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Given a family of graphs F , a graph G is F-saturated if no element
of F is a subgraph of G, but for any edge e in G, some element
of F is a subgraph of G + e. Let sat(n,F) denote the minimum
number of edges in an F-saturated graph of order n.

For graphs G,H1, . . . , Hk, we write that G → (H1, . . . , Hk) if
every k-coloring of E(G) contains a monochromatic copy of Hi in
color i for some i. A graph G is (H1, . . . , Hk)-Ramsey-minimal if
G → (H1, . . . , Hk) but for any e ∈ G, (G − e) �→ (H1, . . . , Hk).
Let Rmin(H1, . . . , Hk) denote the family of (H1, . . . , Hk)-Ramsey-
minimal graphs.

In 1987, Hanson and Toft conjectured that

sat(n,Rmin(Kk1 , . . . ,Kkt))

=

{ (
n
2

)
n < r(

r−2
2

)
+ (r − 2)(n− r + 2) n ≥ r,

where r = r(k1, k2, . . . , kt) is the classical Ramsey number for
cliques.

In this paper, we settle the first non-trivial case of Hanson and
Toft’s conjecture for sufficiently large n by showing that sat(n,
Rmin(K3,K3)) = 4n − 10 for n ≥ 56. We also undertake a brief
investigation of sat(n,Rmin(Kt, Tm)) where Tm is a tree of order
m.
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1. Introduction

In this paper we consider only graphs without loops or multiple edges. We
let V (G) and E(G) denote the sets of vertices and edges of G, respectively
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and we will let e(G) = |E(G)|. For any vertex v in G, let N(v) and N [v] =
N(v)∪{v} denote the neighborhood and closed neighborhoods of v, respec-
tively. We denote the complement of G by G. Given any two graphs G and
H, their join, denoted G ∨H, is the graph with V (G ∨H) = V (G) ∪ V (H)
and E(G∨H) = E(G)∪E(H)∪ {gh | g ∈ V (G), h ∈ V (H)}. Finally, for a
set of vertices X in G, let 〈X〉G denote the subgraph of G induced by X.

Given a family of graphs F , a graph G is F-saturated if no element of
F is a subgraph of G, but for any edge e in G, some element of F is a
subgraph of G + e. If F = {H}, then we say that G is H-saturated. The
classical extremal function ex(n,H) is precisely the maximum number of
edges in an H-saturated graph of order n. Erdős, Hajnal and Moon [5]
studied sat(n,H), the minimum number of edges in an H-saturated graph,
and determined sat(n,Kt).

Theorem 1. Let n and t be positive integers such that n ≥ t. Then

sat(n,Kt) =

(
t− 2

2

)
+ (t− 2)(n− t+ 2).

Furthermore, Kt−2 ∨ Kn−t+2 is the unique Kt-saturated graph of order n
with minimum size.

For graphs G,H1, . . . , Hk, we write that G → (H1, . . . , Hk) if every k-
coloring of E(G) contains a monochromatic copy of Hi in color i for some
i. A graph G is (H1, . . . , Hk)-Ramsey-minimal if G → (H1, . . . , Hk) but for
any e ∈ G, (G−e) �→ (H1, . . . , Hk). Let Rmin(H1, . . . , Hk) denote the family
of (H1, . . . , Hk)-Ramsey-minimal graphs.

In this paper, we consider sat(n,Rmin(H1, . . . , Hk)) for certain choices
of the Hi. It is straightforward to show that any graph G such that G →
(H1, . . . , Hk) must contain a Ramsey-minimal subgraph. Therefore, deter-
mining the saturation number for Rmin(H1, . . . , Hk) is equivalent to deter-
mining the minimum number of edges in a graph G of order n with the
property that G �→ (H1, . . . , Hk) but G + e → (H1, . . . , Hk) for any edge e
in the complement of G. In 1987, Hanson and Toft [8] discussed this notion
and made the following conjecture.

Conjecture 1. Let r = r(k1, k2, . . . , kt) be the standard Ramsey number for
complete graphs. Then

sat(n,Rmin(Kk1
, . . . ,Kkt

)) =

{ (
n
2

)
n < r(

r−2
2

)
+ (r − 2)(n− r + 2) n ≥ r.
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The statement of this conjecture can also be found in [9].
For n ≥ r, the fact that sat(n,Rmin(Kk1

, . . . ,Kkt
)) ≤

(
r−2
2

)
+(r−2)(n−

r+2) arises from consideration of the graph G = Kr−2 ∨Kn−r+2 which, by
Theorem 1 is the uniqueKr-saturated graph of minimum size. Consequently,
for any e ∈ G, G+ e contains Kr and thus G+ e → (Kk1

, . . . ,Kkt
).

To see that G �→ (Kk1
, . . . ,Kkt

), consider the coloring obtained by
cloning a vertex in any edge-coloring of Kr−1 containing no Kki

in color
i. For an example when k1 = k2 = 3 see Figure 1.

The main result of this paper is that sat(n,Rmin(K3,K3)) = 4n −
10 for n ≥ 56, settling the smallest non-trivial case of Conjecture 1 for
sufficiently large n. We also undertake an investigation of the parameter
sat(n,Rmin(Kt, Tm)) where Tm is a tree of order m.

2. Main result

We now proceed by giving our main result.

Theorem 2. For n ≥ 56,

sat(n,Rmin(K3,K3)) = 4n− 10.

Proof. The fact that sat(n,Rmin(K3,K3)) ≤ 4n − 10 follows from the col-
oring of K4 ∨Kn−4 described above and pictured in Figure 1.

