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Abstract. We consider a problem in extremal graph theory as intro-
duced by Erdős, Jacobson and Lehel in [3]. That is, given an n-term
graphic degree sequence, for n sufficiently large, we prove that the
minimum degree sum necessary to guarantee a realization containing
a t-clique, t ≥ 2, is (t − 2)(2n − t + 1) + 2. The proof involves the
notion of an edge exchange, which is well-known but has not been
used in previous approaches to this problem. It is our hope that the
proof will demonstrate the utility of this technique and inspire new
approaches to similar problems.

1. Introduction

Let G be a simple undirected graph, and let V (G) and E(G) denote the
vertex set and edge set of G respectively. We let G denote the complement
of G. Denote the complete graph on t vertices by Kt and let N(v) and d(v)
denote the neighborhood and degree of a vertex v in a graph G. Further-
more, if H is a subgraph of G, let NH(v) denote those neighbors of a vertex
v that lie in H . Given any two graphs G and H we will denote their join
by G + H .

A sequence of nonincreasing, nonnegative integers π = (d1, d2, . . . , dn)
is graphic if there is a graph G of order n having degree sequence π. In
this case, G is said to realize π, and we will write π = π(G). If a sequence
π consists of the terms d1, . . . , dt having multiplicities m1, . . . , mt, we may
write π = (dm1

1 , . . . , dmt

t ). We generally use notation as given in [14] and
refer the reader there for any undefined terms.

1.1. Edge Exchanging. Let G be a realization of a graphic sequence π

and let u, v, u′ and v′ be vertices in G such that uv, u′v′ are edges in G and



u′u, v′v are nonedges in G. Removing the edges uv and u′v′ and replacing
them with the nonedges u′u and v′v results in a realization G′ of π that may
or may not be isomorphic to G. This operation is frequently referred to as
an edge exchange, a 2-switch (see [14]) or transfer (see [1] and [13]). The
following well-known theorem of S.L. Hakimi asserts that this operation is
sufficient to navigate between the realizations of a graphic sequence.

Theorem 1.1. [6] Let π be a graphic sequence, and let G and G′ be real-

izations of π. Then there is a sequence of 2-switches, S1, . . . , Sk such that

the application of these switches to G in order will result in G′.

A proof of this result is also given in [1] (pages 153-154) and [14] (page
47). Recently, an analogous result to that of Theorem 1.1 has been deter-
mined for 3-uniform hypergraphs, see [8].

More generally, let G be a graph of order n. A circuit C = e1e2, . . . , e2`

in Kn, where ei and ei+1 are incident is an alternating circuit if ei ∈ E(G)
whenever i is even and ei ∈ E(G) whenever i is odd. In other words, the
edges of C alternate being “in” and “out” of G. Removing the edges of
C from G and adding back the edges of C from G results in a new graph
G′ that has the same degree sequence as G. We refer to this operation
as exchanging the edges of the alternating circuit C, and we note that a
2-switch is simply the operation of exchanging the edges of an alternating
circuit of length 4.

1.2. Potentially H-graphic Sequences. Let π be a graphic sequence
and let H be a graph. Let σ(π) denote the sum of the terms in π. We say
that π is potentially H-graphic if there is some realization of π that contains
H as a subgraph. Define σ(H, n) to be the smallest even integer m so that
every n-term graphic sequence π with σ(π) ≥ m is potentially H-graphic.

In [3], Erdős, Jacobson and Lehel conjectured that σ(Kt, n) = (t −
2)(2n − t + 1) + 2. The conjecture rises from consideration of the graph
K(t−2) + K(n−t+2). It is easy to observe that this graph contains no Kt,
is the unique realization of its degree sequence and has degree sum (t −
2)(2n− t + 1).

In proving the upper bound, the cases t = 3, 4 and 5 were handled
separately (see respectively [3], [5] and [9], and [10]), and Li, Song and Luo
[11] proved the conjecture true via linear algebraic techniques for t ≥ 6 and
n ≥

(
t

2

)
+ 3. We prove the following (where the bound on n is not best

possible).

