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‘The degree set D of a graph G is the set of degrees of the vertices of Q.
The girth g(G), is the length of a shortest cycle in G, For a set

D= {aT, 85 veey a, } of positive integers with 2 < a, < 8y < ... < 8, and for

" an integer n 2 3, define £(D ; n) = f‘(a.l, 85y +++5 8 ; n) to be the minimum
. order of a graph having degree set D and girth n. 4 graph with degree set D,

- girth n, and order £(D ; n) is termed a (D ; n)-cage. If D = {r}, the (0 ; n)-

eages coincide with the (r ; n)-cages which have been extensively studied {for

example, see [1] or {5]). The existence of £(D : n) was shown in [2].

Recently, Harary and Kovacs introduced another generalization of the stan-
dard cage question (see [31, [4]). They consider regular graphs w1th given girth
pair (Iength of the shortest odd and shortest even aycle). Both generallzatlons

of‘f‘er possible appllcatlons to the standard cage question.

The object of this paper is to establish a lower bound for £(D ; n) and,
for certain sets D and integers n, to determine the values of f(D ; n}. We also
indicate possible applications of (D ; n) to the (r ; n)-cage problem, We begin

with the first of these objectives.

Theorem 1; If D = {a1, Ay ey ak} is a set of positive integers with
.25:111 <a2< <akandnisaninteger-, n 2 3, then

t i-1
1+Eak(a—1) ifns2t+ 1
iz K1
fiD;n) >
t=1
)t_1 fn=2t.

.1 + = ak(a1-1)i'.I + (a1-1
i=1
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Proof: Let G be a graph with degree sst D and girth n = 2t + 1. Then G contains ;

~a vertex Yo of degree A ac.“]acent to vertices v1,1, v1,2’ ey v]’ak. Ifn=3,

edges may exist between Vi and vy 3 (i £ 3), however, if n > 5, nc such edge
r ? .

is possible. In this case, each vertex Vi, (1sr g ak) must te adjacent to at
. ¥

i
least a, - 1 distincp new vertices, call them v2,1, v2'2, ey Vz’ak(afjp
where v is adjacent with v, _, (w-1¥a.-1) + 1 < r € w(a,~1). If n=5, edges

1,w 2,r 1 1
of the form Vo Vo ] (i # j) are possible, but if n 2 7, each vertex

¥ H

v (12 % 2, {a,-1}) must be adjacent to at least a. - 1 distinct new
2,8 1 i

vertices, call them v3,1, v3’2, vy v3,8k(31-1)2' For g = 2t + 1, this process

mst continue until the vertices L (1525 ak(a1—1)t_1) have been added,
. T :

where vt.-T,w is adjacent with vt,r’ (w—1)(a1-1) +1<srcg w(a1-1). Denote the

tree thus constructed by T(D ; g).

Since T(D ; g) is a subgraph of G, we see

t

that 1¥(@)]21+ T a la,-07
izt

If g = 2t, construct the tree T(D ; g-1). However, no new edge can be

added to T{D ; g-1) without forming a oycle of length less than g. .Thus, new

vertices are necessary. Since §{(G) = CP at ieast {a1-1 }t'-1 new vertices must

be added (if each has degree ak} and the result follows.

When D = {d} (d23) and a, 2 3, Theorem 1 may be reduced to the well kmown
lower bound for £(d ; n) (for example see [11). . '

Bounds on the order of an (r ; n)-cage may be cbtaipned from the order of

certain (D ; n)-cages.

(a)

some (r, 2r ; n)-cage then

Proposition 2: Ifr >

>3 and t is the number of vertices of degree 2r in

f{r-1, r ;n) s f(r;n)g flr, 2r ; n) + ¢t

{b} If f(r ; n) =m then £(r, kv ; n) $ k(m=1) + 1 and equality

syt g T potvid

| Proof:

holds when n is odd and @ equals the low

{a) We establish the lower bour

E cage to obtain a graph with degree {r-1, _

Clearly the edge may be chosen so that a '
bound is established by aplitting each v :

degree .

Identify one vertex from e :

{b)

Recently, varicus formulas have be
(with at least two plaments) and girths

additional formulas for f£f(D ; n).

Theorem 3: For integers n 2 1and m 2

Proof: Construct the tree T(D ; 2n+1)
by inserting the edges vn,gvn,1+1(1 <.
and degree set D, thus, £(D 3 2n+1) £
2 t + mn, hence, £(D ; 2n+t} = 1 + .
: i
Corollary 4: For integers n 2 1and r

f(2,3tr’3;2n+'!

