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DECOMPOSITIONS OF COMPLETE MULTIPARTITE
GRAPHS INTO GREGARIOUS 6-CYCLES USING

COMPLETE DIFFERENCES

Jung R. Cho and Ronald J. Gould

Abstract. The complete multipartite graph Kn(2t) having n partite sets
of size 2t, with n ≥ 6 and t ≥ 1, is shown to have a decomposition into
gregarious 6-cycles, that is, the cycles which have at most one vertex from

any particular partite set. Complete sets of differences of numbers in Zn

are used to produce starter cycles and obtain other cycles by rotating the
cycles around the n-gon of the partite sets.

1. Introduction

Edge-disjoint decompositions of graphs into cycles of a fixed length have
been considered in a number of different ways. After a series of developments,
necessary and sufficient conditions for a complete graph of odd order, or a
complete graph of even order minus an 1-factor, to have a decomposition into
cycles of some fixed length have recently been obtained (see [1], [7] and [8] as
well as their references). The key factor for all this work was the decomposition
of complete bipartite graphs obtained by Sotteau ([9]). Many authors began
to consider cycle decompositions with special properties such as resolvable cy-
cle decompositions ([3], [4], [6]). Billington and Hoffman ([2]) introduced the
notion of a gregarious cycle in a tripartite graph, and the notion of gregarious
cycles has been modified in following papers ([2], [3], [5]).

A few years ago, Šajna ([8]) showed that the complete multipartite graph
K(2, 2, . . . , 2) has a decomposition into m-cycles if and only if m divides the
number of edges. However, the decomposition was by arbitrary cycles, not by
gregarious ones. It seems that the requirement of gregariousness makes the
problem more complicated. Recently, Billington and Hoffman ([2]) and Cho et
el. ([5]) independently produced gregarious 4-cycle decompositions for certain
complete multipartite graphs.
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In this paper, as a sequel to the earlier paper ([5]), we will consider complete
multipartite graphs with partite sets of the same even cardinality and will show
that these graphs have decompositions into gregarious 6-cycles if the numbers
of edges is divisible by 6. Thus, the result in this article may be considered
as a contribution to the decomposition problem in the direction of generalizing
the results in [6] and [8]. When the size of partite sets is odd or the length of
the cycle is odd, the problem seems to be more difficult to handle.

We first make our definition of gregarious cycles precise. We call a cycle in a
multipartite graph gregarious if at most one vertex of the cycle comes from any
particular partite set. For simplicity, we say that a graph is γ6-decomposable if
it is decomposable into γ6-cycles, i.e., gregarious 6-cycles, and a decomposition
into γ6-cycles will be called a γ6-decomposition.

Throughout the paper, Kn(2t) will denote K(2t, 2t, . . . , 2t), the complete
multipartite graph with n partite sets of 2t elements.

Now, we state the main theorem of the paper.

Theorem 1.1. Let n ≥ 6 and 6 divide 2n(n−1), the number of edges in Kn(2).
Then Kn(2t) has a γ6-decomposition for every positive integer t.

We will prove the above theorem in the subsequent sections. In fact, we will
prove the following special case of Theorem 1.1, and then will obtain Theo-
rem 1.1 as a corollary.

Theorem 1.1′. Let n ≥ 6 and 6 divide 2n(n−1). Then Kn(2) has a γ6-
decomposition.

Proof of Theorem 1.1. By Theorem 1.1′, there is a γ6-decomposition Φ of Kn(2).
We adopt the standard “expanding points method” used in [4] or [5]. Replace
each vertex a of Kn(2) by t new vertices labeled a1, a2, . . . , at, and then join
all vertices ai to all vertices bj if ab was an edge in Kn(2). Then the resulting
graph is Kn(2t). If λ = ⟨a, b, c, d, e, f⟩ is a γ6-cycle in Φ, then

λij = ⟨ai, bj , ci, dj , ei, fj⟩ (i = 1, 2, . . . , t, j = 1, 2, . . . , t)

are t2 mutually disjoint γ6-cycles of Kn(2t) (see Figure 1). The collection of
all such γ6-cycles of Kn(2t) obtained from all cycles in Φ constitutes a γ6-
decomposition of Kn(2t). ¤

From now on, we will concentrate on proving Theorem 1.1′. However, if n
is odd then the conclusion can be easily obtained from the following known
result.

Lemma 1.2. ([1], [8]) Let n be an odd integer and m any positive integer.
Then, Kn has a decomposition into m-cycles if and only if m divides n(n−1)

2 .

