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Independent cycles and chorded cycles in graphs

Ronald J. Gould, Kazuhide Hirohata and Paul Horn

In this paper, we investigate sufficient conditions on the neigh-
borhood of independent vertices which imply that a graph con-
tains k independent cycles or chorded cycles. This is related to
several results of Corrádi and Hajnal, Justesen, Wang, and Fau-
dree and Gould on graphs containing k independent cycles, and
Finkel on graphs containing k chorded cycles. In particular, we es-
tablish that if independent vertices in G have neighborhood union
at least 2k+ 1, then G has k chorded cycles, so long as |G| > 30k,
and settling a conjecture of and improving a result of Faudree and
Gould, who establish that 3k suffices. Additionally, we show that
a graph with neighborhood union of independent vertices at least
4k + 1 has at least k chorded cycles; Finkel previously established
that minimum degree 3k was also a sufficient condition for this.

In 1963, Corrádi and Hajnal [1] verified a conjecture of Erdős by showing

that every graph G on at least 3k vertices with minimum degree 2k contains

k independent cycles. In the nearly fifty years since, this result has been

generalized in a number of different ways.

In 1989, Justesen [4] showed that the minimum degree condition can be

replaced by a condition on the sums of degrees of non-adjacent vertices. This

was improved to a sharp result by Wang [5] who showed that the condition

that the minimum degree was at least 2k could be replaced by the condition

that the sum of degrees of non-adjacent vertices was at least 4k−1. Corrádi

and Hajnal’s result was generalized in a different direction by Finkel [3] who

showed that if G were a graph on at least 4k vertices with minimum degree

at least 3k, then G contains at least k independent chorded cycles.

In a different direction, J. Faudree and Gould [2] showed that the condi-

tion on minimum degrees in the Corrádi-Hajnal theorem could be replaced

by a condition on the neighborhood of non-adjacent vertices. In particu-

lar, they showed that if G is a graph on at least 3k vertices such that the

neighborhood of any two non-adjacent vertices has size at least 3k, then G

contains k independent cycles. This result is sharp in the sense that requir-

ing a neighborhood of size 3k−1 is insufficient for k = 1. It was conjectured
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in [2], however, that it might be possible to improve their condition to one
of the form 2k +O(1).

In this paper, we consider both the problem of finding independent cycles
and independent chorded cycles in graphs under conditions on the neighbor-
hood union of non-adjacent vertices. Before we state the main theorems, let
us briefly introduce some notation. We indicate by N(x) the set of neigh-
bors of x, and N [x] = N(x) ∪ {x} denotes the closed neighborhood. For a
set S ⊆ V , we denote by NS(x) = N(x)∩S. For a pair of non-adjacent ver-
tices x, y, we let N(x, y) = N(x) ∪N(y) and define NS(x, y) in the obvious
fashion. We define x ∼ y to mean that x is adjacent to y.

We begin by generalizing the results of Finkel as follows:

Theorem 1. Suppose G is a graph on at least 4k vertices, such that any
pair of non-adjacent vertices x, y has |N(x, y)| ≥ 4k + 1. Then there exists
k independent chorded cycles in G.

Theorem 1 is sharp in the sense that it does not hold if the condition
|N(x, y)| ≥ 4k + 1 is replaced by |N(x, y)| ≥ 4k. Here it fails even when
k = 1: consider a collection of t independent K3’s; then the neighborhood
of any two non-adjacent vertices is 4, but there are no chorded cycles. If
one prefers a connected counterexample, one may append a K3 to each
vertex of a path or cycle. The role of higher connectivity is less clear. We
do now know, however, whether there are such examples for arbitrary k and
for connectivity m ≤ k. We suspect, perhaps, that even a neighborhood
condition of |N(x, y)| ≥ 3k + O(1) may suffice to guarantee the existence
of k independent chorded cycles, akin to the improvement of the result of
Faudree and Gould in Theorem 2, but also that this improvement would not
be easy.

In addition, we also prove the conjecture of Faudree and Gould [2]:

Theorem 2. If G is a graph on at least 30k vertices, such that any pair
of non-adjacent vertices x, y has |N(x, y)| ≥ 2k + 1, then G contains k
independent cycles.

This result is also sharp, in the sense that 2k+1 cannot be relaxed to 2k.
Examples here include disjoint edges or trees where all leaves are adjacent to
vertices of degree 2. For k = 2, the wheel graph serves as an example: non-
adjacent vertices have neighborhood union at least four, but there are no
two independent chorded cycles. Again, we do not know sharpness examples
for all k, with all possible connectivities, so perhaps some improvements are
possible.

It is possible that the constant ‘30’ in the theorem can be improved,
possibly even to 4. Indeed, one may slightly improve this constant by being
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more careful in a few places in the proof, but it is clear that such improve-

ments will not bring the constant all the way to 4. Such an improvement

seems to require new ideas.

1. The proof of Theorem 1

Before we delve into the proof, we need a definition and some examples.

Since graphs with minimum degree at least 3 contain a chorded cycle, we

will often be concerned with graphs that contain no subgraph with minimum

degree at least 3. A graph H is called 2-degenerate if it has the property

that there is an ordering of vertices v1, v2, . . . , vh of H such that each vertex

has at most two edges to higher labeled vertices. We call such an ordering

a 2-degenerate ordering. Containing no subgraph with minimum degree at

least 3 is easily seen to equivalent to being 2-degenerate.

We say that H contains a k-tower if there is a 2-degenerate ordering

of H, say v1, . . . , vh, such that if vi is the first vertex at distance k − 1

from v1, then for 2 ≤ j ≤ i, each intermediate vertex vj is adjacent to a

vertex v� with � < j, that is, each vj has an edge to the left in the ordering.