Proof: Form the (2, 3, s ; 2n + 1}-ct .

H from G by'r-enoving the edges Vn,a,vn :

. sr -1, Then,Hhas;
vn,1vn,3(3 <4 1
Thus, £(2, 3, r,s;2n+ 1) 51 +30]
> 1 + sn, hence the result follows.

Before proceeding, scme termino?
{s the set of vertices v for which ti

containing v, The level of a verte




Jand girth n = 2t + 1. Then G contains

ices v

'I,1’v1,2! ey ¥V Ifn=3,

. l,ak'

¢4 .

' 1), however, if n > 5, no such edge

% (1222 ak) must be adjacent to at

hem
V2,17 V2,20 v v2,ak(a1-1)’

=1} +1grg w(a,l-T). If n=5, edges

but if n 2 7, each vertex

to at least a, - 1 distinct new

(31_1)2. For g = 2t + 1, this process

t-1
[ ak(aT-1) } have been added,
11—1) + 1 s rg w(a1-‘l). Denote the

"D ; g} is a subgraph of G, we see

1), However, no new edge can be -
of length less than g. .Thus, new

t-
t least (aT—‘l) 1 new vertices must
sult follows,

1 may be reduced to the well kmown
1.

may be obtained from the order of

umber of vertices of degree 2r in

+ t.

7y ke on) < k(me1) + 1 and equality

© holds when n is odd and m equals the lower bound in Theorem 1.

;. Proof: {a) We establish the lower bound by removing an edge of an {r ; n)-

cage to obtain a graph with degree {r-1,r}, thus f{r-1, r ; n) s £{r ; n).
Clearly the edge may be chosen so that an n-cycle is maintained. The upper
bound is established by splitting each vertex of degree 2r into vertices of

degree r.
(b} Identify one vertex from each of k copies of an (r ; n)-cage.

Recently, various formulas have been determined for certain degree sets D
(with at least two elements) and girths n 2 3 (see [2]). We present some

additional formulas for £(D ; n).
Theorem 3: For integersn > 1 and m 2 4, £(2, 3, m; 2041) = 1 + m.

Proof: Construct the tree T{D ; 2n+1). Now form the graph G from T(D ; 2n+1)

by inserting the edges v £ <n-1). The graph G has girth 2n + 1

1'1,11‘1"n,11.+‘l(‘| s
and degree set D, thus, (D ; 2n+1)

1A

1 + mn. By Theorem 1, £(D ; 2n+1)

> 1 +mn, hence, £(D ; 2n+1) = 1 + mn.

Corollary 4: For integersn2 1and r, Y<rgs-1,

f(2, 3, r,s;2n+1) =14+ sn.

Proof: Form the (2, 3, s ; 2n + 1)-cage G as in Theorem 3. Now form.the graph
H from G by removing the edges vn,u“;n,!.ﬂ (2 <1 <r-1)and inserting the edges
vn,1vn,j(3 < j<r-1). Then, H has degree set D and clearly has girth 2n + 1.
Thus, £(2, 3, ry 3 ; 2n+ 1) £ 1 + sn. By Theorem 1, £(2, 3, r, 3 ; 2n+ 1)

21+ sri, hence the result follows.

Before proceeding, some terminology will be useful. The branch i of T{D,n)

is the set of vertices v for which there exists a path from v to v not

1,1
containing Yo The level of a vertex of T{D,n) is given by its first subseript.
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Ifj= EES%_—]], then a j-path in a graph containing T(D,n) is a path composed
entirely of j level vertices, while a j-cycle is a cycle composed entirely of
level j vertices, while a j-cycle is a cycle composed entirely of level j
vertices. An interior vertex is a vertex of T(D,n} which is not a j level
vertex. Two j level vertices joined by a path of length 2i through a vertex
in level j-1 are called i-conjugates and ¥ denotes the i-conjugate of v.

For simplicity let ¥ = 7.

Theorem 5: If m > 4, then £(3,m;5) = 1 + 3m.
Proof: By Theorem t, £(3,m;5) 2 1 + 3m, so consider T(D,5). We will join ver~

tices in Ehe second level im order to form the required graph.

Case 1: Supposem 2 5. We form two j—cycles, each of length m. Considering
only the second subseript of each vertex, the first j-cyele i3 1, 3, 5, ...,
2m-1, 1 and the second j-cycle is 2, 4, 6, ..., 2m, 2. The graph G thus formed
has degree set {3,m}. Any edge connecting second level vertices creates a cycle

of length five containing Ve Thus, we need only show there are no smaller

cycles in G.