We therefore aim to prove that sat(n,Rmin(K3,K3)) ≥ 4n− 10.
Let G be a Rmin(K3,K3)-saturated graph of order n and suppose that

e(G) < 4n − 10. Fix a coloring χ of E(G) that contains neither a red nor
blue K3. Throughout the proof, we will attempt to add red or blue edges to
G. We demonstrate that by modifying χ (much as Galluccio et al. [7] did
in their paper), we may add an edge without creating a monochromatic K3,
violating our assumption that G is Rmin(K3,K3)-saturated.

It is convenient to visualize G with respect to the coloring χ, and as
such we will frequently refer to the “blue graph” and “red graph”, as well
as the “blue” or “red” degree of a vertex. More formally, let Gred and Gblue

denote the subgraphs of G consisting of the edges colored red and blue by
χ, respectively. Similarly, for a vertex v in G, dr(v) will denote the number
of red edges incident to v and Nred(v) denotes the “red neighborhood” of
v, that is, the set of vertices u such that uv is red. Similarly, let Nred[v]
denote Nred(v) ∪ v. We define db(v), Nblue(v) and Nblue[v] in an analogous
manner with respect to the blue graph Gblue. We will refer to a vertex x in
Nred(v) as a red neighbor of v and will also say that the vertices v and x are
red-adjacent.
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Figure 1: A coloring of K5 with no monochromatic triangles that gives rise
to a Rmin(K3,K3)-saturated graph.

We now explore the structure of G = Gred ∪ Gblue, and work toward a
contradiction.

Claim 1. The graphs Gred and Gblue are connected.

Proof. Without loss of generality, suppose that Gred is disconnected, and let
A be a component of Gred having minimum order. Note that for every pair
of vertices a ∈ A and b ∈ B = Gred −A, the edge ab must be in Gblue, since
otherwise we could add a missing edge in red without creating a red K3.
The fact that all of these edges are blue also yields that there are no blue
edges within 〈A〉G and 〈B〉G and hence that both of these (red) subgraphs
are K3-saturated. Utilizing Theorem 1, it follows that

e(G) ≥ |A||B|+ (|A|+ |B| − 2).

Since e(G) < 4n− 10 and n ≥ 56, we conclude that |A| ≤ 3.
Since every edge within B is red and |B| ≥ n − 3, there is some edge

uv not in B. We will add this edge uv, colored blue, to G and then modify
χ to remove any blue triangles. Suppose |A| = 3, and note that since 〈A〉G
is K3-saturated, A ∼= P3. If we label the vertices of this P3, in order, with
a1, a2 and a3, then after adding uv in blue, we recolor ua1, va2 and ua3 red.
This does not create a monochromatic triangle, and hence contradicts the
assumption that G is Rmin(K3,K3)-saturated. The cases where |A| < 3 are
handled in a similar manner.

Since G is Rmin(K3,K3)-saturated, the addition of an edge colored red
or blue must create a triangle of that color. The following fact reflects this
observation.

Fact 1. If u and v are nonadjacent vertices in G, then Nred(u) ∩ Nred(v)
and Nblue(u) ∩Nblue(v) are both non-empty.
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Also note that if α(G) ≥ n−4 then G is a subgraph of K4∨Kn−4. Thus
any edge in E(K4 ∨ Kn−4) that is not contained in E(G) could be added
to G without destroying the coloring depicted in Figure 1, contradicting the
assumption that e(G) < 4n− 10. This implies the α(G) < n− 4.

For the remainder of the proof, we let v denote a vertex of minimum
degree in G and we let H denote G−N [v]. Fact 1 and the assumption that
e(G) < 4n− 10 imply that 2 ≤ d(v) ≤ 7.

Galluccio, Simonovits, and Simnoyi [7] investigated Rmin(K3,K3)-
saturated graphs, though not just those of minimum size. They gave var-
ious constructions of such graphs and various structural results. Useful in
establishing our next claim is the following theorem.

Theorem 3. [7] If G is a Rmin(K3,K3)-saturated graph G, then δ(G) ≥ 4.

Claim 2. d(v) ≥ 4.

Proof. Follows immediately from Theorem 3.

Let x be a vertex in H and let v′ be a vertex in N(v) ∩N(x) such that
the edges v′v and v′x are different colors. In this situation, the edge v′x does
not prevent us from inserting the edge xv in either color, so we call such an
edge a wasted edge to N(v). Additionally, say that an edge from x to N(v)
is useful if it is not wasted.

Claim 3. d(v) ≤ 5.

Proof. To begin, suppose that δ(G) = d(v) = 7. Every vertex in H must
have a common red neighbor and a common blue neighbor with v. This
implies that

e(G) ≥ 7 +
1

2

(∑
H

d(x) + e(N(v), H)

)

≥ 7 +
1

2
(7(n− 8) + 2(n− 8)) ,

which is at least 4n− 10 for n ≥ 38.
Therefore assume that δ(G) = d(v) = 6. If the subgraph induced by

N(v) does not contain a red edge, then we can recolor all six edges incident
with v red without a red or a blue K3, which contradicts Claim 1. We could
similarly recolor and obtain a contradiction if the subgraph induced by N(v)
contained no blue edges. Consequently, there must be at least one blue edge
and at least one red edge in the subgraph induced by N(v) and hence at
least eight edges in the subgraph induced by N [v].
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Consider a vertex x in H such that |N(v) ∩ N(x)| = 2. By Fact 1, x
and v must have a common red neighbor r and a common blue neighbor b.
Suppose that the edge br is not red (meaning that it may not be in G at
all).