One interpretation of this definition is that there is a 2-degenerate ordering

starting at some vertex v such that a vertex at distance k− 1 from v can be

lowered to degree 2 just by iteratively deleting vertices of degree 2 exposed

by deleting v and its neighbors (and iterative neighbors) while leaving other

vertices of degree 2 in the graph.

An alternate definition of a k-tower is the following. Given a 2-degenerate

ordering of G, say v1, . . . , vh, then for any i ∈ [h], one may define a rooted

spanning forest G[v1, . . . , vi] so that the parent of vk is the vertex vj where

1 ≤ j < k is the minimal so that vj ∼ vk. If vk has no neighbor in

v1, . . . , vk−1, then vk will not have a parent (and thus will be a root), and

thus it is clear that v1 is a root. Then H contains a k-tower if there is a

2-degenerate ordering v1, . . . , vh, such that if vi is the first vertex at distance

k − 1, the spanning forest G[v1, . . . , vi] is connected.

One may consider this definition an analogue of having a path of length

k in a tree starting at a leaf and not containing any vertices of degree larger

than 2. Clearly any 2-degenerate graph H must contain a 1-tower (this is

simply a vertex of degree at most 2), and if H contains a k-tower, it clearly

also contains a (k − 1)-tower. A star is an example of a graph which only

contains a 1-tower, while a path would be an |H|-tower. Also, a 2-degenerate

graph H which has a single vertex of degree 2 contains a (diam(H) + 1)-

tower.
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Proof of Theorem 1. The proof is by induction on k and n = |G|. For k = 1,
and any n the result is clear: either δ(G) ≥ 3 and the result holds by the
theorem of Finkel, or there exists a vertex x with |N(x)| ≤ 2. If x is a vertex
of degree ≤2, since |N(x, y)| ≥ 5 for all y 	∼ x, note that NG−N [x](y) ≥ 3.
Since δ(G−N [x]) ≥ 3, there must be a chorded cycle in G−N [x].

We now suppose that the theorem holds for all k′ < k and show it holds
for k. Let G be a graph satisfying the hypothesis of Theorem 1. If there exists
a chorded 4-cycle C in G, then note that G − C satisfies the hypothesis of
Theorem 1 for k′ = k − 1. Thus, by the inductive hypothesis, there exists
k − 1 independent chorded cycles in G − C, and along with C, we have
k independent chorded cycles. Thus, we may assume that G contains no
chorded 4-cycles.

Note that G satisfies the conditions for k′ = k−1 (even after removing 4
arbitrary vertices), and hence by the inductive hypothesis there exists k− 1
independent chorded cycles in G: C1, C2, . . . , Ck−1. Let C =

⋃
Ci. We shall

assume that |C| is minimized. Let H = G \ C, and assume that H has the
maximum number of edges (subject to the constraint that |C| is minimized).
If H has a chorded cycle we are done, so we may assume that H does not
contain a chorded cycle and derive a contradiction. We note that |H| ≥ 4. By
the results of Finkel, the fact that H has no chorded cycles implies that H
is 2-degenerate. We shall assume (subject to having the maximum number
of edges) that H has a k-tower for as large a k as possible.

We make a few initial observations about H:

Claim 1. If there is a Ci ∈ C and x ∈ H with |NCi
(x)| ≥ 3, then |Ci| ≤ 6.

Proof. Suppose x is adjacent to y1, y2, y3 ∈ Ci. If the distance of yi and yj on
C is >2 for any i, j, then there is a shorter chorded cycle using x (possibly
using the edge to the other yk as the chord), contradicting the minimality of
|C|. Furthermore, if y1, y2, y3 are three consecutive vertices in Ci, then they
form a chorded 4-cycle with x, and we are done. The only way, then, that
all of the pairwise distances of y1, y2, y3 can be at most 2 is if |Ci| ≤ 6.

Claim 2. If x 	∼ y with |NH(x, y)| ≤ 4 and x, y ∈ H, then there exists a
chorded 6-cycle Ci ∈ C such that, up to relabeling x and y are adjacent to
Ci in one of the following ways (see Figure 1).

Proof. Note that |NC(x, y)| ≥ 4k+1−4 = 4k−3, so there exists some Ci ∈ C
such that |NCi

(x, y)| ≥ 5. Without loss of generality, say, |NCi
(x)| ≥ 3, and

hence by Claim 1, |Ci| ≤ 6.
If |Ci| = 5, and |NCi

(x)| ≥ 4, then there is a chorded 4-cycle in Ci∪{x}.
Thus, |NCi

(x)| = 3, and NCi
(x, y) = Ci. It is easy to check that however
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Figure 1

x and y send edges into Ci, they would create a chorded 4-cycle; therefore,
|Ci| = 6.

If the chord in Ci connects two vertices at distance 2 on the chorded
cycle, then however the 3 edges from x are placed in Ci so that the ends
have pairwise distance 2 on the cycle, they admit a shorter chorded cycle.
If both ends of the chord are adjacent to x, then there is a chorded 4-cycle.
Otherwise, there is a chorded 5-cycle. Therefore, the chord bisects the C6

as in the Figure 1. Then |NCi
(x)| = 3, or else there would be a chorded 5

cycle; and since the edges must be pairwise at distance 2 along the cycle,
they must lie as in the Figure 1. Then y has at least two neighbors in Ci

which are not neighbors of x, as in the Figure 1.

A corollary of Claim 2 is the following swapping lemma, which is key to
our argument.