Theorem 1.3. Let n be an odd integer and suppose 6 divides n(n−1)
2 . Then

Kn(2) has a γ6-decomposition.
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a b c d e f

a1 b1 c1 d1 e1 f1

a2 b2 c2 d2 e2 f2

a3 b3 c3 d3 e3 f3

: a 6-cycle λ in Kn(2)

: the 6-cycle λ13 in Kn(2·3)

Figure 1

Proof. Let the vertices of Kn be v0, v1, v2, . . . , vn−1, and let the partite sets of
Kn(2) be {0, 0}, {1, 1}, . . . , {n−1, n−1}. By the preceding lemma, Kn has a
decomposition Φ of Kn into 6-cycles. If λ = ⟨vi0 , vi1 , . . . , vi5⟩ is a 6-cycle in Φ,
we can produce four cycles

λ1 = ⟨i0, i1, i2, i3, i4, i5⟩, λ2 = ⟨i0, i1, i2, i3, i4, i5⟩,
λ3 = ⟨i0, i1, i2, i3, i4, i5⟩, λ4 = ⟨i0, i1, i2, i3, i4, i5⟩

from λ. Clearly, they are mutually disjoint γ6-cycles of Kn(2), and the collection
of all such γ6-cycles obtained from each 6-cycle in Φ is a γ6-decomposition of
Kn(2). ¤

However, if n is even, Kn does not have a cycle decomposition, and hence
we can not apply Lemma 1.2. So, we need a different method. The method we
are about to develop in the subsequent sections can be applied to all cases.

In Section 2, we introduce feasible sequences of differences of numbers in
Zn and explain the method for producing γ6-cycles from feasible sequences. In
Section 3, we prove Theorem 1.1′ by producing appropriate feasible sequences
and generating γ6-cycles.

2. Cycles from feasible sequences of differences

For Kn(2), let the partite sets be A0 = {0, 0}, A1 = {1, 1}, . . ., and An−1 =
{n−1, n−1}. Thus, the elements in Zn = {0, 1, 2, . . . , n−1} are used as indices
of the partite sets and as vertices of the graph as well. An edge between a
vertex in Ai and another vertex in Aj is called an edge of distance d for some d
with 0 < d ≤ n

2 if |i−j| = d, where the arithmetic is done in Zn. In particular, if
d = n

2 , then the edges of distance d are called the diagonal edges. For example,
the edges 04, 73, 7 2 and 83 are all edges of distance 4 in K9(2), and the edges
4 9 and 0 5 are diagonal edges of K10(2).

Put Dn = {±1,±2, . . . ,±n−1
2 } if n is odd and Dn = {±1,±2, . . . ,±n−2

2 , n
2 }

if n is even. Then, Dn is a complete set of differences of two distinct numbers
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in Zn. A sequence ρ = (r1, r2, . . . , r6) of differences in Dn is called a feasible
sequence, or an f-sequence for simplicity, if

(i)
∑6

i=1 ri = 0, that is, the total sum of the terms of the sequence is
zero, and

(ii)
∑q

i=p ri ̸= 0 for all p, q with 1 < p or q < 6, that is, any proper partial
sum of consecutive entries is nonzero,

where the arithmetic is done in Zn.
Let ρ = (r1, r2, . . . , r6) be any sequence, which may not be feasible, of dif-

ferences of Dn. The sequence of initial sums, or the s-sequence for short, of
ρ is the sequence σρ = (s0, s1, s2, . . . , s5) of elements in Zn, where s0 = 0 and
si =

∑i
j=1 rj for i = 1, 2, . . . , 5. Note that, si = si−1+ri for each i = 1, 2, . . . , 5

and s5 + r6 = s0.
With the above notation, the sequence σρ represents the sequence of partite

sets which a 6-cycle traverses, and the feasibility of ρ guarantees that the cycle is
proper and gregarious. Now, the following lemma is trivial from the definitions.

Lemma 2.1. Let σρ = (s0, s1, s2, . . . , s5) be the s-sequence of a sequence ρ =
(r1, r2, . . . , r6) of differences in Dn. Then ρ is an f-sequence if and only if∑6

i=1 ri = 0 and all entries of σρ are mutually distinct.

Let ϕ+ and ϕ− be mappings of Zn into ∪n−1
i=0 Ai defined by ϕ+(i) = i

and ϕ−(i) = i for all i in Zn. A flag is a sequence ϕ∗ = (ϕ0, ϕ1, . . . , ϕ5)
where ϕi = ϕ+ or ϕ− for i = 1, 2, 3, 4, 5. Given such a flag ϕ∗, we also use
the same notation ϕ∗ to denote the mapping defined by ϕ∗(s0, s1, . . . , s5) =
⟨ϕ0(s0), ϕ1(s1), . . . , ϕ5(s5)⟩ for every sequence (s0, s1, . . . , s5) of distinct ele-
ments in Zn. Note that ϕ∗(s0, s1, . . . , s5) is a γ6-cycle.