Recoloring xb red would leave x and v with no blue common neighbor,
so there must be a vertex vr in G that is red-adjacent to both x and b. Note
that since rb is not red, r �= vr, so vr ∈ H. We also cannot recolor vb red, so
there must be a vertex r2 �= r in Nred(v) such that r2b is red. Since xr2 is
not in G, we must not be able to add it to Gblue. Hence there must be some
vertex vb in H that is blue-adjacent to both x and r2. Note that vb �= b, as
r2b is red. We can therefore conclude that for every vertex x having exactly
two common neighbors with v, there are two vertices in N(x)−N(v), each
having a wasted edge.

Every vertex in G has degree at least six, and every vertex in H has at
least two edges to N(v). Summing the degrees in G, we get that

2e(G) ≥ 16 + 2(n− 7) + 6(n− 7) +
∑
H

(dN(v)(x)− 2) +
∑
H

(d(x)− 6)

= 8n− 40 +
∑
H

(dN(v)(x)− 2) +
∑
H

(d(x)− 6).

The vertices vr and vb described above each have at least two useful and
at least one wasted edge to N(v), hence they each contribute at least one
to

∑
H(dN(v)(x) − 2). Furthermore, each of these vertices may be used to

prevent recoloring with respect to a number of choices of x. Since vr and
vb must be adjacent to x, they may prevent recoloring with respect to at
most three choices of x before beginning to contribute to

∑
H(d(x) − 6).

Consequently, if we let n2 denote the number of vertices in H with exactly
two neighbors in N(v), we get that

∑
H

(dN(v)(x)− 2) +
∑
H

(d(x)− 6) ≥ 2n2

3

or that

e(G) ≥ 4n− 20 +
n2

3
.

Since e(G) < 4n− 10, it follows that n2 ≤ 29.
There are n − 7 − n2 vertices with three or more neighbors in N(v),

implying that

2e(G) ≥ 6(n− 7) + 2(n− 7) + (n− n2 − 7) + 16,
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which is a contradiction, given that n2 ≤ 29 and e(G) < 4n− 10.

Claims 2 and 3 together imply that δ(G) is either four or five. Next, we
eliminate the former possibility.

Claim 4. δ(G) = 5.

Proof. Assume that d(v) = 4 and begin by assuming that Nblue(v) = {b}
and Nred(v) = {r1, r2, r3}. Note that in order to avoid a monochromatic
K3, some pair of red neighbors of v must be nonadjacent, say r1 and r2.
Also note that, by Fact 1, b must be blue-adjacent to every vertex in H.
We may therefore assume that each bri is red since the only red neighbors
of b lie in Nred(v), which contains no red edges. Now, since r1 and r2 are
nonadjacent, we may recolor the edges vr1 and vr2 blue. This forces, by
Fact 1, r3 to be red-adjacent to every vertex x in H. Consequently, H must
be an independent set. Thus H ∪ {v} is an independent set of order n − 4,
a contradiction.

Hence, we may assume that Nred(v) = {r1, r2}, Nblue(v) = {b1, b2} and
that we cannot recolor the edges incident to v such that G contains no
monochromaticK3 and v is incident to at most one edge of some color. Along
these lines, to prevent us from recoloring vb1 red, b1 must have a red edge
to one of the vertices in Nred(v), say r1. Then, to prohibit us from coloring
vr1 blue, r1b2 must be in Gblue. Similarly, we conclude that b2r2 must be in
Gred and b1r2 must be in Gblue. By Fact 1, every vertex of H must have a
red neighbor in Nred(v) and a blue neighbor in Nblue(v). Hence, the addition
of the blue edge r1r2 and the red edge b1b2 cannot create a monochromatic
triangle, so these edges must be present in these colors. Together, this means
that the subgraph induced by N [v] is a complete graph composed of disjoint
monochromatic 5-cycles, vb1r2r1b2v in blue and vr1b1b2r2v in red.

Since N(v) is complete and e(G) < 4n − 10, there must be a vertex x
in H with three or fewer neighbors in N(v). Suppose that dN(v)(x) = 2,
specifically that xr1 is red and xb1 is blue. Since r1b1 is red, we cannot
recolor xb1 red, so we will attempt to recolor xr1 blue instead. To prevent
this, there must be a vertex xb, necessarily in H, such that r1xb and xbx are
both in Gblue. Since xb has a red neighbor in Nred(v), xbr2 must be red. Let
x1, x2, . . . enumerate all possible choices for xb in G, and sequentially recolor
xix red if possible. As we cannot recolor all such edges without forcing a
contradiction, we may assume that xbx cannot be recolored red. This implies
the existence of a vertex y, also in H, such that yx and yxb are both red.
Since xr1 and xbr2 are both red, this prohibits y from having a red neighbor
in Nred(v), a contradiction.
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Suppose then that dN(v)(x) = 3, specifically that xb1 is blue and that
xb2 and xr1 are both red (so that xb2 is wasted). We cannot recolor xr1
blue, and since r1b1 is red, there must be a vertex xb in H such that xbx and
xbr1 are both in Gblue. Therefore, xbr2 must be red and, if we enumerate
all possible options for xb as above and sequentially recolor, there must be
some choice of xb such that xbx cannot be recolored red. Thus there is a y
in H such that y is red-adjacent to both xb and x and once again y cannot
have a red neighbor in Nred(v).

Finally, we may assume that x has no wasted edges to N(v), so that
(without loss of generality) xr1 and xr2 are red, while xb1 is blue. If we
could recolor xr1 blue, then x would have a wasted edge, reducing to the
previous case. Hence there is some vertex xb such that xbx and xbr1 are
both blue, and since b1r1 is red, xb must be in H. Now since xb1 and b2r1
are both blue, xb cannot be blue-adjacent to b1 or b2, the final contradiction
necessary to complete the claim.

Therefore, d(v) = δ(G) = 5.

Claim 5. The vertex v is incident to at least two edges of each color.