Lemma 1 (Swapping Lemma). Suppose x, y are non-adjacent vertices in
H with |NH(x, y)| ≤ 4. Then there exists a Ci ∈ C and vertices zx, zy ∈ Ci

such that zx ∼ x, zy ∼ y and both (Ci − {zx}) ∪ {y} and (Ci − {zy}) ∪ {x}
are chorded cycles. Furthermore, if x′ ∼ x then zx 	∼ x′, likewise if y′ ∼ y
then zy 	∼ y′.

Proof. By Claim 2, we know the adjacencies of x and y to some Ci. It is easy
to verify, by inspection, that a chorded cycle including, say, x may be routed
excluding one of the corner vertices adjacent to y; that corner vertex will be
denoted zy. The lemma easily follows from inspection; a typical case is as in
Figure 2. Here the outer cycle of the new chorded cycle is highlighted. The
assertion that zx 	∼ x′ follows from the fact that if it was adjacent, it would
create a chorded 5-cycle. This is easy to check; details are included as part
of the proof of Lemma 2 below.

As an application of the swapping lemma, we see that (if we do not insist
that the number or edges ofH is maximized) we may assumeH is connected:
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Figure 2

Suppose H is such that it has a minimum number of components, and that
the largest component is as large as possible. If H had two components, say
X1 and X2 where X1 is the largest component, each would have a vertex of
degree at most 2 in H. Suppose x1 ∈ X1 and x2 ∈ X2 are these vertices; then
|NH(x1, x2)| ≤ 4. Applying the swapping lemma says that we may remove
x2 and append a vertex to x1, which would increase the size of the largest
component, a contradiction. Thus,H must be connected. In particular, when
the number of edges in H is maximized, we know that |E(H)| ≥ |H| − 1.
Also note that if the number of edges in H is maximized, and we apply the
swapping lemma, we know that |NH−{y}(zx)| ≤ |NH(y)| and similarly for zy
and x. The swapping lemma also implies that there are no isolated vertices
in H.

Observe the following: Suppose k is the largest integer such that H has
a k-tower. If k ≤ 2, then G has at least 2 non-adjacent vertices of degree
at most 2. Indeed, if H has only a single vertex of degree ≤2, then it has a
(diam(G) + 1)-tower, and since |H| ≥ 4, diam(H) ≥ 2. If H only has two
vertices of degree ≤2, and they are adjacent, the same conclusion holds. H
cannot have just 3 pairwise adjacent vertices of degree ≤2: if H had such,
they would form one component of size 3, but |H| ≥ 4, so there must be
another component which must contain a vertex of degree ≤2. Furthermore,
if H has only a one-tower and has only two non-adjacent vertices of degree
≤2, then they must both be connected to a vertex of degree at most 4.

The following is the crux of the proof:

Lemma 2. Suppose x, y, z are three vertices in H with x ∼ y, y ∼ z and
x 	∼ z, such that |NC(x, z)|+ |NC(y)| ≥ 6k − 5. Then |C| is not minimized.

Proof. Suppose that |C| is minimized. We shall find a shorter chorded cycle
and thus, a contradiction.

By hypothesis, there exists some chorded cycle C = Ci ∈ C such that
|NC(x, z)| + |NC(y)| ≥ 7. Clearly, one of x, y, or z sends at least 3 edges
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into C, so by Claim 1, |C| ≤ 6. If any one vertex sends 4 edges into |C|, it is
clear that there is a shorter chorded cycle. We consider the other scenarios:

If |NC(y)| = 3, then |NC(x, z)| ≥ 4. First, consider |C| = 5. Since there
is only one way to fit 3 edges from a single vertex into a chorded 5 cycle
without creating a shorter chorded cycle, we know the adjacencies from y
to C. If one of x or z (say x) also has degree 3 in C, then it is easily seen
that NC(x) = NC(y). Then there are clearly chorded 4-cycles. Now suppose
x and z both have degree 2 in C. Suppose b1, b2 are the two vertices which
lie on one side of the chord. Both b1, b2 ∈ N(y). One of b1, b2 (say b1) is in
the neighborhood of one of x or z (say x). But then we have a chorded 4
cycle: x, b1, b2, y with chord {y, b1}.

Thus, we may assume |C| = 6. If C is a chorded 6-cycle with a single
vertex a on one side of the chord and three vertices b1, b2, b3 on the other
(where b1, b3 are at distance 2 from a, and b2 is at distance 3), then y ∼
{a, b1, b3}. If x ∼ b1, say, then there is a chorded 5 cycle: x, b1, b2, b3, y with
chord {y, b1}. Similarly, if x ∼ a or x ∼ b3, or if z is adjacent to any of
these vertices. But |N + C(x, z)| ≥ 4, so one of x or y must be adjacent to
one of these vertices, a contradiction. Thus, C must be the chorded 6-cycle
as in Figure 2. Suppose the vertices of the chord, arranged in order along
the cycle are x1, . . . , x6, and the chord is {x1, x4}. Then y ∼ {x1, x3, x5}. If
x ∼ x1 (or z ∼ x1) then there is a chorded 5-cycle: x, x1, x2, x3, y with chord
{y, x1}, so x 	∼ x1 and similarly x 	∼ {x3, x5}. But |NC(x, z)| ≥ 4 so clearly
x or z must be adjacent to one of those vertices. Thus, |NC(y)| < 3.

If |NC(y)| = 2, then |NC(x, z)| = 5. As argued in Claim 2, |C| = 6,
and it is of the form described above: vertices x1, . . . , x6 with chord x1, x4
where (without loss of generality) x ∼ {x1, x3, x5}. Furthermore, either z ∼
{x2, x4} or z ∼ {x2, x6}. First consider the case where z ∼ {x2, x4}. Then if
y ∼ x1 we have a chorded 5-cycle x, x1, x2, z, y with chord {y, x1}. Likewise
y cannot be adjacent to any vertex in NC(x, z). But |NC(y)| = 2, so this
must be the case. (Here the key property is that chorded cycles are formed
using exactly one edge in C.) Similarly, if |NC(y)| = 1, and |NC(x, z)| = 6;
the fact that NC(y) ∈ NC(x, z) as |C| = 6 will force a similar chorded 5
cycle, using x, y, z and one edge in C, with the edge from y to C acting as
the chord.