It is clear from the construction that v lies on no smaller cycles. Thus,
suppose there exists a amall cycle containing more ‘than one vertex on the first
level. Then that cycle must also contain four level 2 vertices and hence has
length at least five. Now, suppose there exists a small cycle containing

exactly one vertex on the first level, say Vyx Then there exists a j-path of
]

length at most 2 connecting the level 2 vertices adjacent to v . But these

1,%
vertices are on completely different j-cycles, hence there is no j-path connecting
them. Thus, any small cyecle of G cammot contain vertices on the first level.

Finally, since all vertices in the second level were joined in j-cycles of

glength m 3 5 no small cycle consists only

! Case 2: Suppose m = 4. The arguments of
i er !

cycle can contain v, or more than one WV _

we clearly cannot form two j-cycles a3 Di

the B vertices on level two in one cycle

3, 8, 1 (second subscripts). It is stra g

tains no small cycles. Therefore, this

L

" Corollary 6: Ifm 25, then £(3,U,m;5)

¢ ppoof: Construct the (3,m;5)-cage H as

. 1¢D,5), D = {3,m, m 2 5. Now, in leve:

% graph G. It is straightforward to show

: Theorem T: If m 2z 4, then £(3,m;7) =1 :
E ppoof: From Theorem 1, £(3,mT) 21 +

tices in level 3 in order to form the r .

- Case 1: Suppose m = 2%, t 2 2. We for,

om. Considering only the second subsct

2.01, 55 9y vees B0 =33, Ty n, ..

1 _
um = 6, bm,l, 6, 12, MW, ..., 4m= U,

Again no small cyole can contain

two First level vertices. Now assume
exactly one first level vertex. By tl
are on different j-cyeles. Herce, am
vertex vy o must have a path of lengtl
V3,40 bg - 3 ¢ i g 4x, through Ve ;
joined by a j=path of length 1 or 2.




ph containing T{D,n) is a path composed
-cycle is a eyele composed entirely of
oycle composed entirely of level J

= of T(D,n) which is not a J level

a path of length 2i through a vertex

=1
1 v~ denotes the i-conjugate of v.

+ 3m,
So consider T(D,5). We will Join ver-

m the required graph.

rcles, @ach of length m. Considering

the first J-cycle is 1, 3,5

1 e,
'y «xey 2M, 2. The graph G thus formed
2 =econd level vertices creates a cyéie

eed only show there are no smaller

it v, lies on no amalier eycles. Thus,
1ing more than one vertex on the first
four level 2 vertiges and hence has
exists a amal] cycle containing

v1,x. Then ther-é exists a j-path of
rtices adjacent to v

1,x*
les, hence there is po J

But these

-path connecting

mtain vertices on the fipst ievel.

-evel were joined in Jj-tycles of

“Case 2: Suppose m = b,

. graph G. It is straightforward to show this graph has the necessary properties.

- Theorem 7: If m 2 U, then £(3,m;7) = 1 + Tm.

;length m 2 5 no smail cycle consists only of level two vertices.

The arguments of the preceeding casze show no small

cyele can contain v, or mere than one vertex of the first level. Since m = ¥,
we clearly cammot form two j—cycles as before. It is sufficient to connect
| the 8 vertices on level two in one cycle. Such a cycle is: 1, 6, 7, 4, 5, 2,
3, 8, 1 {second subscripts)., It is straightforward to verify the graph con-

- tains no small cycles. = Therefore, this case is completed and £{3,m;5) = 1 + 3m.

" Corollary 6: If mz 5, then £(3,4,m;5) = £(3,m;5) = 1 + 3m,

Proof: Construct the (3,m;5)-cage H as in Theorem 1 and note it contains

T(D,5), D = {3,m}, m 2 5. Now, in level 2, add the edge v, , v, g, forming the
3 ’

Proof: From Theorem 1, £{3,m;7) 2 1 + Tm. We construct T(3,m;7), and join ver-

tices in level 3 in order to form the required graph.

Case 1 Suppose m = 2t, t 2 2. We form 2 j-cycles, Z1 and Zz, each of length
2m. Considering only the second subscripts of the level 3 vertices, let

21: T2 5 9 vy 4 - 3,3, 7, 11, ..., dm = 1, 1 and Z, 2, 8, 10, 16, ...,
by - 6, Um, 4, 6, 12, 14, ..., 4m -4, 4m -2, 2.