Proof. Suppose otherwise, and let Nred(v) = {r1, . . . , r4} and Nblue(v) =
{b}. By Fact 1, b is blue-adjacent to every vertex in H. Moreover, as in the
previous claim, we may assume that each of the edges bri is in Gred.

Let B denote the subgraph induced by Nred(v), necessarily a subgraph
of Gblue, which must be triangle-free and hence is bipartite.

Case 1. Suppose α(B) ≥ 3.

Assume, without loss of generality, that r2, r3 and r4 are independent
in B. Since we have assumed that b is red-adjacent to each ri, we could
recolor each of vr2, vr3 and vr4 blue without creating a blue triangle. This
implies that r1 is red-adjacent to every vertex in H and furthermore, since
H ⊆ Nblue(b), that H is an independent set. Consequently we could add, in
red, any missing edge from r2, r3 or r4 to H without creating a red triangle,
so all of these edges must be present in G. We conclude that G has at least
5(n− 6) edges, a contradiction for n ≥ 20.

Case 2. Suppose B ⊆ K2,2.

Specifically, let {r1, r2} and {r3, r4} be independent sets in B. We could
recolor vr1 and vr2 blue, so every vertex x in H must have a red edge to one
of r3 or r4. Symmetrically, each x in H must have a red edge to one of r1
or r2. Choose some x in H and assume that x is red-adjacent to r1 and r3
and furthermore that xr2 is not in G. The only way we are prohibited from
adding the edge xr2 in blue is if x and r2 have a common blue neighbor. Since
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H ⊆ Nblue(b), there are no blue edges in H, so this common blue neighbor
must be in N(v). Specifically r4 must be the common blue neighbor of x and
r2. Consequently, every vertex x in H must have four neighbors in N(v).
This implies that

2e(G) ≥
∑
x∈H

d(x) + e(N(v), H)

≥ 5(n− 6) + 4(n− 6) = 9n− 54,

contradicting our assumption that e(G) < 4n− 10 when n ≥ 34.

For the remainder of the proof of Theorem 2, we will assume that
Nblue(v) = {b1, b2} and Nred(v) = {r1, r2, r3}.

Claim 6. Every vertex x in H is adjacent to at least three vertices in N(v).

Proof. By Fact 1, each vertex in H is red-adjacent and blue-adjacent to at
least one vertex in N(v). Suppose that x in H is red-adjacent to r1, blue-
adjacent to b1 and has no other neighbor in common with v. Suppose first
that b1r1 is not in Gblue. Note that by Fact 1 we cannot recolor xr1 blue, so
there must be some vertex xb in H that is blue-adjacent to both x and r1.
Then xb cannot be blue-adjacent to b1, implying that xbb2 must be in Gblue.
However, we cannot recolor vr1 blue since x has only one red neighbor in
N(v), so r1 must be blue adjacent to either b1 or b2. Since we assumed r1b1
was not in Gblue, this implies that r1 is blue-adjacent to b2, creating a blue
triangle with xb.

Therefore, we may assume that r1b1 is blue. We cannot recolor xb1 red,
so there must be some vertex y in H that is red-adjacent to both x and
b1. This implies that yb2 is blue. Once again, let y1, y2, . . . enumerate all
possible choices of y, and sequentially recolor the edges xyi blue if possible.
As we may not recolor all of these edges, we assume that we have chosen y
so that xy cannot be recolored blue. This implies the existence of a vertex yb
in H such that yby and xyb are both blue. However, as in the above claims,
yb cannot be blue-adjacent to b1 or b2, a contradiction.

Claim 7. If a vertex x in H has a wasted edge to N(v), then at least one
of the following holds

1. dN(v)(x) ≥ 4,
2. d(x) ≥ 6 or
3. d(x) = 5 and dN(v)(x) = 3. Also, the two vertices in NH(x) are adja-

cent and at least one y ∈ NH(x) has degree at least six.
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Proof. Let x be a vertex in H with a wasted edge to N(v) and suppose that
conditions (1) and (2) do not hold.

Case 1. Suppose x has a wasted blue edge.

Assume, without loss of generality, that xr1 is red and both xb1 and xr2
are blue. Furthermore, we first assume that r1b1 is not in Gblue. We cannot
recolor xr1 blue, so there must be a vertex xb that is blue-adjacent to both
x and r1. Suppose that xb is in H, and note that if xbb1 was blue we would
have a blue K3, so xbb2 must be in Gblue. Since x has exactly three neighbors
in N(v), the edge vr1 cannot be recolored blue, so r1 must be blue-adjacent
to some vertex in Nblue(v). Since r1 and b2 are both blue-adjacent to xb, we
conclude that r1 must be blue-adjacent to b1, contradicting our assumption
that r1b1 is not in Gblue. Hence, we may suppose that xb = r2 meaning that
r1r2 is blue.

We cannot recolor vr1 blue, as r1 is the only red neighbor of x. Thus
r1 must have a blue neighbor in Nblue(v), so by assumption r1b2 must be in
Gblue. As b1b2 is not in Gblue, the addition of xb2 to G in blue forces there to
exist a vertex xb that is blue-adjacent to both b2 and x. Note that xb �= r2
since the blue edge r2b2 would create a blue triangle r2b2r1, so xb ∈ H.
Similarly, as xr3 is not in G the addition of xr3 in red forces the existence
of a vertex y that is red-adjacent to both r3 and x. Again note that y �= r1
since there can be no red edge within Nred(v), so y ∈ H.

By assumption, x has no more neighbors. Therefore, to prohibit the
addition of xb2 to Gred, x and b2 must have a common red neighbor. Since
r1b2 was assumed to be blue, this means that yb2 is in Gred and hence that
yb1 is in Gblue.

