Forbidden Subgraphs and Hamiltonian Properties in the Square of a Connected Graph

Ronald J. Gould

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, EMORY UNIVERSITY, ATLANTA, GEORGIA 30322

Michael S. Jacobson

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF LOUISVILLE, LOUISVILLE, KENTUCKY 40292

ABSTRACT

Various Hamiltonian-like properties are investigated in the squares of connected graphs free of some set of forbidden subgraphs. The star $K_{1,4}$, the subdivision graph of $K_{1,3}$, and the subdivision graph of $K_{1,3}$ minus an endvertex play central roles. In particular, we show that connected graphs free of the subdivision graph of $K_{1,3}$ minus an endvertex have vertex pancyclic squares.

In this article, all graphs are finite, undirected, without loops or multiple edges. Terms not defined here can be found in [1]. If U is a nonempty subset of the vertex set V(G) of a graph G, then the subgraph $\langle U \rangle$ of G induced by U is the graph with vertex set U and whose edge set consists of those edges of G incident with two elements of U. A graph is Hamiltonian if it contains a cycle through all its vertices. A graph is vertex pancyclic if each of its vertices lies on a cycle of length ℓ , for each ℓ , $3 \le \ell \le |V(G)|$. The square of a graph G, denoted G^2 , is that graph obtained from G by inserting an edge between any two vertices at distance 2 apart in

G. A graph G is $(H_1, H_2, ..., H_k)$ -free $(k \ge 1)$, if G contains no induced subgraph isomorphic to H_i , for any i = 1, 2, ..., k. If k = 1, we simply say G is H_1 -free.

The investigation of Hamiltonian properties in the square of a graph was spurred by the classical result of Fleischner [2].

Theorem A [2]. If G is a 2-connected graph, then G^2 is Hamiltonian.

Harary and Schwenk [5] were able to characterize when the square of a tree is Hamiltonian based on the subdivision graph of $K_{1,3}$ (see Fig. 1).

Theorem B (Harary and Schwenk [5]). For any tree T, T^2 is Hamiltonian if and only if T is $S(K_{1,3})$ -free.

Until recently, few results had been obtained on the large class of connected graphs not covered by Theorems A and B. Then Matthews obtained the following.

Theorem C (Matthews [6]). If G is a connected $K_{1,3}$ -free graph, then G^2 is vertex pancyclic.

The purpose of this paper is to extend the result of Matthews and obtain other Hamiltonian-like results on the square of a connected graph. We begin with a useful lemma.

Lemma 1. Let G be a $K_{1,4}$ -free graph. For each vertex v of G, its neighborhood N(v) can be partitioned into at most three sets so that the graph induced by each set contains a spanning path.

Proof. If deg $v \le 3$ the result is immediate. So suppose deg $v \ge 4$ and that $N(v) = \{v_1, v_2, ..., v_k\}$ $(k \ge 4)$. Let $P_1 : v_1v_2 \cdots v_i$ be a path of maximum length in $\langle N(v) \rangle$. If P_1 contains all of N(v) we are done, so assume $v_{i+1} \notin P_1$. Let $P_2 : v_{i+1}v_{i+2} \cdots v_j$ be a path of maximum length starting with v_{i+1} in $\langle N(v) - V(P_1) \rangle$. If $N(v) = V(P_1) \cup V(P_2)$ then we are done, so let S_3 denote the vertices that remain; that is, $S_3 = N(v)$

FIGURE 1. The star $K_{1,3}$ and its subdivision graph $S(K_{1,3})$.

 $-V(P_1)-V(P_2)$. Clearly $V(P_1)\cup V(P_2)\cup S_3$ partitions N(v), and $\langle V(P_1)\rangle$ and $\langle V(P_2)\rangle$ each contain spanning paths. If $|S_3|=1$ we are again done, so we suppose that $w_1, w_2 \in S_3$.