The remainder of the proof of Theorem 2 is to show that by the Swapping
Lemma, Lemma 1, we may ensure that H has vertices x, y, z that satisfy
the conditions of Lemma 2. This leads to a contradiction to the assumption
that H had no chorded cycles, completing the proof. We consider the cases:

First, suppose that H has no 3-tower. Thus, it has two non-adjacent
vertices x and y of degree at most 2. Let us assume that x is at the start of
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the highest tower inH (which by definition is at most a 2-tower.) First, let us
assume that there is a 2-tower starting at x. We apply the swapping lemma
to exchange y for a y′ ∼ x. Let C′ and H ′ denote the cycle system and new
copy of H after the swap. Note that |NH′(y′)| ≤ 2 and y′ is adjacent to no
neighbors of x as assertions of the swapping lemma. Thus, there is a 3-tower
starting at y′ and by the maximality of the tower height; this implies that
|NH′(y′)| ≤ 1. Now since there is a 3-tower starting at y′, there is a neighbor
x′ ∼ x such that x′ 	∼ y′ and |NH′(y′, x′)| ≤ 3 (this is the vertex which has
degree at most 2 after deletion of y′ and x). Now one of y′ and x′ (say x′)
has |NC′(x′)| > 2k − 1 by the neighborhood condition. Apply the swapping
lemma to exchange y′ for a z ∼ x′ (if y′ is the vertex of high degree, do this
in reverse). Then if H ′′ is the resulting leftover vertices |N ′′

H(z)| ≤ 2 and
z 	∼ x. It is easy to see that z, x′, x satisfy the conditions of Lemma 2 as
|NH′′(z, x)| ≤ 4 so |NC′′(z, x)| ≥ 4k+1− 4 = 4k− 3 and |NC′′(x′)| ≥ 2k− 2,
where C′′ is the new cycle set after the swaps.

If there is a 1-tower but no 2-tower, the proof is similar. Again, we use
H ′, H ′′, etc. to denote the set H after swaps and C′ accordingly. We may
apply the swapping lemma to find y′ ∼ x, there will be a 2-tower starting at
y′ and hence, |NH′(y′)| = 1. It is possible that, in fact, a 3-tower now starts
at y′. In this case, there is a vertex x′ ∼ x such that |NH′(x′, y′)| ≤ 3 and we
are in the same case as before. If not, then there is a vertex z of degree at
most 2 non-adjacent to y′. We may again apply the swapping lemma to find
a neighbor z′ ∼ y′ with z′ 	∼ x and |NH′′(z′)| ≤ 2. Now, |NH′′(z′, x)| ≤ 4
(as their neighborhoods contain the common vertex y′) and we are again in
the position above: one of z′ or x (say x) has high degree to C′′, we apply
the swapping lemma to find a z′′ ∼ x and end up in a situation where the
hypothesis of Lemma 2 are satisfied.

Thus, we may assume that H has a 3-tower. Suppose x is the degree
(at most) 2 vertex first in the ordering defining the tower. Then there is a
vertex y at distance 2 from x with |NH(x, y)| ≤ 4.

First, suppose that there exists such a y with |NH(y)| ≤ 3, and let z
denote the center vertex between x and y.

Suppose |NH(y)| ≤ 3. As |NC(x, y)| ≥ 4k − 3, one of x or y has neigh-
borhood in C of size at least 2k − 1. If this is x, first consider the case
where there is another vertex of degree in H at most 2 anywhere else in
H, say w. If so, applying the swapping lemma to find w′ ∼ x and taking
a vertex z′ of degree 3 adjacent to x gives a set w, x, z′ which satisfies the
conditions of Lemma 2. If this is not x, we consider separately the cases
where NH(x) is connected and disconnected. If NH(x) is connected, we see
that we can choose z ∼ y with NH(z) = {x, y, z′}, where z′ and z are the
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neighbors of x. Then after applying the swapping lemma to y and x to find
y′ ∼ x with |NH(y′)| ≤ 3, we may assume that |NH−y(z)| = 2. In particular
|NH(z, y′)| ≤ 4 (as the neighborhoods share x) and z, x, y′ satisfy the condi-
tions of Lemma 2. If NH(x) is not connected, the fact that |NH(y)| ≤ 3 says
we may choose y such that a middle vertex z has |NH−y(z)| ≤ 2. Again,
applying the swapping lemma to find y′ ∼ x with |NH(y′)| ≤ 3 and y′, x, z
meeting the conditions of Lemma 2. If y has the high degree instead, we
apply the Swapping Lemma to remove x and find x′ ∼ y, and x′, y, z will
similarly meet the criteria of Lemma 2.

If |NH(y)| ≥ 4 for all y at distance 2 from x, there is one final case.
Here x is adjacent to two vertices of degree 3, x1, x2, and x1 and x2 are both
adjacent to the same two vertices y1, y2 (one of which must have degree
at most 4). Let y the vertex of degree 4. Note that |NH(x1, x2)| = 3, so
one of x1, x2 (say x1) has |NC(x1)| ≥ 2k − 1. Apply the switching lemma
to x1 and x2 find a vertex x′2 ∼ x1 with |NH(x′2)| ≤ 3 and x′2 	∼ x. Then
|NH−x2

(x)| = 1, and |NC(x1)| ≥ 2k− 2. Thus, |NH(x′2, x)| ≤ 3, and x′2, x1, x
satisfy the conditions of Lemma 2.