Now we wish to show that d(y) ≥ 6 and dN(v)(y) ≥ 3. The latter holds
as we have shown that yr3, yb1 and yb2 are in G. If y is adjacent to both r1
and r2, then d(y) ≥ 6, so suppose first that y is adjacent to neither r1 nor r2.
To prevent adding either yr1 or yr2 to Gblue, there must be vertices y1 and
y2 such that y1 is blue-adjacent to both r1 and y, and y2 is blue-adjacent to
both r2 and y. Note that since r1r2 is blue, y1 �= y2 and also that y2 �= b1
as x is blue-adjacent to both r2 and b1. Then d(y) ≥ 6 and dN(v)(y) ≥ 3.
Suppose then that y is adjacent to exactly one of r1 or r2. If either yr1 or
yr2 is blue, then as y has no other neighbors, it is not possible for y and xb
to have a common blue neighbor without creating a blue triangle. The only
remaining possibility is that yr2 is red, since if yr1 was red, xyr1 would be
a red triangle. However, then the only blue neighbor of y is b1, and again
it is not possible for y and xb to have a common blue neighbor. We may
therefore conclude that d(y) ≥ 6 and dN(v)(y) ≥ 3.



Saturation numbers for families of Ramsey-minimal graphs 445

We now show that xby is in G, so that (3) holds. Suppose otherwise, so
that xby is not in G. Since we cannot add xby to Gblue, there must be some
vertex w that is blue-adjacent to each of xb and y. Furthermore, w cannot
be in N(v), as then w would be one of r1, r2 or b1, creating the blue triangles
r1b2xb, r2xbx or b1xbx, respectively. Thus w is in H, implying by Fact 1 that
w must be blue-adjacent to either b1 or b2, which would create blue K3 with
y or xb, respectively. Thus, the claim holds under the assumption that r1b1
is not in Gblue.

Suppose that xr1 is red and xb1 and xr2 are blue, but now we also
assume that r1b1 is in Gblue. We cannot recolor xb1 red, so there must be
a vertex y that is red-adjacent to both x and b1. Since r1 is the only red
neighbor of x in N(v), and r1b1 is blue, y must be in H. Also, since yb1 is
red, yb2 must be blue.

As in the previous cases, if we enumerate the possible choices of y and
sequentially recolor, we may assume that we have selected y such that xy
cannot be recolored blue. This implies the existence of a vertex y′ that is
blue-adjacent to both x and y. Note that y′ �∈ H, since that would imply
either y′b1 or y′b2 is in Gblue, each of which would lie in a blue K3. Therefore
y′ is in N(v), specifically y′ = r2, so that yr2 must be blue. Certainly we
cannot recolor xr2 red, as this would destroy the blue common neighbor of
x and y forced above. Hence, there must exist a vertex y′′ with red edges to
both x and r2. Note that y′′ cannot be y or any vertex in N(v).

The edge xb2 cannot be added to Gblue, so there must exist a blue com-
mon neighbor of x and b2. Since d(x) < 6 by assumption, this common
neighbor must be either b1 or r2. Either case results in a blue triangle (b2b1v
or r2b2y respectively), a contradiction.

Case 2. Suppose x has a wasted red edge.

Specifically, assume that xb1 and xr1 are red and xb2 is blue. Again, we
first suppose that the edge b2r1 is not in Gblue (so it is either missing or
red). We cannot recolor xr1 blue so there must exist a vertex y ∈ H that is
blue-adjacent to both x and r1. By Fact 1, y must be blue-adjacent to b1.
Since vr1 cannot be recolored blue and we have assumed that b2r1 is not in
Gblue, there must exist a blue edge from b1 to r1. This edge forms a blue
triangle with y, a contradiction.

Hence, we may assume b2r1 is blue. The edge b2x cannot be recolored
red, so there must exist a vertex yr that is red-adjacent to both x and b2.
Suppose first that yr ∈ H. By Fact 1, yrb1 must be blue. If we again let
y1, y2, . . . enumerate the possible choices for yr and sequentially recolor the
edges xyr blue, then the fact we cannot recolor all such edges again allows
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us to select yr so that xyr cannot be recolored blue. However, this implies
that there is some vertex in H that is blue-adjacent to both x and yr. Such
a vertex cannot be blue-adjacent to either of b1 or b2, contradicting Fact 1
and completing the claim.

If, instead, yr is not in H, then yr = b1. We cannot recolor vb2 red, so b2
must be red-adjacent to some red neighbor of v, say r2. Also, adding r2x to
G in blue must create a blue K3, so there must be a vertex y′ ∈ H that is
blue-adjacent to both r2 and x. To avoid creating a blue triangle, y′b1 must
be blue.

Now, for some choice of y′, y′r2 cannot be recolored red so these two
vertices have a red common neighbor (possibly b2). Similarly, y′x cannot be
recolored red so y′ and x must have a common red neighbor (possibly r1).
Since r2x is not in G and the addition of r2x in red must therefore create
a red triangle, there must be another vertex y′′ that is red-adjacent to both
r2 and x. Since y′′ cannot be r1 or b1 without creating a red K3, y

′′ ∈ H.

Since d(x) = 5, this must account for all of the neighbors of x. We
recolor r2v blue since r2 has no blue edges to b1 or b2. However, we still
cannot recolor vb2 red, so b2r3 must be in Gred. We have recolored vr2
blue, but we cannot recolor both vr2 and vr3 blue, so we must have either
r2r3 or r3b1 in Gblue. Finally, as r3x is not in E(G), r3 and x must have a
common blue neighbor. Note however that x’s blue neighbors are b2, which
is red adjacent to r3 and y′ which if blue-adjacent to r3 would form a blue
triangle.