Now consider the graph $H = \langle v, v_i, v_j, w_1, w_2 \rangle$. The graph H is isomorphic to $K_{1,4}$ unless w_1w_2 is an edge of G. This follows since v_i (and similarly v_j) cannot be adjacent to any vertex off the path P_1 (and similarly P_2). This implies that $\langle S_3 \rangle$ is complete and hence contains a spanning path.

We note that this technique could be used to extend Lemma 1 to $K_{1,n}$ -free graphs; however, this would not add to the results to follow.

Theorem D (Fleischner [3]). If G is a graph, then G^2 is Hamiltonian if and only if G^2 is vertex pancyclic.

In attempting to generalize Theorem C, and in view of Theorem B, stars and the graph $S(K_{1,3})$ naturally come to mind. Further, using the characterization of square traceable graphs [4], one realizes that even $K_{1,4}$ -free trees are not necessarily square traceable. We now present a generalization of Theorem C, based on the graph Y of Figure 2.

Theorem 2. If G is a connected Y-free graph, then G^2 is vertex pancyclic.

Proof. From Theorem D, it suffices to show that G^2 is Hamiltonian. Thus we choose a longest cycle C in G^2 . If C contains all vertices of G^2 we are done, so we assume there exists $x \in V(G^2)$ such that x is not on C. Since G is connected, we may choose x so that it is adjacent in G to some vertex of C. Further, without loss of generality we may assume x is adjacent in G to x_1 and that the cycle C is

$$C: x_1x_2x_3 \cdots x_nx_1$$
.

Since C is a longest cycle in G^2 , $x_1x_2 \in E(G^2) - E(G)$, for otherwise $xx_2 \in E(G^2)$ and a cycle longer than C would result. We note that for every $uv \in E(G^2) - E(G)$ which lies on C, there exists a vertex w on C adjacent in G to both u and v. If w was not on C, then a longer cycle would be immediate.

We proceed by showing that this finite cycle C contains an infinite sequence of distinct vertices x_{i_1}, x_{i_2}, \ldots , with the following properties

FIGURE 2. The graph $Y = S(K_{1,3})$ minus an endvertex.

holding for each x_i :

(a)
$$x_{i_k} \neq x_{i_j}$$
 and $x_{i_{k+1}} \neq x_{i_j}$ for each $k < j$,

(b)
$$x_1x_{ii} \in E(G)$$
,

(c)
$$x_{ij}x_{ij+1} \in E(G^2) - E(G)$$
,

(d)
$$x_{i_{j+1}} x_{i_j}$$
 and $x_{i_{j+1}} x_{i_{j+1}} \in E(G)$.

By the previous observations, let x_{i_1} be a vertex on C with $x_{i_1}x_1$ and $x_{i_1}x_2$ edges in G. If $x_{i_1}x_{i_1+1} \in E(G)$, then $x_2x_{i_1+1} \in E(G^2)$ and since xx_{i_1} $\in E(G^2)$ then

$$x_1xx_{i_1}x_{i_1-1}\cdots x_2x_{i_1+1}x_{i_1+2}\cdots x_nx_1$$

would be a cycle in G^2 longer than C. Thus, $x_{i_1}x_{i_1+1} \in E(G^2) - E(G)$, and we see that x_{i_1} meets conditions (a)-(d) [meeting (d) vacuously]. Since $x_{i_1}x_{i_1+1} \in E(G^2) - E(G)$, there exists x_{i_2} on C with $x_{i_1}x_{i_2}$ and $x_{i_1+1}x_{i_2}$ edges of G [thus x_{i_2} meets property (d)]. We note that by the maximality of C, $x_{i_2} \neq x_1$ and $x_{i_2} \neq x_2$. Consider in G the graph $H \cong \langle \{x, x\} \rangle$ $(x_1, x_2, x_{i_1}, x_{i_1+1}, x_{i_2})$. Since $H \cong Y$, further edges must be present in Gbetween vertices of H. We already know $xx_2 \notin E(G)$. If $xx_{i_1} \in E(G)$, then $xx_2 \in E(G^2)$ and again a longer cycle results. If $xx_{i_1+1} \in E(G)$, then since $xx_{i_1} \in E(G^2)$, a longer cycle is again immediate. If $xx_{i_2} \in E(G)$, then both xx_{i_1} and xx_{i_1+1} are edges of G^2 and once more a longer cycle is produced. Thus no further edge of H involves x.

