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1, Introduction.

411 graphs in this articie are finite simple graphs. In a color=-
ing of the edges of a graph G with t-colors (t > 0), a copy of
some graph H, each of wilose edges is colored 1 will be termed an
i-colared H. 'The ramsey number, I(Gl’ G2, teny Gt) , 1s the
small‘est integer p such that imn any ceoloring of the edges of Kp
from a set of ‘t-colors, there exists an i-colored copy of Gi for
some i, 1 <1 <t. Ramsey numbers have received a great deal of

attention recently. A result of interest includes:

Theorem & (Burr and Erdos {2]). If N=r(X , X , ..., £ ) and

—_— 1'11 212 . nt

(G, Ky = (v(@|-1m-1y +1, then (G, K , K , ..., K )=
‘ 1 M £

(lvigy| =)@ -1) + 1.

In [6]' the following definition was given: gs{ﬁ) = {g[g a connected

graph and (g, M) = ([V(e)]~DX®E) -1) + B + ¢, (@ -1}, vhere
tl(H) is the minimum, over all critical colorings of H, of the

order of the smallest color class. The following thecrem was then shown:
R
Theorem B {[6]). 1If gy € GB.(H) , G= iylgi and

{G) .
p= {3 -1 X ~2) +ci§j ik, P+, (H) -1, where c(G) is

max
if_jic(G)
the order of the largest component of G and ki is the number of

components of G of order i, then
p <r(G, H) £ p + max '{Bi} .
i

The purpose of this paper is to establish bounds for the ramsey

H

number r(G, H veey Ht) , where G 1is the disjoint unrion of

1t 2!
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graphs. We further obtain the multicolor ramsey numbers for various
cases.

2. Upper and Lower Bounds
Let Hl’ Hz, ooy Ht (t>2) be graphs and let

r= r(Km y Koy eeey Km ), vwhere w, = clique number of B® Define

mz t i 1

38(31, Hy, vens Ht) = {g|g L1s connected and r{g, By, Hyy wosy Ht) =
(Jvig)y| - 1(x-1) + 8 +1}.
(1) For 1 such that 1 <i <&, let By € gB(Hl’ HZ’ vesy Ht)

£
= |
and let G 1%151' '

Theorem 1. If G is as defined in (1) then

c{G)
ey B) > max [(j-—l)(r-Z) +i§liki]

Hy, >
BT 1<4<e(6)

(G, Hl,

where ki is the number of components of ¢ with order i, and
c(G) 1is the size of the largest component of G.
c(G)
Proof. For convenience let pj = iZGiki and choose j such that
B c(G)
{(3-D(-2) + T ik }.
t=5 1

= {(j.~1)(r=2) +p, =  max
p= (ju-1(r=-2) PJO 138 @)

Consider the following factorization

K =R® B, &8 & ,..9P B where R =K
2 t =]

vp-1 1 U (r- Z)KJ _ and

R 1
Jol Q

the Bi's are formed as follows: Consider a factorization of

Kr-l = Dl @ D2 ®...d Dt such that K.m:.L & Di for i =1, 2, ..., t.

There are (r~1) components in R; associate with each component a
vertex in the above factorization of Kr-l' The edges of Bi are
precisely those edges between components of R for which there is a
cor?esponding edge in Di'

It is clear that K, Z B, hence Hy EBi » for each 1, for
3.. .
this would require choosing two vertices from one component of R and

the edge between these two vertices would not be in 3, .

To see that G& R, we concentrate on the subgraph Gj of " G,
- 0



which consists of all components of G with jO or more vertices.
Clearly €, ¢ K since |V(G, )| » p, -~ 1. Further, K,
. 3 -1 N 3 ©
0 ;IO 0 Q 0
is too small to contain any component of Gj . Thus Gj Z R,
¢ 0

-1

hence GZ R and the result follows, D

Theorem 2, If G 1is asg defined in (1) then

c(G)
(G, H 2, . H)< [(j Vi(r-2) + E:Lk] + B

(G)
where k, dis the number of components of G with order i, and

¢(G) is the order of the largest component of G,

Proof. We assume the notation developed in Theorem 1. Let G,
denote the subgraph of G consisting of all components of order at

least j . Then the order of G, 1is Pj » Consider an arbitrary

3

factorization of Kp = R& Bl D ... d Bt in which H, ¢ Bi for

c{C
i=1,2, ..., t, and where p=(j -1){(xr-2) + % ik, + 8.
o j_=JO L
We show that G< R by descending induction on j.
First suppose G = GIL where £ = c{(G)} . By an easy induction

on k the total number of components of G, we show G = GQC_: R.

