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ABSTRACT

r

Bounds are determined for the Ramsey number of the union of graphs versus a
fixed graph H, based on the Ramsey number of the compeonants versus A. For
certain unions of graphs, the exact Ramsey number is determined. From these
formulas, some new Ramsey numbers are indicated. In particular, if

rgn HY = [| Vigid| — 11Ix{H) — 11+ t,(H) + B,
G= L;Jg,';

p= max ((j— Nx(H) = 2] + Zik,-)+ t (H) ~ 1,
i .

where &; is. the number of components of order / and r, (H) is the minimum
order of a color class over all critical colorings of the vertices of 4, then

P =G, H) S p + max ().

INTRODUCTION

All graphs in this article are without loops and multipie edges. If G is a
disconnected graph let ¢(G') denote the maximum order of a component of G.
A coloring of the vertices of G with exactly x(G) colors is called a critical
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coloring. In any coloring of a graph, all vertices with the same color forma
color class. Define #G) to be the minimum number of vertices in any color
class of any critical coloring of G. Finally, the Ramsey number r(G,, G,) is
the least positive integer p such that in any factorization of K,=R ® Blie.,
V(K,)= V(R)= V(B) and E(R) N E(B)= @ and E(R) U E(B)= E(K,)],
either G; C R or G, C B. Ramsey numbers have been studied extensively.
Some results of interest include the following, '

Theorem A (Burr [3]). If G is a connected graph of order n = (H) then

NG, H) 2 (n — D)[x(H) — 1] + «(H).

Theorem B (Chvatal [S]). If T;,, is a tree of order m and K, a complete graph
of order n then

Ty, Ky)=(m — 1)}(n — 1)+ 1.

Theorem C (Stahl {7)). If Fisa forest then )

o(F)
"F,K,)= max ((j - D(r—-2)+ ;‘.‘ik,.) ,

1< j<e(F)
where &; is the number of components of order ;.

Theorem D ([6]). If P, is the path of order m, m =4, and G is a graph of
order n + 2, n = 3, with clique number n, then

HP,, G)y=(m— 1)(n—1)+1.

In this paper we present bounds related to that in Theorem A for
G=UE,G,. We use these bounds and others to obtain a generalization of
Theorem C, and from this, determine some new Ramsey numbers,

2. UPPER AND LOWER BOUNDS

Let H be a graph, then define £(H) to be the minimum, over all critical
colorings of the vertices of H, of the order of the jth smallest color class,
(Note that the first smallest is the smallest.} Also define H(H)={g|gis a
connected graph and Hg, H) =[| Mg)| — 1][x(H) — 1]+ #,(H) + p). This
set is clearly well defined for all non-negative integers .

(i) Suppose g,,2,...,8 € 4(H) with smallest graph of order m, and
largest graph of order m,. Let G= Uk g and let & be the number of
components of order /. Choose j, such that

-,
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my
Go— DIx(H) — 21+ X ik

=Jjg

= max ((j - 1)[x(H)—2]+§ik,.).

mg = jsmg
We prove the following,

Theorem 1. Suppose conditions (i) hold. If j;, = ¢,(H) then
HG, H) = (o — DIx(H) — 2] + >§ ik, + t,(H) = 1.
i=fp

Proof. Letp = (j, — DIx(H) — 2] + po + 4(H) — 2, where p, =
L, ik;. Consider the factorization of K,=R OB, where R=K,_,
U [x(H) = 21K~ U K, ). To show that G & R we will concentrate on
the subgraph G;; of G which consists of all components of G which have/, or
more vertices. Clearly G j4 K,,-1 since there are not enough vertices.
Further, K, is too small to contain any component of G;,, and since j, =
ti(H) it is clear that K, -, is also too small to contain any component of
G;,. Thus G & R; hence G ¢ R. Since B is a complete x(H )-partite graph
with ¢; (B) = £;(H) — 1 this implies that H ¢ B, and the theorem follows. H

Theorem 2. Suppose conditions (i) hold. Then

NG, H) < (o = DIx(H) = 2] + Ziky + 1(H) + f — L,

=)o

Proof. 1t will be convenient for my <j<m, to let G; denote the
subgraph of G consisting of all components of order at least /, so that G; has
order p; ='ZM _ik;. Let p = (jo — 1)[x(H) —2]+p,tHH) + B — 1.
Consider an arbitrary factorization of K, = R:® B in which HZ B. We
show that G C R by descending induction on /.