Since x_{i_2} is not x_1 or x_2 , the edges $x_1x_{i_1+1}$ and $x_2x_{i_2+1}$ are not in G. If $x_2x_{i_2} \in E(G)$, we obtain a cycle longer than C since $x_2x_{i_1+1}$ would be an edge of G^2 . Thus, since this induced subgraph is not isomorphic to Y, we must have that $x_1x_{i_2} \in E(G)$, [and hence $xx_{i_2} \in E(G^2)$]. Therefore, x_{i_2} meets properties (a) and (b).

Now suppose $x_{iz}x_{iz+1}$ is an edge of G. This implies that $x_{iz+1}x_{iz+1} \in$ $E(G^2)$. Then

$$X_{i_1}XX_{i_2}X_{i_2-1}\cdots X_{i_1+1}X_{i_2+1}X_{i_2+2}\cdots X_{i_t}$$

is a cycle in G^2 longer than C. Thus $x_{i_2}x_{i_2+1} \in E(G^2) - E(G)$ and condition (c) is met; hence x_{i_2} meets all properties (a)-(d).

Now suppose we have chosen $x_{i_1}, x_{i_2}, ..., x_{i_k}$ satisfying conditions (a)-(d). We now produce a vertex $x_{i_{k+1}}$ also satisfying these conditions.

Let $x_{i_{k+1}}$ be a vertex on C such that $x_{i_{k+1}}x_{i_k}$ and $x_{i_{k+1}}x_{i_{k+1}}$ are edges of G [that is, property (d) holds]. Further suppose that $x_{i_{k+1}} = x_{i_l}$ for some j < k. The vertex x_{ij} was chosen on C with property (d); that is

 $x_{i_{j-1}+1}x_{i_j} \in E(G)$. Hence $x_{i_{j-1}+1}x_{i_{k+1}} \in E(G^2)$. Then

$$x_{i_{j-1}}xx_{i_k}x_{i_k-1}\cdots x_{i_{j-1}+1}x_{i_{j-1}+2}\cdots x_{i_{j-1}}$$

is a cycle longer than C.

A similar argument shows that $x_{i_{k+1}} \neq x_{i_{j+1}}$, and so property (a) holds. Since $\langle x, x_1, x_{i_{k-1}+1}, x_{i_k}, x_{i_{k+1}}, x_{i_{k+1}} \rangle$ cannot be isomorphic to Y in G, a case analysis similar to that performed on H earlier shows that $x_1x_{i_{k+1}} \in E(G)$, and thus property (b) holds. If $x_{i_{k+1}}x_{i_{k+1}+1} \in E(G)$, then $x_{i_{k+1}}x_{i_{k+1}+1} \in E(G^2)$ and, as above, a cycle longer than C results; thus property (c) must hold as well. Hence $x_{i_{k+1}}$ exists and meets the stated conditions. But this implies that there are infinitely many vertices in this finite graph, a contradiction. Hence G^2 must be Hamiltonian and therefore vertex pancyclic.

To further generalize Theorem C, we must include $S(K_{1,3})$ in our set of forbidden subgraphs. The graph $S(K_{1,3})$ itself shows that either it or one of its subgraphs must be in any set of forbidden subgraphs. Our next result includes the graphs of Figure 3 in the set of forbidden subgraphs.

Theorem 3. If G is a connected $(K_{1,4}, S(K_{1,3}), F, W)$ -free graph of order $p \ge 3$, then G^2 is vertex pancyclic.

Proof. Again from Theorem D, it suffices to show G^2 is Hamiltonian. We proceed by induction on the order of the graph. If G has three or four vertices the result follows easily. Hence we assume G has order at least 5. If G has maximum degree 2, then G is a cycle or a path and the result is again obvious.