In all cases, we have reached a contradiction so H must have contained
a chorded cycle and we have completed the proof of Theorem 1.

2. The proof of Theorem 2

Like the proof of Theorem 1, the general strategy will be by induction on k,
for any fixed n. The case k = 1 is trivial: if G has minimum degree at least 2,
clearly G contains a cycle; otherwise, there is a vertex x of degree 1, and
G−N [x] has minimum degree ≥2 by the neighborhood condition and thus,
contains a cycle.

We say that a sequence v1, . . . , vk is a non-branching path of order k
in G, if vi ∼ vi+1 and |N(vi)| ≤ 2 for all i ≤ k.

Suppose G is a graph satisfying the hypothesis of Theorem 2 for some
k and that the theorem has been proved for k − 1. The hypothesis of the
theorem are satisfied for k − 1, so G contains k − 1 independent cycles
C1, . . . , Ck−1. Let C =

⋃k−1
i=1 Ci and assume that |C| is minimized. Let H =

G−C. We assume H has a minimum number of components. If H contains
a cycle, then we have exhibited k disjoint cycles and are done, so we may
assume H is a forest. We prove the following swapping lemma, similar to
Lemma 1:

Lemma 3. Suppose x1, x2, and x3 are vertices in H which are pairwise non-
adjacent and |NH(xi)| ≤ 1. Then there exists i and j with i 	= j, Ck ⊆ C
and z ∈ Ck, such that (Ck −{z})∪{xi} is a cycle and z ∼ xj. Furthermore,
|NH(z)| = 1.
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Remark. There is one key difference between this lemma and Lemma 1. In
Lemma 1, we are able to choose whether to append the new vertex to x or
append the new vertex to y. Here, we have no choice: the lemma guarantees
that we can swap some xi for some z adjacent to some xj , but we cannot
guarantee (say) that we can add x1 to a cycle and swap it out for a z ∼ x2.

To prove Lemma 3, we make the following observation, which follows
immediately from the minimality of |C|:
Claim 3. Suppose x ∈ H has |NCi

(x)| ≥ 2, then |Ci| ≤ 4. Furthermore, if
|NCi

(x)| = 3, then |Ci| = 3.

Proof of Lemma 3. Note that

|NC(x1, x2)|+ |NC(x1, x3)|+ |NC(x2, x3)| ≥ 3(2k − 1)

so there exists a cycle Ci such that

(1) |NCi
(x1, x2)|+ |NCi

(x1, x3)|+ |NCi
(x2, x3)| ≥ 7.

In particular, for some pair (say x1 and x2) we have |NCi
(x1, x2)| ≥ 3. Thus,

|Ci| ≤ 4 by Claim 3. At least one of x1 and x2 have degree at least 2 into
Ci, say x1. If |NCi

(x1)| = 2, then we will set xi = x1 and xj = x2 and
one can easily check that the conditions of the theorem are satisfied, since
x2 must have a neighbor in Ci that is not amongst the neighbors of x1. If
|NCi

(x1)| = 3, then |Ci| = 3. In this case, note that one of x2 or x3 must have
a neighbor in Ci, otherwise (1) will not hold; if this is x3, say, let xi = x1,
and xj = x3. The other cases follow analogously.

Note that Lemma 3 implies the following:

Claim 4. H has at most 2 isolated vertices.

Proof. Otherwise, applying the swapping lemma (Lemma 3) to these vertices
would reduce the number of components.

The key observation is the following:

Lemma 4. Without loss of generality, we may assume that H contains
either two disjoint non-branching paths of order at least 4, one of which
starts at a leaf or a single non-branching path of order 8, which need not
contain a leaf.

In the proof, we also need the following lemma, whose proof requires
some additional setup, which we give after we complete the proof of Lemma 4.
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Lemma 5. Under the assumption that H does not contain two disjoint non-
branching paths of order at least four, one of which starts at a leaf, we may
assume that |H| ≥ 40.

Proof of Lemma 4. For the purposes of this, we assume that H has no iso-
lated vertices; even after removing the isolated vertices, we decrease the
size of H by at most 2 by Claim 4. We assume that H cannot have a
non-branching path of order 8 starting at a leaf, subject to the conditions
imposed on H. Further, by Lemma 5, we may assume that |H| ≥ 40. Now,
we show that H contains an internal non-branching path of order 8.

Let � denote the number of leaves inH which are not in path components
and p denote the number of components in H which are paths. Suppose H is
such (subject to our condition on |C| and that the number of components in
H are minimized) that �+ p is minimized. Let L consist of the set of leaves
in H, with one leaf selected from each path component. Note |L| = � + p.
Note that there is a non-branching path of some order starting at each leaf.
Let v = (v1, v2, . . . , ) be the vector where vi is the number of leaves in L
which are connected to a maximal non-branching path of order exactly i.
Note, by assumption vi = 0 for i ≥ 8. We define the weight of v to be:

wt(v) =

∞∑
i=1

vi(1− 2−i).

Suppose that H is such that (subject to its other conditions) wt(v) is mini-
mized. We claim that vi ≤ 2 for all i. If vi = 3, then applying the swapping
lemma to the three vertices ending paths of order i would result in a new
H ′ = (H − {xi}) ∪ {z} and C′ where wt(v′) < wt(v). If

∑
i≥4 vi ≥ 2, we

are done. If
∑

i≥4 vi = 1, then there are at most 7 leaves, and
∑

i ivi ≤ 19.
Otherwise, there are at most 6 leaves and

∑
i ivi ≤ 12.