First assume G = G,,. By an easy induction on %, the number of
components of G, we show G= G, < R. This is clear for k=1, If k > 1
and g is an arbitrary component of G, then the factorization of K,=R®B
induces a factorization on K, — V(g) with | (X,) — V(g)| = (m, — 1)
X [x(H) = 2]+ my(k — 1) + H(H)+ p— 1. By induction G — V{(g)
C (K, — V(g)) N R since H { B. Therefore G=G,, Cr.

To complete the induction on j assume G;1; = R, mo=<j < m,. Clearly
Gng when G; = Gj,, so that G; — V(G+() consists of &; components,
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each of orderj. Again the factorization of K, = R @ B induces a factoriza-
tion on X, — V(Gyy) w1th

m]

| V(K,) — V(Gisy)| =p — .Zlfkf = (j — Dx(H) — 2] + jk

i=

+t1(H)+ﬁ - 1.

As in the argument of the pteceding paragraph G;— V(G.;) C (K, —
V(G;+1) N R. Therefore G; C R and the induction is complete. i

We now note some useful special cases of Theorems 1 and 2.

Corollary 3. Suppose gy, &,...,8 € H(H) and | Vig)| = m (i = 1,
2,...,k). Let G= U i, If m > £,(H) then nG, H) = (m — D)[x(H) — 2]
+mk + t(H)— 1.

Corollary 4. Suppose G = UL,g;, whereg, € 4(H) and | V(g;)| = m.
Then )

(G, Hy < (m — 1)[x(H) — 2] + mk + t,(H) + § — 1.

We now note that Theorems 1 and 2 yield a generalization of Theorem C.

rCorollary S. Ifgl,gz, oo Bk € %(H) and G = U:?ﬂlgi then

e(G)
HG, H)= max ') (U —Dix(HE) -2]+ Z ik,-) +n(H) — 1.

1=<j=<¢c(G

We also note that 7}, € 4(K,) from Theorem B, so Theorem C now
follows as a corollary to Theorem B and Corollary 5.

3. APPLICATIONS AND CONCLUSION

In [1] it was shown that C, € 4(K,) when m > n® — 2. Since T, €
H(K,) as well, we may use Corollary 5 to obtain the Ramsey number for
G= (Uf-‘}__lT,,,r.) U (UL, C,,,J.), where each m; > n* — 2, versus K,,. Similarly,
Crn € H(K,p)(Ky(ny denotes the complete n-partite graph K, ... xs With 1
subscripts) when s, 7, and m are sufficiently large (see [1]). Thus Corollary 5
may be applied to unions of cycles (sufficiently large) versus Ky, as well.
In fact, Burr and Erdbs [4] have shown that any sufficiently large graph
homeomeorphic to a connected graph is in 4(K,). They further conjecture
that “large” connected graphs with “small”” edge density are in H(K,)

.
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As a final application of Corollary 5 to Theorem D we can produce the
Ramsey numbers for stripes (unions of paths) with smallest stripe of order 4
versus any graph G with order n + 2 having clique number n (n=3).

Clearly the list of applications is far from exhausted, We merely mention a
few to point out possible applications of Corollary 5, ‘

Finally, we state a theorem bounding the Ramsey number and ailowing
one to vary the - classes.

Theorem 6. Ifg, € 4 (H) and G= UL g, let
o(G) _
pP= max (U — DIx(A) = 21 + Efkf) +4(H) - 1
FEFZGY i=j
then
P =r(G, H) < p + max (B).

The proof of Theorem 6 would be exactly the same as that for Theorems 1
and 2 with max (f;) substituted for S.

We also feel that investigation of L(H) for i > 1 may result in new and
improved bounds. We direct the reader to 2]
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