Let τ : Zn → Zn be the mapping defined by τ(i) = i+1 for all i in Zn.
Then, τ j(i) = i+j for all i, j in Zn and τn is the identity mapping. We can
extend each τ j to a mapping τ j

∗ : Z6
n → Z6

n by defining τ j
∗ (s0, s1, . . . , s5) =

(τ j(s0), τ j(s1), . . . , τ j(s5)).
Now, if we are given a pair (ρ, ϕ∗) consisting of an f -sequence and a flag,

we can produce a class {ϕ∗(τ j
∗ (σρ)) |∈ Zn} of γ6-cycles. For example, if ρ =

(r1, r2, . . . , r6) and ϕ∗ = (ϕ+, ϕ−, ϕ−, ϕ+, ϕ+, ϕ−), then σρ = (s0, s1, s2, . . . , s5)
and the γ6-cycles in the class are:

ϕ∗(τ0
∗ (σρ)) = ⟨ 0, s1, s2, s3, s4, s5 ⟩,

ϕ∗(τ1
∗ (σρ)) = ⟨ 1, s1+1, s2+1, s3+1, s4+1, s5+1 ⟩,

ϕ∗(τ2
∗ (σρ)) = ⟨ 2, s1+2, s2+2, s3+2, s4+2, s5+2 ⟩,
...

...
...

ϕ∗(τk
∗ (σρ)) = ⟨ k, s1+k, s2+k, s3+k, s4+k, s5+k ⟩,
...

...
...

ϕ∗(τn−1
∗ (σρ)) = ⟨n−1, s1−1, s2−1, s3−1, s4−1, s5−1 ⟩.
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Note that every column on the right-hand side has one vertex from every partite
set. Thus, each edge of the form p q appears as the first edge of a γ6-cycle above
if q − p = s1 = r1. Each edge of the form p q appears as the second edge of a
γ6-cycle above if q− p = s2 − s1 = r2. Similarly, each edge of the form p q with
q − p = r3, of the form p q with q − p = r4, of the form p q with q − p = r5, and
of the form p q with q − p = r6, appears in the γ6-cycles above.

This procedure is the method we will use to obtain a γ6-decomposition of
Kn(2). The main problem then is how to choose pairs of f -sequences and flags
so that, in the γ6-cycles produced by these pairs, each of the edge p q, p q, p q
and p q with q−p = d appears exactly once for every distance d with 1 ≤ d ≤ n

2 .
Note that we sometimes need to produce a class with only n

2 γ6-cycles when n
is even.

For an integer k, a class containing k γ6-cycles will be called a k-class. We
will use n-classes and n

2 -classes, each generated from a give γ6-cycle using it as
the starter cycle.

If λ = (v1, v2, . . . , v6) is a 6-cycle, then edge vivi+1 will be called the ith
edge of λ for i = 1, 2, 3, 4, 5, and v6v1 will be called the last edge of λ.

3. Proof of Theorem 1.1′

The number of edges in Kn(2) is 4 ·
(
n
2

)
= 2n(n−1). Thus, for Kn(2) to be

γ6-decomposable, 2n(n−1) must be divisible by 6. That is, n ≡ 0, 1, 3 or 4
(mod 6). Of course, we always assume n ≥ 6. We divide the proof into four
cases depending on n modulo 6.

Case (1). Suppose n ≡ 1 (mod 6) and put n = 6k +1 with k ≥ 1. The
number of edges in Kn(2) is 2(6k +1) 6k = 12kn and we will produce 2kn
mutually disjoint γ6-cycles in 2k n-classes. We have Dn = {±1,±2, . . . ,±3k}
here. We partition Dn into k sets Ti = {±(3i+1),±(3i+2),±(3i+3)} for
i = 0, 1, 2, . . . , k−1. For each i, put

ρi = (3i+1,−(3i+2), 3i+3, 3i+2,−(3i+1),−(3i+3)),

and we have σρi = (0, 3i+1, n−1, 3i+2, 6i+4, 3i+3). Since 6k ≥ 6(i+1) = 6i+6
for i = 0, 1, 2, . . . , k−1, all entries of σρi are mutually distinct. Thus, ρi is an
f -sequence by Lemma 2.1. Now, we choose two flags

ϕ∗
1 = (ϕ+, ϕ+, ϕ+, ϕ+, ϕ−, ϕ−)

and

ϕ∗
2 = (ϕ−, ϕ+, ϕ−, ϕ−, ϕ−, ϕ+).