We reach a contradiction, and complete the proof of Theorem 2 by care-
fully counting the edges of G. Partition H into the following sets

• N4 = {x ∈ H : |N(x) ∩N(v)| ≥ 4}
• N3 = {x ∈ H : |N(x) ∩N(v)| = 3 and d(x) = 5}
• N∗

3 = {x ∈ H : |N(x) ∩N(v)| = 3 and d(x) ≥ 6}.

We require one final claim prior to our final count.

Claim 8. If x ∈ H has no wasted edges, then either x ∈ N∗
3 ∪ N4 or

NH(x) ∩ (N∗
3 ∪N4) �= ∅.

Proof. We may assume x ∈ N3 as otherwise we are done. Suppose first that
x has no wasted edges and is blue-adjacent to b1 and b2 in Nblue(v) and
red-adjacent to r1 in Nred(v). We cannot recolor vr1 blue, so r1 must be
blue adjacent to one of b1 or b2, say b2. We cannot recolor xb2 red, so b2 and
x must have a common red neighbor yr. Since r1b2 is blue, this neighbor
must be in H and therefore has a wasted edge to N(v). Then, by Claim 7,
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either yr ∈ (N∗
3 ∪ N4) or there is a vertex y′r ∈ NH(yr) that has degree at

least six and is adjacent to x. This suffices to demonstrate the claim.
Next, assume that x is blue-adjacent to b1 in Nblue(v) and red-adjacent

to r1 and r2 in Nred(v). We cannot recolor r1x blue so if r1b1 is not in Gblue

there is some vertex y in H that is blue-adjacent to both r1 and x. As above,
the desired conclusion would then follow from Claim 7, so we assume that
r1b1 and, symmetrically, r2b1 are both in Gblue. We cannot recolor b1x red,
so there must exist a vertex y in H that is red-adjacent to both b1 and x.
Once again, Claim 7 yields the desired conclusion.

Since every vertex in H has at least three edges to N(v) and δ(G) = 5,
we get that ∑

v∈G
d(v) ≥ 3(n− 6) + 5(n− 6).

Each vertex in N∗
3 and N4 increases this sum by at least one, and we

may improve this bound on
∑

d(v) as follows.

∑
v∈G

d(v) ≥ 3(n− 6) + 5(n− 6) + |N∗
3 ∪N4|+

∑
y∈N∗

3∪N4

(d(x)− 6).

Let Θ := |N∗
3 ∪N4|+

∑
y∈N∗

3∪N4
(d(x)− 6). We claim Θ ≥ |H|/4.

If |N∗
3 ∪ N4| ≥ |N3|/3, then Θ ≥ |N∗

3 ∪ N4| ≥ |H|/4 since V (H) =
N3 ∪N∗

3 ∪N4. Suppose then, that |N∗
3 ∪N4| < |N3|/3. In this case, we have

|N3| ≥ 3|H|/4 and |N∗
3 ∪N4| ≤ |H|/4. Since each vertex x ∈ N3 is adjacent

to at least one vertex in N∗
3 ∪ N4, then the number of edges from N3 to

N∗
3 ∪N4 is at least |N3|.
Since each y ∈ N∗

3 ∪N4 has at least 3 neighbors in N(v), we have

Θ = |N∗
3 ∪N4|+

∑
y∈N∗

3∪N4

(d(y)− 6)

≥ |N∗
3 ∪N4|+ (|N3| − 3|N∗

3 ∪N4|)

≥ |N3| − 2|N∗
3 ∪N4| ≥

3

4
|H| − 2

4
|H| = |H|/4.

Thus, ∑
v∈G

d(v) ≥ 3(n− 6) + 5(n− 6) +
|H|
4

.

We can augment this sum slightly by counting those edges entirely within
N [v]. We cannot recolor any blue edge incident to v red and, also, we cannot
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recolor any two red edges incident to v blue. Hence there must be at least
four edges completely within N(v) and thus 9 edges completely within N [v].
Hence ∑

v∈G
d(v) ≥ 3(n− 6) + 5(n− 6) +

|H|
4

+ 18,

a contradiction for n ≥ 46. This completes the proof of Theorem 2.

3. sat(n,Rmin(Kt, Tm))

In this section we determine sat(n,Rmin(K3, P3)) for n at least 11, as a
contrast to Theorem 2. First, we recall a classic result of Chvátal [3], which
states that if Tm is any tree of order m then r(Kt, Tm) = (t− 1)(m− 1)+ 1.
If we let color one be “red” and color two be “blue”, then the lower bound
arises from consideration of (t − 1)Km−1 with every edge colored blue and
each edge between the blue cliques colored red. It is well-known that this is
the unique edge-coloring of K(t−1)(m−1) with no red Kt and no blue Tm.

Examining the sharpness examples for Theorem 2 and Conjecture 1, it
seems reasonable that the correct value of sat(n,Rmin(Kt, Tm)) may arise
from overlapping copies of K(t−1)(m−1) and demonstrating an appropriate
coloring. In particular, we obtain the following upper bound.

Proposition 1. Let t,m and n be positive integers and let T be a tree of
order m. Then sat(n,Rmin(Kt, Tm)) is at most

n(t− 2)(m− 1)− (t− 2)2(m− 1)2 +

(
(t− 2)(m− 1)

2

)

+

⌊
n

m− 1

⌋(
m− 1

2

)
+

(
r

2

)
,

where r ≡ n (mod m− 1).

Proof. Let H1 = K(m−1)(t−2) and let H2 =
⌊

n
m−1

⌋
Km−1 ∪Kr and consider

H = H1 ∨H2. Color each edge in H2 blue, and partition the vertices of H1

into t− 2 sets of m− 1 vertices. Color the cliques induced by each of these
sets blue and then color the remaining edges in H1 ∨H2 red. This coloring
contains no red Kt and no blue tree of order m.

