \quad P_2: v_{j+1}v_{j+2} \cdots v_r, \quad P_3: v_{r+1}v_{r+2} \cdots v_k$$ [renumber the vertices of N(v) if necessary]. FIGURE 3. The graphs F and W. Now consider a spanning tree T of G containing all edges from v to vertices of N(v). Let G_i be the subgraph of G induced by v and the vertices of the branch of T containing v_i (i = 1, 2, ..., k). Since $k \ge 3$, $|V(G_i)| < |V(G)|$. Further, G_i clearly contains none of the graphs $K_{1,4}$, $S(K_{1,3})$, F, or W as induced subgraphs. Thus, by the induction hypothesis, if $|V(G_i)| \ge 3$, then G_i^2 contains a Hamiltonian cycle C_i (i = 1, 2, ..., k). We note that if $|V(G_i)| = 2$ then G_i^2 is merely traceable. We now claim that the graph $(G_i - v)^2$ contains a Hamiltonian path from the vertex v_i to a vertex w_i , where $d_G(v, w_i) = 2$; that is, $w_i \in N(v_i)$ (i = 1, 2, ..., k). [If $|V(G_i)| = 2$, then the path is merely v_i itself.] To verify this claim, first suppose that C_i contains the edge vv_i . The other edge of C_i incident with v must be of the form vw, where $w \in N(v_i)$. But then, deleting v and its incident edges from C_i leaves a Hamiltonian $(v_i - w)$ -path in $(G_i - v)^2$. Hence $w_i = w$ suffices. Next suppose that the edge vv_i is not on C_i . Say instead that vw and vx are the edges of C_i incident with v, where $w, x \in N(v_i)$. If the edge xv_i (or similarly wv_i) is on C_i , then remove v and its incident edges and consider the path from v_i to w followed by the edge from w to x. This is a Hamiltonian $(v_i - x)$ -path in $(G_i - v)^2$, so in this case $w_i = x$ (or similarly w). Next suppose that neither wv_i nor xv_i is on C_i . If v_i is adjacent on C_i to any other $s \in N(v_i)$, then, assuming x is on the segment of C_i between v and s containing v_i , proceed from v_i to x, then to s along the edge xs, then along the cycle C_i from s to w. This is a Hamiltonian $(v_i - w)$ -path in $(G_i - v)^2$, so we may let $w_i = w$. We note a similar argument applies to w. Finally, suppose that no neighbor of v_i is adjacent to v_i on C_i . Thus v_i must be adjacent with two vertices, say b_1 and b_2 ; where $d_G(v_i, b_j) = 2$, (j = 1, 2). Further, suppose the vertex adjacent to both v_i and b_j is a_j (j = 1, 2). Without loss of generality we assume that C_i appears as $$C_i: v, w, L_1, b_1 v_i, b_2, L_2, x, v$$ where L_1 and L_2 are paths joining w and b_1 and b_2 and x, respectively. Now, $\langle \{v, a_1, a_2, x, v_i\} \rangle \cong K_{1,4}$ unless, in G, there exists at least one additional edge joining two of these vertices. Since such an edge cannot involve v, three subcases exist. Subcase 1. If $xa_1 \in E(G)$, then $xb_1 \in E(G^2)$ and the path v_i , b_2 , L_2 , x, b_1 , L_1 , w suffices. Subcase 2. If $xa_2 \in E(G)$, then $\langle \{v, v_i, x, a_2, a_1, b_1\} \rangle \cong W$ unless at least one additional edge exists (and such an edge cannot involve v). If any of the edges xa_1, xb_1 , or b_1a_2 is in G, the path of Subcase 1 is again obtained since $xb_1 \in E(G^2)$. If $a_1a_2 \in E(G)$, then $\langle \{v, v_i, a_1, a_2, b_1, b_2\} \rangle$ $\cong F$ unless one of a_1b_2 , b_1a_2 , or b_1b_2 is in G. In any case, $b_1b_2 \in E(G^2)$ and we obtain the path $$v_i, x, L_2, b_2, b_1, L_1, w$$ Subcase 3. If $a_1a_2 \in E(G)$, the argument that ends Subcase 2 suffices. Thus, in all cases we have found the desired path and the claim is verified. We now construct a spanning path in $(\bigcup_{i=1}^j G_i - v)^2$ that begins at v_1 [in N(v)] and ends with w_j (at distance 2 from v). We call this path P_1^* and it contains the paths $P_1, P_2, ..., P_j$ traversed in that order. This is possible since $d_G(w_i, v_{i+1}) \le 2$ (i = 1, 2, ..., j - 1). We also note that similar paths P_2^* in $(\bigcup_{i=j+1}^r G_i - v)^2$ and P_3^* in $(\bigcup_{i=r+1}^k G_i - v)^2$ also exist. Our final goal is to link the paths $P_1^* P_2^*$, and P_3^* and the vertex v to obtain a Hamiltonian cycle of G^2 . (We note that two or fewer paths make these arguments simpler.) To do this, recall that these paths end with w_j , w_r , and w_k , respectively. The graph $\langle \{v, v_j, w_j, v_r, w_r, v_k, w_k\} \rangle \supset S(K_{1,3})$ and so further edges must be present in G. Also, no other edge may involve v (as we have identified and used all its neighbors). No other edge may involve two of v_j , v_r , and v_k as this contradicts the fact that maximal paths in N(v) were chosen (using the proof of Lemma 1). Thus, either an edge involving two of w_j , w_r , w_k or an edge involving one of v_j , v_r , v_k and one of (of a different subscript) w_j , w_r , w_k exists. In either case, this implies that in G^2 the edge between the corresponding w's must exist. Without loss of generality suppose that $w_j w_r \in E(G^2)$. The Hamiltonian cycle of G^2 is then (letting \overline{P} be the reverse of the path P) v, P_1^* , $\overline{P_2^*}$, P_3^* , v. Thus G^2 is Hamiltonian and hence vertex pancyclic. We conclude by noting that Theorem 2 and Theorem B lead us to the following conjecture. Conjecture 1. If G is a connected $S(K_{1,3})$ -free graph, then G^2 is vertex pancyclic. A somewhat lesser result that still generalizes Theorem C and improves upon Theorem 3 would also be of interest. **FIGURE 4.** A nontraceable graph without $K_{1,4}$, $S(K_{1,3})$, F, or W with vertex pancyclic square. Conjecture 2. If G is a connected $(S(K_{1,3}), K_{1,4})$ -free graph, then G^2 is vertex pancyclic. ## **ACKNOWLEDGMENTS** One of us (R.J.G.) was supported by a grant from Emory University; M.S.J. was supported by grants from the University of Louisville. ## References - [1] M. Behzad, G. Chartrand, and L. Lesniak-Foster, Graphs and Digraphs. Prindle, Weber, & Schmidt, Boston (1979). - [2] H. Fleischner, The square of every two-connected graph is Hamiltonian. J. Combinatorial Theory Ser. B 16B (1974) 29-34. - [3] H. Fleischner, In the square of graphs, Hamiltonicity and Pancyclicity, Hamiltonian connectedness and panconnectedness are equivalent concepts. *Monatsh. Math.* 82 (1976) 125-149. - [4] R. Gould, Traceability in graphs. Ph.D. Thesis, Western Michigan University (1979). - [5] F. Harary and A. Schwenk, Trees with Hamiltonian square. Mathematika 18 (1971) 138-140. - [6] M. Matthews and D. Sumner, Hamiltonian Results in $K_{1,3}$ -free Graphs. J. Graph Theory 8 (1984) 139–146.