Then, using the γ6-sequences ϕ∗
1(σρi) and ϕ∗

2(σρi) as starter cycles, we generate
two n-classes Ci = {ϕ∗

1(τ
j
∗ (σρi)) | j ∈ Zn} and Di = {ϕ∗

2(τ
j
∗ (σρi)) | j ∈ Zn},

respectively, as below:
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(Ci) ⟨ 0, 3i+1, n−1,3i+2,6i+4,3i+3 ⟩, (Di) ⟨ 0, 3i+1, n−1,3i+2,6i+4,3i+3 ⟩,
⟨ 1, 3i+2, 0, 3i+3,6i+5,3i+4 ⟩, ⟨ 1, 3i+2, 0, 3i+3,6i+5,3i+4 ⟩,
⟨ 2, 3i+3, 1, 3i+4,6i+6,3i+5 ⟩, ⟨ 2, 3i+3, 1, 3i+4,6i+6,3i+5 ⟩,

...
...

⟨n−2,3i−1, n−3,3i−2,6i+2,3i+1 ⟩, ⟨n−2,3i−1, n−3,3i−2,6i+2,3i+1 ⟩,
⟨n−1, 3i, n−2,3i−1,6i+3,3i+2 ⟩. ⟨n−1, 3i, n−2,3i−1,6i+3,3i+2 ⟩.

For p, q in Zn with q−p = 3i+1, we have the following observations.
(i) Each edge p q appears as the first edge of a cycle in E1.
(ii) Each edge p q appears in the form q p as the fifth edge of a cycle in

E1.
(iii) Each edge p q appears as the first edge of a cycle in E2.
(iv) Each edge p q appears in the form q p as the fifth edge of a cycle in

E2.
Since no other edges of the above cycles have distance 3i+1, each of the edges
p q, p q, p q and p q with p−q = 3i+1 appears exactly once in the above cycles.
Similarly, we see that this is true when p− q = 3i+2 or p− q = 3i+3, as
well. Therefore, every edge of distance 3i+1, 3i+2 or 3i+3 in Kn(2) appears
exactly once in γ6-cycles of the two n-classes, and so the γ6-cycles are mutually
disjoint.

If we perform the preceding procedure for each Ti for i = 0, 1, 2, . . . , k−1, we
obtain 2k n-classes of γ6-cycles, in which every edge of any nonzero distance
appears exactly once. Consequently, the γ6-cycles in

∪k−1
i=0 (Ci ∪Di) constitute

a γ6-decomposition of Kn(2). Clearly, this decomposition is circular in the sense
that it is invariant under τ∗.

Example 3.1. Let n = 6 · 2 + 1 = 13. Then Dn = {±1,±2, . . . ,±6}.
By the procedure in Case (1), we have ρ0 = (1,−2, 3, 2,−1,−3) and ρ1 =
(4,−5, 6, 5,−4,−6), and so

σρ0 = (0, 1, 12, 2, 4, 3), σρ1 = (0, 4, 12, 5, 10, 6).

The n-classes C1, D1, C2, D2 generated from the γ6-cycles ϕ∗
1(σρ0), ϕ∗

2(σρ0),
ϕ∗

1(σρ1) and ϕ∗
2(σρ1), respectively, are as below:

⟨ 0, 1,12, 2, 4, 3 ⟩, ⟨ 0, 1,12, 2, 4, 3 ⟩, ⟨ 0, 4,12, 5,10, 6 ⟩, ⟨ 0, 4,12, 5,10, 6 ⟩,
⟨ 1, 2, 0, 3, 5, 4 ⟩, ⟨ 1, 2, 0, 3, 5, 4 ⟩, ⟨ 1, 5, 0, 6,11, 7 ⟩, ⟨ 1, 5, 0, 6,11, 7 ⟩,
⟨ 2, 3, 1, 4, 6, 5 ⟩, ⟨ 2, 3, 1, 4, 6, 5 ⟩, ⟨ 2, 6, 1, 7,12, 8 ⟩, ⟨ 2, 6, 1, 7,12, 8 ⟩,
⟨ 3, 4, 2, 5, 7, 6 ⟩, ⟨ 3, 4, 2, 5, 7, 6 ⟩, ⟨ 3, 7, 2, 8, 0, 9 ⟩, ⟨ 3, 7, 2, 8, 0, 9 ⟩,
⟨ 4, 5, 3, 6, 8, 7 ⟩, ⟨ 4, 5, 3, 6, 8, 7 ⟩, ⟨ 4, 8, 3, 9, 1,10 ⟩, ⟨ 4, 8, 3, 9, 1,10 ⟩,
⟨ 5, 6, 4, 7, 9, 8 ⟩, ⟨ 5, 6, 4, 7, 9, 8 ⟩, ⟨ 5, 9, 4,10, 2,11 ⟩, ⟨ 5, 9, 4,10, 2,11 ⟩,
⟨ 6, 7, 5, 8,10, 9 ⟩, ⟨ 6, 7, 5, 8,10, 9 ⟩, ⟨ 6,10, 5,11, 3,12 ⟩, ⟨ 6,10, 5,11, 3,12 ⟩,
⟨ 7, 8, 6, 9,11,10 ⟩, ⟨ 7, 8, 6, 9,11,10 ⟩, ⟨ 7,11, 6,12, 4, 0 ⟩, ⟨ 7,11, 6,12, 4, 0 ⟩,
⟨ 8, 9, 7,10,12,11 ⟩, ⟨ 8, 9, 7,10,12,11 ⟩, ⟨ 8,12, 7, 0, 5, 1 ⟩, ⟨ 8,12, 7, 0, 5, 1 ⟩,
⟨ 9,10, 8,11, 0,12 ⟩, ⟨ 9,10, 8,11, 0,12 ⟩, ⟨ 9, 0, 8, 1, 6, 2 ⟩, ⟨ 9, 0, 8, 1, 6, 2 ⟩,
⟨10,11, 9,12, 1, 0 ⟩, ⟨10,11, 9,12, 1, 0 ⟩, ⟨10, 1, 9, 2, 7, 3 ⟩, ⟨10, 1, 9, 2, 7, 3 ⟩,
⟨11,12,10, 0, 2, 1 ⟩, ⟨11,12,10, 0, 2, 1 ⟩, ⟨11, 2,10, 3, 8, 4 ⟩, ⟨11, 2,10, 3, 8, 4 ⟩,
⟨12, 0,11, 1, 3, 2 ⟩. ⟨12, 0,11, 1, 3, 2 ⟩. ⟨12, 3,11, 4, 9, 5 ⟩. ⟨12, 3,11, 4, 9, 5 ⟩.

Case (2). Suppose n ≡ 4 (mod 6) and put n = 6k +4 with k ≥ 1. The
number of edges is 2(6k +4)(6k +3) = 6(2k +1)n, and we need to produce
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(2k+1)n mutually disjoint γ6-cycles. We note that n
2 = 3k+2 and we have

Dn = {±1,±2, . . . ,±(3k+1), 3k+2}.
Take the subset {±1,±2,±3, . . . ,±(3k−5),±(3k−4),±(3k−3)} of Dn and

partition it into k−1 subsets Ti = {±(3i+1),±(3i+2),±(3i+3)} for i =
0, 1, . . . , k−2. With each Ti for i = 0, 1, . . . , k−2, we proceed exactly the same
way as in Case (1). That is, for each i, with the f -sequence ρi = (3i+1,−(3i+
2), 3i+3, 3i+2,−(3i+1),−(3i+3)) and the flags ϕ∗

1 = (ϕ+, ϕ+, ϕ+, ϕ+, ϕ−, ϕ−)
and ϕ∗

2 = (ϕ−, ϕ+, ϕ−, ϕ−, ϕ−, ϕ+), we generate two n-classes as in Case (1)
from the γ6-cycles ϕ∗

1(σρi) and ϕ∗
2(σρi), respectively. Then, we obtain 2(k−1)

n-classes Ci and Di of γ6-cycles for i = 0, 1, . . . , k−2, in which every edge of
distance d appears exactly once for d with 1 ≤ d ≤ 3k−3.

Now, we take care of edges of distance d with 3k−2 ≤ d ≤ 3k+2. Here, we
need a more complicated procedure to handle the diagonal edges. Put

η = (3k−2,−(3k−1), 3k, 3k+2,−3k,−(3k+1)),

and we have ση = (0, 3k−2, 6k+3, 3k−1, 6k+1, 3k+1). Since n ≥ 10, the com-
ponents of ση are mutually distinct and so η is an f -sequences by Lemma 2.1.
We choose four flags

ψ∗
1 = (ϕ−, ϕ−, ϕ+, ϕ−, ϕ−, ϕ+), ψ∗

3 = (ϕ−, ϕ+, ϕ−, ϕ+, ϕ+, ϕ−),

ψ∗
2 = (ϕ−, ϕ−, ϕ+, ϕ+, ϕ−, ϕ−), ψ∗

4 = (ϕ−, ϕ+, ϕ−, ϕ−, ϕ+, ϕ+).