We now wish to show that H is Rmin(Kt, Tm)-saturated by demonstrat-
ing that the coloring of H described above is the unique red/blue coloring
of E(H) with no red Kt and no blue Tm. Each copy of Km−1 in H2 is joined
to H1, forming a copy of K(m−1)(t−1). The uniqueness of Chvátal’s coloring
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assures that in any red/blue edge coloring of H that contains no red Kt and
no blue Tm, each of these copies must contain a blue (t − 1)Km−1 with all
other edges red. Consequently, the coloring of each Km−1 in H2 must be
identical. But then, since every vertex of H1 lies in a blue copy of Km−1,
none of these vertices can be blue-adjacent to two components of H2, as
then this coloring of H would contain a blue Km−1 with a pendant edge,
and hence a blue copy of Tm. We therefore conclude that no vertex in H1

lies in a blue Km−1 with any vertex from H2. This implies that each copy of
Km−1 in H2 must be colored blue and that every edge from H1 to H2 must
be red.

We claim next that the component of order r in H2 must have every
edge colored blue. However, since H1 contains a red copy of Kt−2 and every
edge from H1 to H2 is red, a red edge in this Kr would form a red Kt in
this coloring of H, a contradiction.

It remains to show that the addition of any edge, red or blue, to this
coloring of H results in either a red Kt or a blue Tm Note that the only
edges in H connect vertices in H2, so assume that x and y are nonadjacent
vertices in H. If the edge xy is added in blue, then without loss of generality
x lies in a blue copy of Km−1 that does not contain y. This blue complete
graph together with the blue edge xy necessarily contains a blue copy of Tm.
That the addition of xy in red necessarily creates a red Kt follows from the
observation that H1 contains a red copy of Kt−2 in which every vertex is
connected to x and y by a red edge.

For instance, if t = m = 3, Chvátal’s coloring is a red C4 with a blue
matching and in Figure 2 we give a Rmin(K3, P3)-saturated graph arising
from this coloring of K4.

This graph has �5n2 � − 4 edges and seems like a good candidate for a
Rmin(K3, P3)-saturated graph of minimum size. In fact, we can do slightly
better.

Theorem 4. For n ≥ 11,

sat(n,Rmin(K3, P3)) =

⌊
5n

2

⌋
− 5.

Prior to proving Theorem 4, we require the following result of Barefoot,
et al. [1].

Theorem 5. Let n ≥ 5 be an integer and let G be a K3-saturated graph of
order n. Then either G is a complete bipartite graph or 2n − 5 ≤ e(G) ≤⌊
(n−1)2

4

⌋
+ 1.
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Figure 2: A coloring of K4 with no red K3 or blue P3 that gives rise to a
Rmin(K3, P3)-saturated graph.

Let G be a graph and let v be a vertex in G. We inflate the vertex v in
G by replacing v with an independent set of vertices and connecting each
of these new vertices to the neighbors of v in G. The next lemma follows
directly from the proof of Theorem 5 given in [1], and is also implied by the
proof of Corollary 3.1 in [4], so we omit the proof here.

Lemma 1. Let G be a 2-connected K3-saturated graph of order n with
exactly 2n − 5 edges. Then G can be obtained by inflating two nonadjacent
vertices of C5.

We are now ready to prove Theorem 4.

Proof. As above, suppose we are trying to assure either a red K3 or a blue
P3 and let G be a Rmin(K3, P3)-saturated graph. If there exists an edge
e ∈ G which is in three different triangles of G, then the only way to edge-
color these triangles without a red K3 or a blue P3 is to color e blue and
the remaining edges red. Hence, we get the following fact which will help us
establish our lower bound on sat(n,Rmin(K3, P3)).

Fact 2. In any red/blue edge coloring of a Rmin(K3, P3)-saturated graph G
with no red K3 or blue P3, any edge e lying in three or more triangles must
be colored blue.

To establish the upper bound in Theorem 4, consider a copy of C5 with
vertices v1, . . . , v5 appearing in that order on the cycle. Inflate v1 to a set V1

of at least three vertices to obtain a graph of order n ≥ 7 and color all 2n−5
edges of this graph red. Next we add a matching, in blue, that consists of
the edge v2v5 and a maximum matching M amongst the remaining n − 2
vertices that does not include the edge v3v4, as this edge is already present.
Call this graph G0 and note that the coloring given contains no red K3 and
no blue P3.
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It remains to show that G0 is Rmin(K3, P3)-saturated, so consider a
red/blue coloring of E(G0) that contains no red K3 and no blue P3. Note
that the edge v2v5 lies in a triangle with each vertex in V1, so by Fact 2, it
must be colored blue in any coloring with no red K3 or blue P3. This implies
that all of the other edges incident to v2 and v5 must be colored red. Now we
note that each edge in M − {v2v5} is of the form v3x, v4x or xy for vertices
x, y in V1, which forces each of these edges to be blue, and hence forces the
remaining edges in G0 −M to be red. Thus we have forced the coloring of
G0 described above, in which the addition of any edge, in red or blue, forces
a red K3 or a blue P3.

To establish the lower bound, let G be a Rmin(K3, P3)-saturated graph
on n vertices with the minimum number of edges. Furthermore, consider a
coloring of G containing no red K3 and no blue P3 having the maximum
number of red edges. Notice that if two vertices u and v each have no blue
neighbor, then they must be red-adjacent. Hence, the next fact follows im-
mediately.

Fact 3. There is no set T of at least three vertices in G each with no blue
neighbors.

As above, let Gr and Gb denote the graph induced by the red edges and
the blue edges in G, respectively.

Claim 9. The graph Gr is 2-connected.