Again no small cycle can contain v} moreover, no small cyele can contain
two first level vertices. Now assume thére exists a small cycle containing
exaétly one first level vertex. By the way Z.I and 22 were formed, conjugates
are on different j-cycles, Hence, any small cycle containing a first level
vertex v, X
by - 3 <1 £ 4x, through vix! and these two level 3 vertices must be

mast have a path of length 4 comnecting two vertices of the form

V3,i,

Jjoined by & j-path of(length 1 or 2. But recall that there are m vertices



joined in a j-cycle before a branch is revisited, and m » 4. Therefore, the
needed j-path of length 1 or 2 does not exist. So there are no small cycles

containing exactly one first level vertex.

Suppoée now that there is a small cycle contalning exactly one second
level vertex, V2, % Then there would be a j-path of length at most four
joining the members of the conjugate pair adjacent to vz’x. But these two ver-
tices are on two different j-cycles, so there is no j-path joining this pair.
Thus there cannot be a amall cycle containing exactly one second level vertex.
A cycle containing more than two second level vertices would have length at

least nine, so this presents no danger. 3o, we must show that given any edge

connecting third level vertices v3,x and V3 gt that ‘-’3,x and EB,Y are not joined

by an edge, as this would produce a cycle of length six.

Note that in both Z1 and 22 the branches are visited sequentially in a
symmetric pattern. That is branch i is joined by edges to branch i-1 (modulo m)
and branch i+l (modulo m) and to no other branch. Assume there is a small cyele
containing two conjugate pairs; it will involve branch i and branch i+1 for some

i (modulo m).

Subcase a: Suppose i £ m. By the construction, consecutive vertices in 21 have
a difference of four. Moreover, vertices in Z1 all have odd labels, Consider

Figure 1. We have a,b in Z, and a, bin Zye a

FIGURE 1 Branch 1

Branch i+1
b+l

: Either & must be joined to a4 or b must be

| s formed by adding two or six to 3 and B,

not adjacent to &+ and  is not adjacent

{ subcase a.

Subcase b: Suppose i=m In Z1, vertex &

: vertex m - 1 is adjacent to vertex 1. 3t x

' as are Ym - 2 and 2. Thus, again po small

 is no émall cycle containing exactly two £ .

Note that there are no amall j-cycle:
mz4, 2m>T,

" each of length 2m. Since

=2t + 1, t 22, Form

: Cage 2: Suppose m

5,8, 10, 16, 18, ..., dmed, by Hm, 12,1

Recall that if a is comnected to b 1
. jenote this by 3 - B. So, in Figure 2,

. ot be adjacent in Z2 and the arrows rep :

FIGUR

Now that G has been construeted, it

cyocles. By the same arguments used in ¢!

on: the a¢

: taining v o’ exactly one vertex
. pirst level, or a small j-oyole. Thus O

or it contains exactly two vertices on




revisited, and m > 4, Therefore, the

L exist. 8o there are ne amall cycles

Lex.

¢ycle containing exactly one second

e a j-path of length at most four

ir adjacent to v, _,
2,%

there is no,,j-path Joining this paipr.

But these two ver-

aining exactly one second level vertex.
level vertices would have length at
S0, we must show that given any edge

i Va g that Vi x and v are not joined

3,y
le of length six,

nches are visited sequentially in a

Joined by edges to branch i-1 (modulo m)

-

r branch, Assume there is a small cycle -

involve branch i and branch i+1 for some

"uction, consecutive vertices in ZT have

5 in Z.I all have odd labels. Consider
22. a
ineh i
B
a+l
h i+
b+l
L=}

" is formed by adding two or six to a'; and B, never by adding four..

- Subcase b:

;'asarellm—zandz.

© each of length 2m,

':; Case 2:
- 2,8, 10, 16,

. cycles. By the same arguments used in Case 1,

© first level, or a small j-cycle.

or it contains exactly two vertices on the second level.

 Fither 3 must be joined to a+0 or b must be joined to bB+ll. But, in fact, Zy

Hence 3 ia

. not adjacent to a+% and b is not adjacent to B+. This contradiction completes
_ subcase a.

Suppose i = m. In Z,, vertex im ~ 3 is joined to vertex 3 and

_. vertex 4m - 1 is adjacent to vertex t. Similarly, in I 4m and 4 are adjacent

Thus, again no small cycle is formed. Therefore, there

© is no small cycle containing exactly two second level vertices.

Note that there are no small j-cycles. We constructed two disjoint j-oycles

Sincem 2 Y4, 2m > 7, this completes Subcase b and Case 1.

Suppese m = 2t + 1, t 2 2. TForm Z1 as before and let Z2 be:

18, ..., bm-b, 4, 4m, 12, 14, 20, 22, ..., 4m-6, 6, 4m-2, 2.