Using the γ6-cycles ψ∗
i (ση) for i = 1, 2, 3, 4, we generate four n

2 -classes:

F1 ={ψ∗
1(τ j

∗ (ση)) | 0 ≤ j ≤ 3k+1}, F3 ={ψ∗
3(τ j

∗ (ση)) | 0 ≤ j ≤ 3k+1},
F2 ={ψ∗

2(τ j
∗ (ση)) | 3k+2 ≤ j ≤ 6k+3}, F4 ={ψ∗

4(τ j
∗ (ση)) | 3k+2 ≤ j ≤ 6k+3}.

The n
2 -classes are as below:

(F1) ⟨ 0, 3k−2,6k+3,3k−1,6k+1,3k+1 ⟩, (F3) ⟨ 0, 3k−2,6k+3,3k−1,6k+1,3k+1 ⟩,
⟨ 1, 3k−1, 0, 3k, 6k+2,3k+2 ⟩, ⟨ 1, 3k−1, 0, 3k, 6k+2,3k+2 ⟩,

...
...

⟨ 3k, 6k−2,3k−1,6k−1,3k−3,6k+1 ⟩, ⟨ 3k, 6k−2,3k−1,6k−1,3k−3,6k+1 ⟩,
⟨3k+1,6k−1, 3k, 6k, 3k−2,6k+2 ⟩. ⟨3k+1,6k−1, 3k, 6k, 3k−2,6k+2 ⟩.

(F2) ⟨3k+2, 6k, 3k+1,6k+1,3k−1,6k+3 ⟩, (F4) ⟨3k+2, 6k, 3k+1,6k+1,3k−1,6k+3 ⟩,
⟨3k+3,6k+1,3k+2,6k+2, 3k, 0 ⟩, ⟨3k+3,6k+1,3k+2,6k+2, 3k, 0 ⟩,

...
...

⟨6k+2,3k−4,6k+1,3k−3,6k−1,3k−1 ⟩, ⟨6k+2,3k−4,6k+1,3k−3,6k−1,3k−1 ⟩,
⟨6k+3,3k−3,6k+2,3k−2, 6k, 3k ⟩. ⟨6k+3,3k−3,6k+2,3k−2, 6k, 3k ⟩.

Now, take the sequence

µ = (3k−2, 3k−1,−(3k+1),−(3k−2), 3k+1,−(3k−1)),

and we have σµ = (0, 3k−2, 6k−3, 3k−4, 6k+2, 3k−1). As before, it can be
easily checked that µ is an f -sequence. We choose the flag ψ∗

5 = (ϕ+, ϕ−,
ϕ−, ϕ+, ϕ+, ϕ+). Then, Using the γ6-cycle ϕ∗

5(σµ), we generate an n-class
F5 = {ψ∗

5(τ j
∗ (σµ)) | j ∈ Z} as below:
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(F5) ⟨ 0, 3k−2,6k−3,3k−4,6k+2,3k−1 ⟩,
⟨ 1, 3k−1,6k−2,3k−3,6k+3, 3k ⟩,

...
⟨6k+2,3k−4,6k−5,3k−6, 6k, 3k−3 ⟩,
⟨6k+3,3k−3,6k−4,3k−5,6k+1,3k−2 ⟩.

For p, q in Zn with q−p = 3k+1, we have the following observations.

(i) Each edge p q appears in the forms q p as the fifth edge of a cycle in
F5.

(ii) Each edge p q appears in the form q p as the last edge of a cycle in F2

or F3.
(iii) Each edge p q appears in the form q p as the last edge of a cycle in F1

or F4.
(iv) Each edge p q appears in the form q p as the third edge of a cycle in

F5.

Since no other edges of the above cycles have distance 3k+1, each of the edges
p q, p q, p q and p q with p−q = 3k+1 appears exactly once in the above cycles.
Similarly, we can check that the same is true for all p, q with 3k−2 ≤ p−q ≤ 3k
as well.

We now handle the edges of distance 3k+2 = n
2 . These edges are diagonal

edges and appear in every cycle in F1, F2, F3 and F4. In fact, this is the
reason we produce n

2 -classes instead of n-classes when the relevant f -sequence
contains the distance n

2 . For p, q in Zn with q−p = 3k+2, we have the following
observations.

(i) Each edge p q appears in the form q p or q p as the fourth edge of a
cycle in F3.

(ii) Each edge p q appears in the form p q or q p as the fourth edge of a
cycle in F1.

(iii) Each edge p q appears in the form p q or q p as the fourth edge of a
cycle in F2 or F4. If p q appears in F2 then p q appears in F4, and vice
versa.

Since no other edges are diagonal edges, each diagonal edge appears exactly
once in γ6-cycles in F1, F2, F3 and F4, and no diagonal edges appear in F5.