Let J denote the set of vertices in H of degree at least 3 (in H), and
let j = |J |. Let c denote the number of components of H. The vertices of J
divide the n− j vertices of H − J into

c+
∑
v∈J

(|N(v)| − 1) = c+ j +
∑
v∈J

(|N(v)| − 2)

= c+ j + (�− 2(c− p)) = j + �+ 2p− c

segments which are non-branching paths, some of which may be empty if
there are adjacent vertices in J .

Of these j + � + p − c segments, � + p of them are attached to vertices
in L and these account for at most

∑
i ivi vertices. Thus, the remaining
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≥|H|−2− j−
∑

i ivi vertices are split into j+ �+2p− c− (�+p) = j− c+p
segments. A crucial observation at this point is that if every component
is a path component, then all vertices are in segments attached to vetices
in L, an impossibility since

∑
i ivi < 40. In particular, this means that

p − c ≤ −1. If
∑

i≥4 vi = 1, then there must be a non-branching path of
order at least

⌈
|H| − 2− j − 19

j − c+ p

⌉
≥

⌈
|H| − 2− (�− 2)− 19

(�− 2)− c+ p

⌉
≥

⌈
40− 26

4

⌉
≥ 4

since |H| ≥ 40. Thus, there is a non-branching path of order 4 in the interior
of the forest, and along with one adjacent to a leaf, we have the two desired
paths of order 4.

If
∑

i≥4 vi = 0, so that � ≤ 6 and
∑

i ivi ≤ 12, we have a non-branching
path of order at least

⌈
|H| − 2− j − 12

j − c+ p

⌉
≥

⌈
|H| − 2− (�− 2)− 12

(�− 2)− c+ p

⌉
≥

⌈
40− 18

3

⌉
≥ 8,

as desired.

Before we prove Lemma 5, we need one additional claim concerning
cycles with edges between them. We define the graphs G(a, b, c, d) to be the
disjoint union of two cycles C1 and C2 of order a and b respectively, with two
vertices v1 and v2 at distance d lying on cycle Cc specified. v1 is connected
to all of the other cycle, while v2 is connected to a single vertex of the other
cycle. (Note that for all choices of v1, v2 and the neighbor of v2 the resulting
graphs are isomorphic.)

Lemma 6. Suppose C1 and C2 are two cycles with |C1| + |C2| ≥ 7, and
e(C1, C2) are the edges between them. If |e(C1, C2)| ≥ 9, then either C1 ∪
C2 ∪ e(C1, C2) ⊆ G(|C1|, |C2|, c, d) for some parameters c and d, or there
exist two shorter disjoint cycles.

Note that 9 here is sharp: there exist configurations of C1 and C2 with
8 edges between them that admit no two shorter disjoint cycles and are not
contained in a G(a, b, c, d).

Proof. Suppose |e(C1, C2)| = 9, and let v be a vertex with the largest number
of edges into the other cycle. Without loss of generality, v ∈ C1 and we let
dv denote the number of vertices in C2 incident to v. We show dv ≥ 8. Note
that this proves the lemma: if |e(C1, C2)| > 9, we consider groups of 9 edges
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at a time and it is clear that the vertex v of highest degree must be the same
for all groups of edges.

We fix some order on C2. For vertices, x, y in C2, with x ≤ y we let
(x, y) and [x, y] denote the open or closed intervals of vertices from x to y.
If y ≤ x, then [x, y] is the complement of (y, x) and similarly for (x, y). Half
open intervals, e.g. (x, y], are defined accordingly.

Suppose |e(v, C2)| = 7. Let x1 < x2 < · · · < x7 ∈ C2 denote the neigh-
bors of v in order around the cycle. Then there are two other edges from C1

to C2, which hit vertices a1 ≤ a2 in C2 (where a1 may be the same as a2.
Either there are three xi within [a1, a2] or there are three xi on the outside
of [a2, a1]. In either case, one can build two shorter cycles which avoids (at
least) one of the three vertices to the inside (or outside) of [a1, a2].

If |e(v, C2)| = 6, let x1 < · · · < x6 denote the vertices adjacent to v.
Note that if C1 \ v has 2 neighbors in (x2, x6) then shorter cycles can be
constructed avoiding x2. Otherwise, C1 \ v has 2 neighbors in [x6, x2] and
shorter cycles can be constructed avoiding x3.

If |e(v, C2)| = 5, let x1 < · · · < x5 denote the vertices adjacent to v. If
[x5, x1) contains 2 neighbors of C1\v, then shorter cycles can be constructed
avoiding x2. Similarly, if there are two vertices in any of the intervals [x1, x3),
or [x3, x5). But one of these must contain two elements.

If |e(v, C2)| = 4, let x1 < · · · < x4 denote the vertices adjacent to v.
Either one of [x4, x1), [x1, x2), [x2, x3), or [x3, x4) contains two edges from
C1 \v, allowing a shorter cycle in any case or each has exactly one edge from
C1 \ v, which also allows a shorter cycle.

If |e(v, C2)| = 3, let x1 < · · · < x3 denote the vertices adjacent to v. If one
of (x1, x2), (x2, x3) or (x3, x1) contains two edges from C1 \ v, the G admits
a shorter cycle. Now either one of x1, x2, or x3 has two edges from C1 \ v or
there is exactly one edge from C1 \ v into each of x1, x2, x3, (x1, x2), (x2, x3),
and (x3, x1). In the second case, each set must be non-empty, and it is easy
to see that there are shorter disjoint cycles. If x1 (say) has two edges from
C1 \ v, then there are shorter disjoint cycles unless (x3, x1) and (x3, x2) are
empty. This forces x2 (say) to have two edges from C1 \v, forcing (x3, x1) to
be empty, and thus, x3 must also have two edges from C1 \ v. (Note that no
xi may have 3 edges from C1 \ v, this would contradict the fact that v has
maximum degree to the other cycle.) The same argument applied in reverse
(now taking one of the xi’s to be the vertex of degree 3 and looking at edges
into C2) implies that either we have two shorter cycles or, in fact, we must
two triangles with a K3,3 connecting them. This contradicts |C1|+ |C2| ≥ 7.