Thus assume there exists a vertex v of degree at least three in G. Let $N(v) = \{v_1, v_2, ..., v_k\}(k \ge 3)$. By Lemma 1, N(v) can be partitioned into at most three sets S_i (i = 1, 2, 3) such that $\langle S_i \rangle$ contains a spanning path (i = 1, 2, 3). Let such a spanning path of $\langle S_i \rangle$ be P_i . Without loss of generality say

$$P_1: v_1v_2 \cdots v_j, \quad P_2: v_{j+1}v_{j+2} \cdots v_r, \quad P_3: v_{r+1}v_{r+2} \cdots v_k$$

[renumber the vertices of N(v) if necessary].

FIGURE 3. The graphs F and W.

Now consider a spanning tree T of G containing all edges from v to vertices of N(v). Let G_i be the subgraph of G induced by v and the vertices of the branch of T containing v_i (i = 1, 2, ..., k). Since $k \ge 3$, $|V(G_i)| < |V(G)|$. Further, G_i clearly contains none of the graphs $K_{1,4}$, $S(K_{1,3})$, F, or W as induced subgraphs. Thus, by the induction hypothesis, if $|V(G_i)| \ge 3$, then G_i^2 contains a Hamiltonian cycle C_i (i = 1, 2, ..., k). We note that if $|V(G_i)| = 2$ then G_i^2 is merely traceable.

We now claim that the graph $(G_i - v)^2$ contains a Hamiltonian path from the vertex v_i to a vertex w_i , where $d_G(v, w_i) = 2$; that is, $w_i \in N(v_i)$ (i = 1, 2, ..., k). [If $|V(G_i)| = 2$, then the path is merely v_i itself.]

To verify this claim, first suppose that C_i contains the edge vv_i . The other edge of C_i incident with v must be of the form vw, where $w \in N(v_i)$. But then, deleting v and its incident edges from C_i leaves a Hamiltonian $(v_i - w)$ -path in $(G_i - v)^2$. Hence $w_i = w$ suffices.

Next suppose that the edge vv_i is not on C_i . Say instead that vw and vx are the edges of C_i incident with v, where $w, x \in N(v_i)$. If the edge xv_i (or similarly wv_i) is on C_i , then remove v and its incident edges and consider the path from v_i to w followed by the edge from w to x. This is a Hamiltonian $(v_i - x)$ -path in $(G_i - v)^2$, so in this case $w_i = x$ (or similarly w). Next suppose that neither wv_i nor xv_i is on C_i . If v_i is adjacent on C_i to any other $s \in N(v_i)$, then, assuming x is on the segment of C_i between v and s containing v_i , proceed from v_i to x, then to s along the edge xs, then along the cycle C_i from s to w. This is a Hamiltonian $(v_i - w)$ -path in $(G_i - v)^2$, so we may let $w_i = w$. We note a similar argument applies to w.

Finally, suppose that no neighbor of v_i is adjacent to v_i on C_i . Thus v_i must be adjacent with two vertices, say b_1 and b_2 ; where $d_G(v_i, b_j) = 2$, (j = 1, 2). Further, suppose the vertex adjacent to both v_i and b_j is a_j (j = 1, 2). Without loss of generality we assume that C_i appears as

$$C_i: v, w, L_1, b_1 v_i, b_2, L_2, x, v$$

where L_1 and L_2 are paths joining w and b_1 and b_2 and x, respectively. Now, $\langle \{v, a_1, a_2, x, v_i\} \rangle \cong K_{1,4}$ unless, in G, there exists at least one additional edge joining two of these vertices. Since such an edge cannot involve v, three subcases exist.

Subcase 1. If $xa_1 \in E(G)$, then $xb_1 \in E(G^2)$ and the path v_i , b_2 , L_2 , x, b_1 , L_1 , w suffices.