Recall that if a is connected to b then 2 cannot be connected to b. We shall

denote this by a - b, S0, in Figure 2, the hyphens indicate vertices which can-

not be adjacent in Z2 and the arrows represent edges of ZE'

B SRR ]
2 - g-_’w - -8 - 22 - 26 - ... y(tm-6) - (Am-2) - 4
Ny :
J{NB - 1z>-<‘16 -"‘2o>< ><2a,-/ oM Umal) - (4m) - 2
' 3

L 3
1

FIGURE 2

Now that G has been constructed, it is left to show that G contains no small
G does not have a small cycle con-
taining Vs exactly one vertex on the second level, more than one vertex on the

: Thus C contains exactly one first level vertex

Assume C contains exactly



one vertex, Yy gt o0 the first level. That is, there exists a path of length
!
at most two between two third level vertices of the branch containing Vi g
L]
Since the first cycle is identiecal to the first cycle of Case 1, then the

amall cycle must include a j-path contained in ZE'

However, by examining Zz one sees that there is a path of length at least
3 between any two level j vertices of the same branch. Therefore, there is no
small cycle containing exactly one first level vertex. A small cycle, then,
would have to contain exactly two second level vertices. However, Figure 2

shows that it is precisely this property which was aveided in constructing Zz’

Therefore, there are no small eyeles containing exactly two second level vertices, = _ § -

and so £(3,m;7) = 1 + Tm.

Corollary 8: 1If m 2 8, then £(3,4,m;7) = £(3,m;7) = 1 + T,

Proof: Construct the (3,m;7)-cage H as in Theorem 3. Now add the edge 1, 18.
The degree set of the graph G, so constructed, is {3,4,m}. Again by Theorem 4,

£(3,4,m;7) 21 + Tm. It is straightforward to show that G has girth 7.

Theorem 9: If m = 6, 7, 8 then F(3,m;9) = 1 + 15m.

Proof: By Thecrem 1, £{3,m;9) 2 1 + 15m. Construet T({3,m};9), m = 6, 7, or 8.
From the level 4 vertices we form disjoint cycles Z1 and 22, each of length Um

to obtain the required graph G. L.et:'z1 be 1, é, 17, ..., 0m=7, 5, 13, 21, ...,
fm-3, 3, 11, 19, ..., Bm-5, 7, 15, 23, ..., 8m=1, 1 where only the second sub-

script of the level 4 vertices are used.

We first consider the possible small cycles which could occur when Z1 and
Z2 are formed. There is no small cycle C containing more than one vertex on
level 1 as this implies C has length at least 14. Also, C cannot contain two

level 2 vertices, without containing a level 1 vertex or else C would have

ELengt.h at least 10. Any cycle containing !

i‘ieve]. 2 yertices is also excluded.

i

To facilitate the checking for small

‘;21 was formed without creating small cyel
* placed on Z,- Since Z, has the form: :
: - b, @, d, e, £

a+2, b2, c42, d+2, ¢

aany

we can use the conjugates of these rumber

© to describe many edges not allowed'in Z,

_a+2-b+2-c+2-d+2-—e‘

FIGURE

InE‘iglme3,5-Eiftheonlyifl‘

. the edge B,G forbidden, but dZ2 (6,8) m

. oreated. 3imilarly, since § and d are

- d, (6,d) = 1 and thus, dZZ(B,EI) mist b
1 -

£ and 8, in Figure 3 are separated by Z

§ and & cannot be adjacent. These rest |
two level 3 vertices and no lavel 2 ve
below.

There are vertices which, if join
a level 2 vertex and a level 3 vertex ‘
edge i3 8, dr2 (see Figure 4). Since
adjacent in Z,. Thus if ¢ is adjacent

is formed.




it is, there exists a path of length
ea of the branch containing vy gt
'X

first cyele of Case 1, then the

d in 22‘
t there is a path of length at least
same branch. Therefore, there is no
evel vertex. A small cycle, then,

evel vertices, However, Figure 2

hich was avoided in constructing 22.

ining exactly two second level vertices,

M3m7) = 1 + Tm.

Theorem 3. Now add the edge 1, 18. -

ed, is {3,4,m}. Again by Theorem A,

to show that G has girth 7.

1 + 15m.