Proof. Note first that Gr is connected, as the addition of a red edge between
two components R1 and R2 inGr could not create a triangle, and hence every
edge between R1 and R2 would have to be in Gb. This would imply that
every edge connecting a vertex in R1 and a vertex in R2 would be in Gb,
creating a blue P3.

Suppose then that Gr had connectivity one, and let v be a cut-vertex
in Gr. Let C1 and C2 be components of Gr − v and suppose that there
is a vertex w in C1 that is not adjacent to v. Let x be any vertex in C2.
Then the edge wx can either be added in red or changed from blue to red,
contradicting the choice of G in each case.

Hence, we may suppose v is adjacent to all of Gr − v implying that Gr

must be a star centered at v. Examining G, there must be a blue matching
amongst the vertices of G−v. Suppose that xy is an edge of this matching. If
we recolor vx blue and xy red, we may then add an edge from x to G−{v, x}
in red, contradicting the assumption that G is saturated.

The remainder of the proof is broken into cases based on the parity of n.
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Case 1. n is odd.

First, we claim that Gr is maximal triangle-free. If not, we could either

add a red edge to G or recolor a blue edge of G red. Either way, this contra-

dicts our choice of G. Since Gr is 2-connected, Theorem 5 yields that Gr has

at least 2n− 5 edges. By Fact 3, there must be at most one vertex (since n

is odd) with no incident blue edge. Hence, e(G) ≥ 2n− 5+
⌊
n
2

⌋
=

⌊
5n
2

⌋
− 5,

completing this case.

Case 2. n is even.

The coloring of G was chosen so that the red graph has as many edges as

possible, so if there are any edges which could be colored either red or blue

without creating a monochromatic K3 or P3, they will be red. Consequently

we may again assume that the red graph is K3-saturated but also, by Fact 3,

that there are at most two vertices with no blue neighbor.

If the blue graph is a perfect matching, then by Lemma 1 and the fact

that Gred is 2-connected, e(G) ≥ 2n − 5 + n
2 = 5n

2 − 5, completing the

result. Thus, suppose that there is a pair of vertices which are not cov-

ered by the blue matching. These vertices must be joined by an edge e in

red. We therefore assume, since Gred is 2-connected and K3-saturated, that

e(Gred) = 2n − 5 and furthermore that there are exactly n
2 − 1 blue edges.

Note that e can be recolored blue without creating a blue P3.

By Lemma 1, since n ≥ 11, Gr must be a copy of C5 with two nonadja-

cent vertices inflated. Consider a C5 with vertices v1, v2, . . . , v5. Let v1 and

v3 be the inflated vertices (as in the structure provided by Lemma 1) and

let V1 and V3 be the corresponding independent sets. The remainder of the

proof is broken into cases based on the location of e in this structure.

If e = v4v5, then since v2 is adjacent to every vertex in V1 and V3, v2
has no blue neighbor, a contradiction. Suppose then that e = v4a3 for some

vertex a3 ∈ V3 (or symmetrically e = v5a1 for some a1 ∈ V1). We may then

color e blue and add the edge v5a3 in red without creating a red triangle.

This contradicts the assumption that G was Rmin(K3, P3)-saturated.

Finally suppose that e = v2a3 for some a3 ∈ V3 (or symmetrically e =

v2a1 for some a1 ∈ V1). Since Gblue is a matching saturating all of V (G) −
{v2, a3}, v5 must have a blue neighbor a′3 in V3. Likewise v4 must have a

blue neighbor a′1. We may then recolor v5a
′
3 and v4a

′
1 red, v4v5 blue, and

add the edge a′3a
′
1 in blue. This contradicts the assumption that G was

Rmin(K3, P3)-saturated and completes the proof.
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4. Conclusion and open problems

In this paper, we have verified the first non-trivial case of Conjecture 1. It
would be of interest to determine non-trivial lower bounds on sat(n,Rmin

(Kk1
, . . . ,Kkt

)). For instance, if Conjecture 1 were to hold, a classic result
of Spencer [10] would imply that

sat(n,Rmin(Kk,Kk)) ≥ (1 + o(1))

√
2

e
k2

k

2n,

where the o(1) term is with respect to k. At this time, we are only able to
show the following.

Claim 10.

sat(n,Rmin(Kk,Kk)) ≥
(k − 1)2 − 1

2
n.

Proof. It is readily seen that a graph H satisfies H → (Kk,Kk) if and only if
H contains a Kk-minimal subgraph H ′. Let G be a Rmin(Kk,Kk)-saturated
graph. Then, for any edge e ∈ G, G + e contains a Kk-minimal subgraph.
A result of Burr, Erdős and Lovász [2], reproved recently by Fox and Lin
[6], states that the minimum degree of a Kk-minimal subgraph is at least
(k− 1)2. This implies that the minimum degree of G is at least (k− 1)2− 1,
and the result follows.

In addition to Conjecture 1, one may investigate sat(n,Rmin(G,H)) for
other pairs of graphs. As a starting point, we conjecture that sat(n,Rmin

(Kt, Tm)) is the same asymptotically as the bound given in Proposition 1.

Finally, as mentioned above, Galluccio, Simonovits and Simonyi have
obtained a number of results on (not necessarily minimal) Rmin(K3,K3)-
saturated graphs in [7]. The interested reader may wish to investigate the
wealth of interesting and challenging conjectures and open problems posed
in that paper.
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[2] Burr, S., Erdős, P. and Lovász, L. (1976). On graphs of Ramsey type.
Ars Combin. 1 167–190. MR0419285

http://www.ams.org/mathscinet-getitem?mr=1322083
http://www.ams.org/mathscinet-getitem?mr=0419285


454 Guantao Chen et al.
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