Subcase 2. If $xa_2 \in E(G)$, then $\langle \{v, v_i, x, a_2, a_1, b_1\} \rangle \cong W$ unless at least one additional edge exists (and such an edge cannot involve v). If any of the edges xa_1, xb_1 , or b_1a_2 is in G, the path of Subcase 1 is again obtained since $xb_1 \in E(G^2)$. If $a_1a_2 \in E(G)$, then $\langle \{v, v_i, a_1, a_2, b_1, b_2\} \rangle$

 $\cong F$ unless one of a_1b_2 , b_1a_2 , or b_1b_2 is in G. In any case, $b_1b_2 \in E(G^2)$ and we obtain the path

$$v_i, x, L_2, b_2, b_1, L_1, w$$

Subcase 3. If $a_1a_2 \in E(G)$, the argument that ends Subcase 2 suffices.

Thus, in all cases we have found the desired path and the claim is verified.

We now construct a spanning path in $(\bigcup_{i=1}^j G_i - v)^2$ that begins at v_1 [in N(v)] and ends with w_j (at distance 2 from v). We call this path P_1^* and it contains the paths $P_1, P_2, ..., P_j$ traversed in that order. This is possible since $d_G(w_i, v_{i+1}) \le 2$ (i = 1, 2, ..., j - 1). We also note that similar paths P_2^* in $(\bigcup_{i=j+1}^r G_i - v)^2$ and P_3^* in $(\bigcup_{i=r+1}^k G_i - v)^2$ also exist.

Our final goal is to link the paths $P_1^* P_2^*$, and P_3^* and the vertex v to obtain a Hamiltonian cycle of G^2 . (We note that two or fewer paths make these arguments simpler.) To do this, recall that these paths end with w_j , w_r , and w_k , respectively. The graph $\langle \{v, v_j, w_j, v_r, w_r, v_k, w_k\} \rangle \supset S(K_{1,3})$ and so further edges must be present in G. Also, no other edge may involve v (as we have identified and used all its neighbors). No other edge may involve two of v_j , v_r , and v_k as this contradicts the fact that maximal paths in N(v) were chosen (using the proof of Lemma 1). Thus, either an edge involving two of w_j , w_r , w_k or an edge involving one of v_j , v_r , v_k and one of (of a different subscript) w_j , w_r , w_k exists. In either case, this implies that in G^2 the edge between the corresponding w's must exist. Without loss of generality suppose that $w_j w_r \in E(G^2)$. The Hamiltonian cycle of G^2 is then (letting \overline{P} be the reverse of the path P) v, P_1^* , $\overline{P_2^*}$, P_3^* , v.

Thus G^2 is Hamiltonian and hence vertex pancyclic. We conclude by noting that Theorem 2 and Theorem B lead us to the following conjecture.

Conjecture 1. If G is a connected $S(K_{1,3})$ -free graph, then G^2 is vertex pancyclic.

A somewhat lesser result that still generalizes Theorem C and improves upon Theorem 3 would also be of interest.

FIGURE 4. A nontraceable graph without $K_{1,4}$, $S(K_{1,3})$, F, or W with vertex pancyclic square.

Conjecture 2. If G is a connected $(S(K_{1,3}), K_{1,4})$ -free graph, then G^2 is vertex pancyclic.

ACKNOWLEDGMENTS

One of us (R.J.G.) was supported by a grant from Emory University; M.S.J. was supported by grants from the University of Louisville.

References

- [1] M. Behzad, G. Chartrand, and L. Lesniak-Foster, Graphs and Digraphs. Prindle, Weber, & Schmidt, Boston (1979).
- [2] H. Fleischner, The square of every two-connected graph is Hamiltonian.

 J. Combinatorial Theory Ser. B 16B (1974) 29-34.
- [3] H. Fleischner, In the square of graphs, Hamiltonicity and Pancyclicity, Hamiltonian connectedness and panconnectedness are equivalent concepts. *Monatsh. Math.* 82 (1976) 125-149.
- [4] R. Gould, Traceability in graphs. Ph.D. Thesis, Western Michigan University (1979).
- [5] F. Harary and A. Schwenk, Trees with Hamiltonian square. Mathematika 18 (1971) 138-140.
- [6] M. Matthews and D. Sumner, Hamiltonian Results in $K_{1,3}$ -free Graphs. J. Graph Theory 8 (1984) 139–146.