Construct T({3,m};9), m = 6, 7, or 8.
cyeles Z1 and Z,,, each of length 4m
9 1, ..., 8T, 5, 13, 21, ...,
8m-1, 1 where only the second sub-

ycles which could cccur when 21 and
ntaining more than one vertex on
st 14, Also, C camnot contain two

L 1 vertex or else C would have

~ placed on ZE'

Any cycle containing 3 or more level 3 vertices, but no

length at least 10,

“level 2 vertices is also excluded.

To facilitate the checking for small cycles of other types we note that

. Z1 was formed without creating small cycles. Thus certain restrictions are

Since Z,I has the form:
vy 8, by, d, &, £y ...

vee, a2, b#2, c+2, d+2, e+, T+2, ...

. we can use the conjugates of these mubers to form a diagram {see Figure 3}

. to describe many edges not allowed 'in 22, denoted u - v.

2 -5b -2 - - - -

e — B2 = DHZ - CHE = d42 = e42 - T42 = L.

FIGURE 3

In Figare 3, b - € if the only if b and ¢ are adjacent in'z1. Not only is

the edge b,¢ forbidden, but dz (5,8) must be at least 3, else a smell cycle is

created. Slmlarly, since b and d are separated by one ver'tex in F:Lgu.r'e 1, then

Also, if two vertices, say

d (b,d) = 1 and thus, Z2(5,&1) mist be at least 2,

2y

E and &, in Figure 3 are separated by 2 vertices, then dz1 (b,e) = 2 and hence

E and & cannot be adjacent. These restrictions prohibit small cycles containing

two level 3 vertices and no level 2 vertex. These rules are all given in (4)

below.

There are vertices which, if joined, would create a small eycle containing

a level 2 vertex and a level 3 vertex from a different branch. One such forbidden

Since in Figure 3, € - d, then c and d are '

edge is G, d+2 (see Figure 4).

adjacent in Z,. Thus if © is adjacent to d+2, the cycle of length 8 in Figure 4

is formed.




FIGURE 4

Such forbidden
edges are deacribed by the slanted lines of Elgu:'e 3 and also

by (5) below.

Given Z £
: n 2y, then Z2 must meet the following r'equirahents
(1) dzz(a,a) 26 .

2) dzz(a,é) 2l

(3 dzzca,53> 2

(4) 1If d, (a,b) = V
z, @ 3 - 3 {1gs<3} then clzz(a,E) mst be at least s.
(5) Ifd, {a,b) = a,b
z, (@ } = 0 then dzz(a,ﬁ) must be at least 1.
Cage 1: If m = 6, the diagram will be:

Using the diagram, it i
, it is easy to verify that conditions (1)=(5) are satisfied

by the cycle Z,: 2, 14
. 0
ot 2, 14, 20, 32, 3, 46, 8, 10, 22, 28, 40, k2, 4, 16, 18, 30
’ '

36, 48, 6, 12, 24, 26, 38, 44, 2.

Toen 2, 18t 2, 1 20 52, 32, 34, 46, &

50, 30, 36, 48, 6, 12 an, 56, 26, 38, W

B T

Lzyis 2, W 20 a2, 34, 46, 52, B4
10, 36, 48, 50, 62, 8, 10, 22, 28, 40,

- This completes the proof.

: M_l_o_: iIfmz 9 £(3,m9) =1 +

Proof’: We use induction ot m. Form
We will join yertices in the fourth 1é :
we will form two cycles, Z.I and 22, et
11 will consist of all vertices in le
That is, conjugates Wwill be on the 53

We must again conaider the possi
one vertex on tne first, second, or ' :
of a small cycie containing exactly
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i

e slanted lines of Figure 3 and alsp

lowing requirements..

‘(a,E) rmust be at least s.

e at least 1.

%-. ..
- E
1at conditions (1)-(5) are satisfied

. 10, 22, 28, 4o, 42, 4, 16, 18, 3o,

. Then Z, is:
< 50, 30, 36, ug, 6, 12, 24, 56, 26, 38, 44, 2.

“Casg 2: Ifm = 7, the diagram is:

2, 1, 20, 52, 32, 34, 16, 8, 10, 22, 54, 28, 40, 42, 4, 16, 18,

Case 3: if m = 8, the diagram is:

7, is: 2, W, 20, 32, 34, 46, 52, 64, 6, 12, 24, 26, 38, Uk, 56, 58, 4, 16, 18,

30, 36, 48, 50, 62, 8, 10, 22, 28, 4o, b2, 5i, 60, 2.

“ This completes the proof.

Theorem 10: If m2 9, £(3,m;9) = 1 + 15m.

Proof: We use induction on m. For m = 9, construct T({3,m};9).