Theorem 1.2. Let n ≥ 31
2 t2 + 13

2 t + 3 and t ≥ 2 be positive integers. If π

is an n-term graphic sequence with σ(π) ≥ (t − 2)(2n − t + 1) + 2, then π

is potentially Kt-graphic.



To prove Theorem 1.2, we will choose a realization of π that is “close” to
having a t-clique. Under the given conditions on π, we show that a sequence
of edge exchanges is possible to move from this realization to one which
indeed has a t-clique. This purely graph-theoretic technique of determining
when a sequence is potentially H-graphic has been mostly abandoned in
the literature since [13], although another recent example appears in [4].
In fact, Theorem 1.1 permits us to construct such a realization using only
2-switches, but it is generally less complicated to exchange the edges of a
longer circuit instead.

The goal of this paper is to use this technique to give a new proof of the
Erdős-Jacobson-Lehel conjecture. It is our hope that this proof will call
greater attention to the technique of edge-exchanging, with the larger goal
of facilitating general progress on the problem of determining σ(H, n) for
arbitrary choices of H .

2. A Proof of the Erdős-Jacobson-Lehel Conjecture Using

Edge-Exchanges

2.1. Preliminaries. For the remainder of the paper, let π = (d1, . . . , dn)
be a fixed nonincreasing n-term graphic sequence with σ(π) ≥ (t− 2)(2n−
t + 1) + 2 and n ≥ 31

2 t2 + 13
2 t + 3. In constructing a realization of π that

contains a copy of Kt, the following lemma from [5] will prove useful.

Lemma 2.1. If S is a graphic sequence with a realization G containing

H as a subgraph, then there is a realization G′ of S containing H with the

vertices of H having the |V (H)| largest degrees of S.

In seeking to prove Theorem 1.2, it is therefore logical to attempt to
construct a copy of Kt on those vertices of degree d1, . . . , dt. The next
lemma, given in [7], follows from the well-known Erdős-Gallai [2] criterion
for graphic sequences and serves to establish that π majorizes the degree
sequence of Kt. For completeness, we give the proof of this next result.

Lemma 2.2. [7] If S = (d1, d2, · · · , dn) is a graphic sequence such that

σ(S) ≥ (t − 2)(2n − t + 1) + 2 and n ≥ t, then dt ≥ t − 1.

Proof: By way of contradiction, suppose that S is a graphic sequence with
σ(S) ≥ (t − 2)(2n − t + 1) + 2 and that S has at most t − 1 terms at least
t − 1. Then by applying the Erdős-Gallai criteria we obtain the following.



n∑

i=1

di =

t−1∑

i=1

di +

n∑

i=t

di

E−G
︷︸︸︷

≤ ((t − 1)(t − 2) +

n∑

i=t

min{t − 1, di}) +

n∑

i=st

di

= t2 − 3t + 2 + 2

n∑

i=t

di

≤ t2 − 3t + 2 + 2(n − t + 1)(t − 2)

= (t − 2)(2n− t + 1).

For all n ≥ t, this contradicts the given degree sum and the result
follows.�

Before we begin, we give a brief outline of the proof of Theorem 1.2.
By induction we will show π contains a fairly large clique. Using Lemma
2.1, we then show that this clique can be situated on the vertices of highest
degree. After this, we exchange the edges of alternating circuits to finish
building the desired clique. The technical aspect of the proof is in proving
that such edge exchanges are always possible.

2.2. The Proof. The proof of Theorem 1.2 will proceed by induction on t.
We first note that σ(K1, n) = 0 and σ(K2, n) = 2. Now assume the theorem
true for all i, 2 ≤ i ≤ t − 1. As σ(π) ≥ σ(Kt−2, n) by induction (note that
31
2 t2 + 13

2 t + 3 is a nondecreasing function) there exists a realization G of
π, that contains a subgraph H isomorphic to Kt−2. If G contains a copy
of Kt we are done, so we henceforth assume otherwise and let V (G) =
{v1, . . . , vn} such that each vi has degree di.