Consequently, the 6-cycles in(
k−2∪
i=0

(Ci ∪ Di)

) ∪ (
5∪

i=1

Fi

)

constitute a γ6-decomposition of Kn(2).

Example 3.2. Let n = 6 · 1 + 4 = 10. Then Dn = {±1,±2,±3,±4, 5}.
By the procedure in Case (2), we have η = (1,−2, 3, 5,−3,−4) and µ =
(1, 2,−4,−1, 4,−2), and so ση = (0, 1, 9, 2, 7, 4) and σµ = (0, 1, 3, 9, 8, 2). The
four 5-classes and one 10-class are as below:
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(F1) ⟨0,1,9,2,7,4 ⟩, (F3) ⟨0,1,9,2,7,4 ⟩, (F5) ⟨0,1,3,9,8,2 ⟩,
⟨1,2,0,3,8,5 ⟩, ⟨1,2,0,3,8,5 ⟩, ⟨1,2,4,0,9,3 ⟩,
⟨2,3,1,4,9,6 ⟩, ⟨2,3,1,4,9,6 ⟩, ⟨2,3,5,1,0,4 ⟩,
⟨3,4,2,5,0,7 ⟩, ⟨3,4,2,5,0,7 ⟩, ⟨3,4,6,2,1,5 ⟩,
⟨4,5,3,6,1,8 ⟩. ⟨4,5,3,6,1,8 ⟩. ⟨4,5,7,3,2,6 ⟩,

⟨5,6,8,4,3,7 ⟩,
(F2) ⟨5,6,4,7,2,9 ⟩, (F4) ⟨5,6,4,7,2,9 ⟩, ⟨6,7,9,5,4,8 ⟩,

⟨6,7,5,8,3,0 ⟩, ⟨6,7,5,8,3,0 ⟩, ⟨7,8,0,6,5,9 ⟩,
⟨7,8,6,9,4,1 ⟩, ⟨7,8,6,9,4,1 ⟩, ⟨8,9,1,7,6,0 ⟩,
⟨8,9,7,0,5,2 ⟩, ⟨8,9,7,0,5,2 ⟩, ⟨9,0,2,8,7,1 ⟩.
⟨9,0,8,1,6,3 ⟩. ⟨9,0,8,1,6,3 ⟩.

The γ6-cycles at the first rows of the classes F1, F2, F3 and F4 are drawn in
Figure 2. We see that all edges between A2 and A7 appear. By rotating the
these cycles up to 4 clicks, we obtain all diagonal edges. Looking at edges
between A2 and A9, and edges between A4 and A7, we find the same is true
for all the edges of distance 3.

Let H be the bipartite graph K6,6 such that each partite set is partitioned
into three 2-element sets. Let the two partite sets be B1 ∪ B2 ∪ B3 and B4 ∪
B5 ∪ B6, respectively, where Bi = {bi, bi} for i = 1, 2, . . . , 6. We denote this
graph by H(B1, B2, B3; B4, B5, B6).

A 6-cycle which consists of exactly one vertex from each set Bi for i =
1, 2, . . . , 6 will be called a γ6-cycle for H.
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Lemma 3.1. The graph H has a γ6-decomposition.

Proof. We have six disjoint γ6-cycles for H, which constitute a required decom-
position as below. The two cycles in the first column are shown in Figure 3.

⟨b1, b4, b2, b6, b3, b5⟩, ⟨b1, b6, b2, b4, b3, b5⟩, ⟨b1, b4, b3, b5, b2, b6⟩,
⟨b1, b6, b3, b4, b2, b5⟩, ⟨b1, b4, b2, b5, b3, b6⟩, ⟨b1, b4, b3, b6, b2, b5⟩.

¤
Case (3). Suppose n ≡ 0 (mod 6) and put n = 6k with k ≥ 1. When n = 6,
we have the following γ6-decomposition for K6(2).

⟨0, 1, 3, 4, 2, 5⟩, ⟨1, 2, 4, 0, 3, 5⟩, ⟨2, 3, 0, 1, 4, 5⟩, ⟨3, 4, 1, 2, 0, 5⟩, ⟨4, 0, 2, 3, 1, 5⟩,
⟨0, 1, 3, 2, 4, 5⟩, ⟨1, 2, 4, 3, 0, 5⟩, ⟨2, 3, 0, 4, 1, 5⟩, ⟨3, 4, 1, 0, 2, 5⟩, ⟨4, 0, 2, 1, 3, 5⟩.