We will join vertices in the fourth level to form the required graph. As before,
we will form two cycles, Z1 and ZZ’ each of length 4m. However, in this case

21 wili consist of &ll vertices in jevel 4 which are congruent to 1 or 2 {mod U).

That is, conjugates will be on the same Zi (i=1,2).

We must again consider the possibility of a small cycie containing exactly

one vertex on the first, second, or third level. Also, there iz & possibility

of a small ecycle containing exactly two third level vertices. Note that as be-

fore, there cannot be a amall cycle containing two first level vertices or two

second level vertices with no first level vertex. Alsoc, three or more third

level vertices with no second level vertex yields a cycle of length at least 9.

Further, note that there cannot be a small cycle entirely contained in level 4.




Assume that a cycle Cn. n £ 8, containing at least one vertex from each

Zi exists. The path joining ver-t.'ices in different Zi has at least 3 inter-

mediate vertices.

Thus, n = 8, and Cn contains exactly one vertex vy from

_ Zi (i=1,2). But then vy and v, are joined by two distinct paths of interior
vertices, a contradiction. Thus, no small cyele contains vertices from both

21 and Zg.

avoid small cycles, it will suffice to form Z, in a similar manner.

Therefore, if the vertices in Z.I can be sucecessfully joined to

In forming Z! it is necessary and sufficient to obey the following restric-

tiong.

(1) dz1{a,5) 2 &
(@) dz1(ar53) 22

(3) If d, (a,b) = 3 - s (15953) then d; (3,5) must be at least s.
! 1

Rule (1) insures that no small cycle containing exactly one third level
vertex is formed. FRule {2) guarantees that no small cycle containing a first
level vertex is formed. No level 2 vertex can lie on a amall cycle as this

would imply that the cycle contains vertices from both Z; (i=1,2). Rule (3}
. prohibits small eycles ecntaining exactly two third level vertices with no

level 2 vertex.

We now give Z1, found by ad hoc methods. The reader can verify by the
procedure above that all the conditions have been satisfied.
Z 1, 9, 17, 5, 65, 49, 57, 2, 45, 54, 25, 10, 21, 50, 33, 18, 1%, 37, 58,

41, 29, M, 53, 6, 61, 38, 69, 30, 46, 66, 22, 62, 42, 26, 13, 0, 1.

1:

We obtain Z, by adding two to each number. Since each Z; {i=1,2) by itself

forms no small cycles, the pr-oof iz completed for m = 9.

i
i

¢
;

i
4

that Zy

‘¢, ns 8. Furthe
;i n

71 of order B(m+1) and Zi

; - tote tha

Now, assume the theorem iS true for
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15
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W
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: There exist up - 13 edges between 344
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between 249 and 2y, o then
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. S
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a £t
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Thus, at most 22 edges are ur

i
H
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containing at least one vertex from each
5 in different Z:L lhas at least 3 intep.
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3 in 21 can be Successfully joined to

0 form i PP
Z, in a similap pappep.

121(5,5) mist be at least s,

le containing €xactly one thirg level
that no smal1 cycle Containing g f‘ir's.t;

“eX can lie on g small cycle gs this

ices fry i
ol both Z; {i=1,2), Rule (3)

¥ two third level vértices with no

wds, The rgder CAn verify by the

ave been satisfieq,

25, 10, 21, 5G, 33, 18, %, 37, 58,

5, 66, 22, 62, U2, 25, 13, 70, 1.

mber. Sip
7 ce each Zi (i=1,2) by itselr

ited for m = g,

% Bm+5, and Bm + 6 into Z

Now, assume the theorem is true for £{3,m;9), m 2 9. Assume also that

éthe graph G.] has order 1 + 15m and has no cycies of length less than nine.
The fourﬁh level vertices induce two cycles, Z1 and 22, each of order 4m, and
Ez-that Z.I consists of all vertices in level ¥ which are congruent to 1 or 2

;.: {med 4). We will form the graph G, which will have 1 + 15m vertices and no
€, n<B. Further, the fourth level vertices will induce two cycles z} and
) of order 4(m+1) and 2} will consist of all fourth level vertices which are

1 sufficient tg obey the f‘ollowing restric- ; congruent to 1 or 2 (mod H).

Let Z. be:

1 a1s g We will satisfactorily place Bm + 1, Bm + 2,

TP
1

Subdivide edges ::‘;3,31ll and 35'36 with vertices 8m + 1 and 8m + 5 respectively.