We will assume, in light of Lemma 2.1, that V (H) = {v1, . . . , vt−2}
and also note that Lemma 2.2 assures that dt ≥ t − 1. Additionally,
amongst all realizations of π that contain a clique H on the vertices of
degree d1, . . . , dt−2 let G maximize the number of edges between H and
the vertices of degree dt−1 and dt. For convenience, we will let Z denote
the set {vt−1, vt}. We now demonstrate that our assumption of maximality
implies that all of the possible edges between H and Z are present in G.

Suppose, to the contrary, that there exists v ∈ H, z ∈ Z such that vz 6∈
E(G). Let A = NG−H(v) − NG−H(z) and let B = NG−H(v) ∩ NG−H(z).

Claim 2.3. If x ∈ NG−H(z) and y ∈ NG−H(v), then xy ∈ E(G). Conse-

quently each vertex in A is adjacent to every vertex in B and furthermore

|B| ≤ t − 2.

Suppose, to the contrary, that x ∈ NG−H(z) and y ∈ NG−H(v), and
xy 6∈ E(G). If we exchange the edges xz and yv with the nonedges xy and
zv, the result will be a realization of π with more edges between H and Z

than are present in G, contradicting the maximality of G.



The other assertions follow from the definitions of A and B and from
the fact that the first statement implies that B must be complete. This
establishes the claim.

Claim 2.4. dt−2 ≤ 3t− 8 < 3t.

We will, in fact, show that d(v) ≤ 3t−8. As dt−2 ≤ d(v), the result will
follow.

If A is empty, then v is adjacent to t − 3 vertices in H and at most
|B|+(|Z|− 1) vertices outside of H . Thus d(v) ≤ t− 3+ t− 2+1 = 2t− 4.

Otherwise, there exists an a ∈ A. Suppose that x and y are nonadjacent
vertices in NG−H(z). Then we could exchange the edges zx, zy and va in G

and the nonedges xy, zv and za (which together form an alternating circuit
of length 6) again contradicting the maximality of G. Thus we may assume
that NG−H(z) is complete and hence has cardinality at most t − 2. As z

is adjacent to at most t− 3 vertices in H , this implies that z has degree at
most t − 3 + t − 2 = 2t − 5.

As z has degree at least t − 1, there is some vertex u in NG−H(z) that
does not lie in Z. By Claim 2.3, u is adjacent to every vertex in both A

and B in addition to z. Hence, as d(u) ≤ d(z) ≤ 2t − 5, we know that
|A| + |B| ≤ 2t − 5. This implies that d(v) = (t − 3) + |A| + |B| ≤ 3t − 8.
The result follows. This establishes the claim.

By assumption, v and z are nonadjacent and both have degree at least
t−1. Thus there exist vertices x ∈ NG−H−Z(v) and y ∈ NG−H−Z(z) (note
that x and y may be the same). If there exists an edge x′y′ in G − H − Z

such that xx′ and yy′ are both not in E(G), then exchanging the edges
x′y′, xv and yz for the nonedges vz, xx′ and yy′ would yield a contradiction
to the maximality of G. We will guarantee the existence of such an edge
x′y′ by bounding the number of edges incident to vertices in N(x) ∪ N(y).

Claim 2.4 implies that |N(x) ∪ N(y)| ≤ 6t. This, and Claim 2.4 again,
implies there are at most (t−3)(n−1)+3t(5t+3) edges incident to vertices in
N(x)∪N(y). However, E(G) = 1

2σ(π) > (t−3)(n−1)+3t(5t+3) provided

n > 31
2 t2 + 13

2 t + 3. For n in this range, this implies that it is possible to
find an appropriate edge x′y′. This establishes that for all v ∈ H and z ∈ Z

the edge vz ∈ E(G).