If |e(v, C2)| = 2, let x1 < x2 denote the neighbors of v. If (x1, x2) or
(x2, x1) have three edges from C1 \ v, then there are shorter disjoint cycles.



118 Ronald J. Gould et al.

Thus, one of x1 or x2 has at least 2 neighbors from C1 \ v. This contradicts
the fact that v has the maximum degree.

If |e(v, C1)| = 1, suppose v1, v2 ∈ C1 are as close together as possible
such that v1, v2 have neighbors in C2, and let x1 < x2 denote their neighbors.
One of (x1, x2) or (x2, x3) must have at least 3 neighbors in C1 \ {v1, v2}
and thus, there are shorter cycles.

Therefore, |e(v, C2)| ≥ 8 as desired.

Proof of Lemma 5. Suppose |H| < 40. Then the average size of a cycle in
C is at least 30k−40

k−1 ≥ 20 (since k > 1). Let C be a cycle in C of maximum
order. Then C has no chords, due to the minimality of |C|. Order the vertices
in C, and denote them v0, . . . , vm. Let R = C̄ denote the complement of
C. We may assume that, without loss of generality at most two (adjacent)
vertices have |NR(v)| < k−1, and if these exist, we will assume that they are
(possibly only one of) v1, v2. Pair off vertices {{v4i, v4i+2}, {v4i+1, v4i+3} : i =
0, 1, . . . , 
m/4�−1}. Let L denote the set of vertices not paired off; there are
m (mod 4) such vertices. Then for any of these pairs (u, v), |NC(u, v)| = 3.
Now consider that

∑
i≤m/4−1

(|NR(v4i, v4i+2)|+ |NR(v4i+1, v4i+3))|+
∑
v∈L

|NR(v)| ≥ (m+1)(k−1).

Note that |e(C,H)| < 20 as if any two vertices at distance at most 9 in
H have neighbors in C, then there is a shorter cycle. Here we use the fact
that H is minimized with respect to wt(v) and the condition on the non-
branching paths within H. Note that this is already a contradiction if k = 2.
Thus, there exists some cycle C ′ ∈ C, with at least m+ 2 edges between C
and C ′.

Lemma 6, along with the neighborhood condition, implies that |C ′| = |C|
and that a vertex in C must be adjacent to every vertex in C ′, with one
additional edge between the two. The fact that the high degree vertex is
in C comes from the neighborhood condition, and the fact that |C ′| = |C|
comes from the fact that there is a vertex in C with degree m + 1 into C ′,
and C is a maximum order cycle.

We now repeat the argument: Let v be the vertex in C of high degree
to C ′. We pair off vertices of C starting at the successor of v and also pair
off the vertices of C ′ to get that there must be at least (2m+ 1)(k − 1)− 1
edges leaving C ∪ C ′ \ v; in particular, there must be third cycle C ′′ such
that there are at least 2m + 1 edges between C and C ′ and C ′′. Applying
Lemma 6 again implies |C ′′| = |C ′| = |C| and that there is a v′ 	= v ∈ C and
a v′′ ∈ C ′ each of which are adjacent to at least |C ′′| − 1 vertices in |C ′′|.
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But then it is clear that we can find three shorter cycles, contradicting our
assumptions on |C|. (Here, if k = 3 the number of edges between C ∪C ′ and
H already contradict the fact that |C| is minimized.)

We are now ready to complete the proof of Theorem 2. By Lemma 4, we
may assume thatH contains either two disjoint non-branching paths of order
4 or one non-branching path of order 8. First, consider the case whereH con-
tains two disjoint non-branching paths P1, P2 of order 4 (one of which con-
tains a leaf). Let P1 = {x1, x2, x3, x4} and P2 = {y1, y2, y3, y4}, and consider
the pairs of non-adjacent vertices S = {(x1, x3), (x2, x4), (y1, y3), (y2, y4)}.
Then ∑

(u,v)∈S
|NC(u, v)| ≥ 4 · (2k − 2) + 1 = 8(k − 1) + 1.

Therefore, there exists a C = Ci such that
∑

(u,v)∈S |NC(u, v)| ≥ 9. This
implies that some vertex in one of the Pis has two neighbors on C, so |C| ≤ 4.

First, assume that |C| = 4. Without loss of generality, assume that

|NC(x1, x3)|+ |NC(x2, x4)| ≥ |NC(y1, y3)|+ |NC(y2, y4)|.

If |NC(x1, x3)|+ |NC(x2, x4)| ≥ 7, then one pair, say x1 and x3 is adjacent to
all four vertices on C. Then we reach a contradiction to the minimization of
|C| as either a triangle is already formed, or x2 or x4 must be adjacent to some
vertex on the cycle, creating a triangle. If |NC(x1, x3)| + |NC(x2, x4)| = 6,
then there are two vertices on C which are adjacent to two vertices in P1

(and these vertices must come from different classes, i.e. one from {x1, x3}
and one from {x2, x4}), and either both other vertices in C are adjacent
to one other vertex on P1 or one vertex is adjacent to two vertices on P1.
Suppose first two vertices on C are adjacent to two vertices of P1, and the
others are adjacent to one vertex. Then the two vertices of C which are
adjacent to two vertices of P1 must be adjacent to the two end vertices of P1

(to avoid a triangle since they must come from different classes) and must be
antipodal. Label the vertices of C to be (in order) c1, . . . , c4. Then without
loss of generality x1 and x4 are adjacent to c1 and c3. We are done unless
both c2 and c4 are adjacent to one of x2 or x3. In this case, we must use P2.
We know that |NC(y1, y3)|+ |NC(y2, y4)| ≥ 3. Therefore, either some vertex
in C is adjacent to two vertices of P2 (in which case it is easy to find disjoint
paths), or three different vertices of C are adjacent to P2. It is easy to see
here that however they are adjacent we are done, though we note that 2
edges does not suffice here: if P2 were just adjacent to y1 and y3 we could
not find the shorter cycles. This is the only one of these cases where we use
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the ninth edge, and hence requires care when we consider the case where we
have a single path of length 8 below.