" Note that 8m + 1 and 8m + 5 are separated bjr two vertices, as required by (2).
 There exist im -~ 13 edges' between aq and &y . IF 8m-+ 2 is similarly placed

: between 44 and I then 8m + 1 and Bm + 2 are separated on the fourth level .

by at least six vertices, as required by (1). Also, 8m + 2 and 8m + 5 are

separated by 'at least two vertices.

Now since 8m + 1 is adjacent to both a3 and Ay, then 8m + 2 must be separated
by at least three vertices from both 53 and 51;. That is, there are at most
twelve edges made unavailable for 8Bm + 2 by §3 and 51&‘ Similarly, since Bm + 1
1s separated by one vertex from both a, and aS, there are at most eight edges
made unavailable for Bm + 2 by 52 and 55. Also, 8m + 1 is separated by two ver-
tices from both a

and 8m + 5. So there are at most two more edges made unavail-

1

able for &m + 2 by a Note that Bm+5 does not affect the placement of 8m + 2

1
gsince it hasn't been placed yet itself.

Thus, at most 22 edges are unavailable for 8m + 2 because of its proximity
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Sinee m 2 9, 4m - 13 3 23,

one available adge for 8m + 2.

to Ei {1<ig5). Therefors, there exists at least

Subdivide one such edge with the vertex 8m + 2.
There are now at least 27 edges between an and ay since the above subdivision
created a new edge. There are at most 12 edges unavailable for 8m + 6 due to

vertices 55 and a-G. Similarly, there are at most 8 edges unavailable for

8m + 6 due to vertices 54 and 57. There are 2 edges made unavailable by 58'
Now consider 8m + 2 = Bn + 1. Since it is in the same branch as 8m + 6, there
must be at least 2 vertices separating them; thus 4 edges are made unavailable

by Bm + 2. This condition also satisfies the weaker requirement that 8m + 2

and 8m + 6 cannot be adjacent since there are 2 vertices separating 8m + 1 and
8m + 5.

Thus, at most 26 edges are unavailable for 8m + 6. Since there are at

least 27 edges, there iz an edge between a4 and ay which can be satisfactorily

. ’
subdivided with vertex 8m + 6, completing Z; . Z2 is completed by adding 2 to

each mumber in Z; as described before., This completes the proof,

Little is known about (D ; n)-cages when n is even. However, when some

additional restrictions are Placed on the degree set, some conclusions are

poasible.

Theorem 11: LetD:{E,r,a}wherer-zBandsév+2,s=2r-2,or's=2r.

Then £{D ; 2n) = s(n =1} +3, whenn 2 2.

Construct the tree T(D ; 2n - 1)} and let v be the additional vertex
called for in Theorem 1.

Proof™:

We know v can only be adjacent to vertices from the

set. {v

o1.g115288}. If deg v =
1

8, then no additional edges are possible and

the graph so constructed has no vertex of degree r. If deg v < s, then some

has degree 1.

vn_1 3 However, no acditional edges between vertices of
’

‘M{D ; 2n-%) are possible, 30 that ©

dogree set D.

e

h:

Thus, at least s{n=1)

To the tree T(D ; 2n-1), add

. (1gjar) @
Insert the edges Wy Vi q 4 (153

If s = 2r, insert the edges Wy
imv.LLe if s = 2r - 2, insert the edg

(rgks2r-2) along with the edge Wiy !

in each case the graph formed

afn=-1) + 3.
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1
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This completes the proof, -

&3 when n+is even, However, when some

the degree set, some conelusions are

23ands=r'+2,s=2r-2, or s =

2.

) and let v be the additional vertex
only be adjacent to vertices from the
no additional edges are possible and
f degree r, If deg v < 3, then some

onal edges between vertices of

] which can be satisfactorily
> is completed by adding 2 to

2r,

“Wnile if s = 2r - 2, insert the edges W, v

ra us constructed does not have
‘T(D ; 2n-1) are possible, sc that the graph thus construct e
H H i

ree us, a east = + 3 vertic agre r red.
d ee set D. Thi y t 1 S (n ) 23 eqLl.
=24

i . fs=r+2
To the tree T(D ; 2n-1), add the vertices w, and w,. If s ,

. - . 1<k £ r+2).
" insert the edges w, Vv {1jer) and Wy vy _q 1 {e+

1 'n=1,] |
= ‘ v igr v (r+1 € k < 2r).
If s 2r, insert the edges w‘l 1,3 (1izr) and ) 1,

n-1,3 (1£jer-1) and Wy Vo g K

: (rsks2r-2) along with the edge w.w,.

h e the graph formed has degree set D, girth 2n, and order
In each cas

a(n=-1) + 3.
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