To use an induction, assume that K6k(2) has a γ6-decomposition, and con-
sider K(6(k+1))(2). We partition K(6(k+1))(2) into two graphs K6(2) and K6k(2)

and the edges between two vertices, one from K6(2) and another from K6k(2).
Now, K6(2) and K6k(2) are γ6-decomposable by the above table and the in-
duction hypothesis, respectively. Let the partite sets in K6(2) be Ai for i =
1, 2, . . . , 6, and let the partite sets in K6k(2) be Bj for j = 1, 2, . . . , 6k. Let
Hpq = H(A3p+1, A3p+2, A3p+3; B3q+1, B3q+2, B3q+3) for p = 0, 1 and q =
0, 1, . . . , 2k−1. Each of them is γ6-decomposable by Lemma 3.1. Since edges
between vertices in K6(2) and vertices in K6k(2) can be partitioned into edges of
Hpq, K(6(k+1))(2) has a γ6-decomposition. Consequently, Kn(2) is γ6-decompos-
able for all n = 6k with k ≥ 1.
Case (4). Suppose n ≡ 3 (mod 6) and put n = 6k + 3 with k ≥ 1. We
prove this case by an induction on k. If k = 1, then n = 9. Since 6 divides(
9
2

)
= 36, K9(2) has a γ6-decomposition by Theorem 1.3. Now, assume that

K(6k+3)(2) has a γ6-decomposition, and consider K(6(k+1)+3)(2). We partition
K(6(k+1)+3)(2) into two graphs K6(2) and K(6k+3)(2) and the edges between
two vertices, one from K6(2) and another from K(6k+3)(2). Now, K6(2) and
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K(6k+3)(2) are γ6-decomposable by the table in Case (3) and the induction hy-
pothesis, respectively. As in Case (3), the edges between vertices in K6(2) and
vertices in K(6k+3)(2) can be partitioned into 2(2k+1) classes, each classes induc-
ing a copy of H, which is γ6-decomposable by Lemma 3.1. Thus, K(6k+3)(2) is
γ6-decomposable. Consequently, Kn(2) is γ6-decomposable for all n = 6k with
k ≥ 1.

4. A remark

For Case (1) of the preceding section, we can proceed by induction on the
number n of partite sets as follow. First, we produce a γ6-decomposition
of K7(2) in any method such as computer-aided search. Then, we suppose
k ≥ 2 and K(6(k−1)+1)(2) is γ6-decomposable, and show that K(6k+1)(2) is
also γ6-decomposable. Partition K(6k+1)(2) into two graphs K(6(k−1)+1)(2)

and K6(2) and the edges between vertices, one from each graph. By induc-
tion hypothesis, K(6(k−1)+1)(2) is γ6-decomposable. Let A0 = {a, a} be a
partite set of K(6(k−1)+1)(2). Then the vertex set A0 ∪ K6(2) induces a sub-
graph of K(6k+1)(2) which is isomorphic to K7(2), and this graph was shown
to be γ6-decomposable. Now, partition the vertices in K(6(k−1)+1)(2) \ A0 into
2(k−1) classes {Ai1, Ai2, Ai3} of 3 partite sets for i = 1, 2, . . . , 2(k−1). Also
partition the vertices in K6(2) into 2 classes {Bj1, Bj2, Bj3} of 3 partite sets
for j = 1, 2. Then, H(Ai1, Ai2, Ai3; Bj1, Bj2, Bj3) is an induced subgraph of
K(6k+1)(2) which is γ6-decomposable by Lemma 3.1, for i = 1, 2, . . . , 2(k−1)
and j = 1, 2. Consequently, K(6k+1)(2) is γ6-decomposable for all k ≥ 1.

For Case (2), a similar induction can be applied. First, we produce a
γ6-decomposition of K10(2). Then, we partition K(6k+4)(2) into two graphs
K(6(k−1)+4)(2) and K6(2) and the edges between two vertices, one from each
graph. Take vertices in K6(2) and four partite sets of K(6(k−1)+4)(2). Then,
these vertices induce a subgraph of K(6k+4)(2) which is isomorphic to K10(2).
The remaining edges of K(6k+4)(2) are partitioned into edge-disjoint subgraphs
each of which is isomorphic to H. Consequently, K(6k+4)(2) is γ6-decomposable
for all k ≥ 1.

However, the above γ6-decompositions do not have good symmetry as the
γ6-decompositions in Section 3. In Section 3, we constructed a circular γ6-
decomposition when n ≡ 1 (mod 6), and when n ≡ 4 (mod 6) the γ6-decompo-
sition could be partitioned into full classes and half classes. There, the full
classes are circular and the half classes are not circular but are almost circular
in the sense that the orderings of partite sets for the γ6-cycles in the classes
are circular.
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