As we assumed that G does not contain a Kt, the only pair of non-
adjacent vertices in {v1, . . . , vt} is vt−1, vt. We now show that an edge
exchange is possible in G to create a copy of Kt on {v1, . . . , vt}. Let
NG−H(vt−1) = N1 and NG−H(vt) = N2. Since both vt−1 and vt have de-
gree at least t− 1, neither of these sets is empty so let x ∈ N1 and y ∈ N2.
If xy 6∈ E(G \ H), then we may exchange the edges vt−1x, vty for the non-
edges vt−1vt, xy constructing the desired Kt. Otherwise, xy ∈ E(G) and



so N1 ∩ N2 is complete, and hence has cardinality at most t − 2. Our next
step is to again show that there exists some v ∈ H such that d(v) < 3t.

Case 1: Assume that N1 ⊆ N2. In this case, N1 induces a complete
graph, implying that |N1| ≤ t − 2 and that d(vt−1) = |N1| + |NH(vt−1)| ≤
t − 2 + t − 2 = 2t − 4. By assumption d(x) ≤ d(vt−1), which implies that
there is a vertex v in H such that xv is not in E(G). Let a be any neighbor
of v that lies outside of H and Z. If xa 6∈ E(G) then we could exchange the
edges vt−1x, vtx and va for the nonedges xv, xa and vt−1vt, constructing
the desired Kt. Otherwise, xa ∈ E(G). Thus, if dG−H−Z(v) ≥ 2t − 5, it
must be the case that d(x) ≥ 2t − 3 > d(vt−1), a contradiction. Hence, in
this case, d(v) ≤ dH(v) + (2t − 6) + 2 = 3t − 7 < 3t. The case in which
N2 ⊆ N1 is identical.

Case 2: Assume then that N1−N2 and N2−N1 are both nonempty. We
first show that N1∪N2 is complete. Let x1 and x2 be in N1. If x1x2 6∈ E(G)
then we may exchange the edges vt−1x1, vt−1x2 and vty for the nonedges
x1x2, vt−1vt and vt−1y, where y is any vertex in N2 −N1, constructing the
desired Kt. Otherwise, x1x2 ∈ E(G). A similar argument yields that any y1

and y2 in N2 must be adjacent, and together with the previous observation
that any vertex in N1 is adjacent to each vertex in N2 yields that N1 ∪ N2

is complete. In particular, both vt−1 and vt have degree at most 2t− 4, as
in the previous case. Let x and y be in N1 −N2 and N2 −N1, respectively.
There is some v in H such that yv 6∈ E(G); otherwise H∪{vt, y} is a t-clique.
Let a be any neighbor of v that lies outside of H and Z. If xa 6∈ E(G),
then we could exchange the edges vt−1x, vty and va for the nonedges yv, xa

and vt−1vt, completing the desired Kt. Otherwise, xa ∈ E(G). Thus, if
dG−H−Z(v) ≥ 2t − 5 then d(y) ≥ dG−H−Z(v) + 1 ≥ 2t − 3 > d(vt), a
contradiction. Hence dG−H−Z(v) ≤ 2t − 6 and d(v) ≤ 3t − 7 < 3t.

Having bounded the degree of some vertex v in H , we now complete the
proof of Theorem 1.2. Let x and y be in N1 and N2, respectively. Suppose
there exists an edge x′y′ lying outside of H ∪ Z such that x′x and y′y are
not edges in G. We may then exchange the edges vt−1x, vty and x′y′ for
the nonedges x′x, y′y and vt−1vt, completing the desired Kt. As we have
bounded the degree of some vertex v in H by 3t, we can assure the existence
of such an edge by bounding the number of edges incident to the vertices
in N(x) ∪ N(y). This completes the proof. �

3. conclusion

The purpose of this paper is to demonstrate the utility of the technique
of edge exchanging by giving a new, short proof of the Erdős-Jacobson-Lehel
conjecture. It is our hope that this will serve to broaden the collection of
available techniques that can be used to approach problems pertaining to



potentially H-graphic sequences, with the additional hope that new and
general progress may be made in the area.

We would like to note that the bound on n given in our proof of Theorem
1.2 could be improved with a more detailed analysis. This however would
make the proof considerably longer, and detract from our stated purpose
of focusing on the technique of edge exchanging.
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[2] Erdős, P. & Gallai, T., Graphs with prescribed degrees (in Hungarian), Matemoutiki

Lapor 11 (1960), 264-274.
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