If |NC(x1, x3)| + |NC(x2, x4)| = 5, then some vertex z in C is adjacent
to two vertices of P1, and these must be the end vertices. If P2 is adjacent
to two vertices that are not z, then we have two disjoint cycles. If this does
not occur, z occurs in the neighborhood of 2 vertices in P2 (again, the end
vertices) as in total P2 sends three edges to C. But then P1 has two edges
that do not go to z, leading to two disjoint cycles (one involving P1 and
vertices on C − {z} and one involving P2 and {z}). We also will handle the
case where |NC(x1, x3)| + |NC(x2, x4)| = 4, which arises in the case where
there is a non-branching path of order 8. If |NC(x1, x3)|+ |NC(x2, x4)| = 4,
then either some vertex is adjacent to two vertices of P1 or two vertices of
P2 which leads to the exact case above, or all vertices are adjacent to exactly
one vertex in both P1 and P2. In either case, there are two disjoint cycles
and we are done.

If |C| = 3, then note |NC(x1, x3)|+ |NC(x2, x4)| ≤ 6 (again, we assume
that P1 has the larger of the neighborhoods). If this is at least 5, two vertices
on C must be adjacent to two vertices of P1, and the other vertex on C must
be adjacent to (at least) one vertex on P1. If P2 sends three edges into C, we
are clearly done. Either two hit some vertex, and we have a cycle involving P1

and the vertices not hit by P2, or all three are hit and we have an analogous
situation using one of the vertices that P2 hits twice. If P2 only sends 2
edges into C, then all three of the vertices of C must be hit twice by P1 and,
again, we have two disjoint cycles. If |NC(x1, x3)| + |NC(x2, x4)| = 4, then
some vertex z of C must be adjacent to two vertices in P1. Two of the edges
from P2 must be incident to vertices different than z, and thus we have two
disjoint cycles as desired. Again, this last case cannot occur unless we are
in the non-branching path of order 8 case.

Thus, we may assume we are in the case where there is a single non-
branching path of order 8; let P = {x1, . . . , x8}. We can think of P =
P1 ∪ P2, where P1 and P2 are the first and last four vertices of P respec-
tively. The same argument as above guarantees that there is a C such that∑

(u,v)∈S |NC(u, v)| ≥ 8. This is where we lose something: having a leaf in
our path gave us one extra edge. Note that before we used that extra edge to
claim that |C| ≤ 4 but did not use the extra edge to produce the two disjoint
cycles. We showed their existence even when the (sum of the) neighborhoods
of both P1 and P2 was of size 4. Note either every vertex has |NC(xi)| = 1
with NC(xi) 	= NC(xi+2), or |C| ≤ 4. If |C| ≤ 4, then we can apply the
above arguments, noting that we have already handled the additional cases
which occur except for one noted.
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The last case with |C| ≤ 4 is when C = 4, and we have C = {c1, c2, c3, c4}
and P1 = {x1, x2, x3, x4} where x1 and x4 are adjacent to both c1 and c3
with either x2 or x3 adjacent to both c2 and c4. Then there must be at
least two edges between P2 and C; if there are three then the argument
above shows there exists two disjoint cycles. The only case that the above
argument does not cover is if the neighbors of P2 are c1 and c3. But even in
this case we are done as P1 and P2 are adjacent: we take the cycle involving
x1, c1, c2, the neighbor of c2 on P1 (either x2 or x3) and the segment of P1

connecting this vertex and x1 and also the cycle involving and x4, c3, the
neighbor of c3 in P2 and the path between x4 and this vertex.

If every vertex has degree 1, consider that x1 and x3 have two distinct
neighbors on C. If NC(x2) ∈ {NC)(x1), NC(x3)}, then we have a triangle,
and hence, |C| = 3 ≤ 4 and we are already done. Now assume NC(x2) 	∈
{NC(x1), NC(x3)}. Order the vertices along the cycle so that NC(x1) <
NC(x2) < NC(x3). Then if NC(x4) 	∈ [NC(x1), NC(x2)] we are done, so we
may assume that NC(x4) is in this interval.

Now consider the neighbors of xi for i ≥ 5. If NC(xi) 	∈ [NC(x1), NC(x2)]
we are done as above. In fact, ifNC(xi) ∈ (NC(x1), NC(x2)) we are also done:
we may use x4, xi and the portions on the path and cycle connecting them
for one cycle, using the portion of the cycle contained in [NC(x1), NC(x2))].
Then one of NC(x1) or NC(x2) will not be used in that cycle; we will use
that vertex, along with NC(x3) the portion connecting them in the cycle not
containing (NC(x1), NC(x2)) along with their neighbors on the path and the
portion of the path connecting them. Thus, all vertices xi for i ≥ 5 must
have their neighbors be either x1 or x2. But then one of these vertices will
have two neighbors xi with i ≥ 5. This easily admits two disjoint cycles.

References
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