2‘ 1]
This is elear for kR. = 1 by definition, If kg, >1 and g 1is an
arbitrary component of G, then the factorization KP =

REP Bl e .., ,GBB induces a factorization of KP - V{(g) with

IV(K Y-vg)| = (-1 (r-2) + W(k,-1) + B. Hence, if G =G,
then GES R.

Te complete the induction assume G, +l € R, for some j,
1 <j<e(G). Clearly Gj C R when &

that G.'l - V(Gj+1)

j j‘i‘l » S0 We may assume

consists of kj(> 0) components, each of order

j - The graph Gj+l CR, so0 again the factorization
Kp =R& B, @ ...,EBBt in(cé;;ces a factorization on Kp - V(Gj+1) with
|V(KP) - V’(Gj_'_l)‘ =p - i=§+liki 20G-UE-2) + jk + B, because
- c -
of our choice of p. As above Gj V(Gj+l) c (Kp j+l)) Ner.

Therefore, Gj CR and the induction is complete. []
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k
Sorollary 3. If g, gy, .-, g e, 0, ..., H) and G = Us,
then
c{a)

T(G,H],H,, ..., B = ~1)(r-2) + Z; iki]

max i
1<58(C) [(J
where ¢(G), r and ki are as defined before,

3. Applications and Conclusions.

Theorem A allows us to conclude that T e % K , vo., K )
m 0 nl nt
where Tm is any tree on m vertices. Hence we may determine

r(F, Kn . Kn s ewns Kn ) where F is any forest and Dys fyy veey m

1 2 £ t
are positive integers.
Corpllary 4, If F {is any forest and nl, nz. ey nt are positive
integers then

F, K, K K ) [(' L)z -2) +°§3F)'kj

r(F, » K.y 0o, = _ max N r- - ik,

n, "o, n, 1<1<c(G) ST

where t = r(Kn R Kn 3 seay Kn } and ki is the number of components

. 1 2 t
of F of order 4{.

In [1] it was shown that CIu € fgo(l(n) when m > 1'12 -2. HNow
applyir&g Corollary 3, we may obtain the ramsey number for

2 2
G=( il‘—lesi) U (j'L=!l ij),- (mj>n -2), versus Kn s Kn y ceey Kn -

1 2 t
with r = r(Knl, an, e Knr_) .

Burr and Erdos [2] have shown that any sufficiently large graph

homeomorphic to a connected graph is in % (K , K , ..., K Y.
0 ny n, o
Hence we may determine the ramsey number for unions of these graphs

versus many complete graphs.
‘Finally, we state a theorem bounding the ramsey number and

allowing one to vary the ng classes,

Theozem 5. If g, e.‘fs (Hy, By, ..oy H) where 1<1i <k,
k i © e{G)

G= Ug, and p= max [(j -1 (r-2) + é ik :, then
1=171 1<4<c () i=j 1

r EI(G, H1) HZ) raay Ht) <P +m?x {Bi}

where ¢(G), r and ki are as before,
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The proof of Theorem 5 is analogous to that of Theorems 1 and 2 with
m?x {Bi} substituted for 8.

In conclusion, we feel an interesting direction for future work

would be to vary the definition of gB(Hl’ EZ’ ey Ht), in some

fashion, to increase the number of known graphs in gO(Hl’ Hz, ceny Ht).
Perhaps increased knowledge on the orders of the color classes would
be of help.

Another possibility might be to determine classes of graphs,
ather than complete graphs, for which Tm (gr other graphs) 1is in
gO(Hl’ HZ' - Ht) . This might be attempted in the manner of [1],
(31, [51, [7] ana [8].
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