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1. Introduction

A spanning cycle in a graph G is called a hamiltonian cycle and if such a
cycle exists, we say that G is hamiltonian. Similarly, a 2-factor in a graph
G is a 2-regular spanning subgraph, or equivalently a partition of V (G) into
cycles. Hamiltonicity and the existence of 2-factors in graphs have been
widely studied. A good reference for the current state of such problems is [4].

We say that two edges in a graph G are adjacent if they share an end-
vertex. The line graph of G, denoted L(G) is the graph with V (L(G)) =
E(G) and E(L(G)) = {eiej | ei and ej are adjacent in G}. We define the
ith iterated line graph of G recursively with L1(G) = L(G) and Li+1(G) =
L(Li(G)).

Chartrand [2] was one of the first to study properties of iterated line
graphs, proving that for every graph G (with a few trivial exceptions), Lk(G)
is hamiltonian for k sufficiently large. Since this first paper, many cycle-
structural properties of iterated line graphs have been studied, including
when Lk(G) is k-ordered ([10]), pancyclic ([12]), k-ordered hamiltonian ([8]),
and characterizations of G when Lk(G) is hamiltonian ([11]).

In this paper, we extend Chartrand’s result by giving degree conditions
on G to ensure that L2(G) contains a 2-factor with every possible number
of cycles. We also give a sufficient condition for the existence of a 2-factor
in L2(G) with all cycle lengths specified. Finally in section 5, we give a
characterization of the graphs G where Lk(G) contains a 2-factor.

2. Preliminaries

In the majority of this paper, we consider only undirected, loopless graphs
without multiple edges. The main results in the last section will consider
multigraphs as well. We will use nk to denote the number of vertices in the
kth iteration of the line graph, and δk to denote δ(Lk(G)).

A connected graph is prolific if it is not isomorphic to a path, cycle or
the claw K1,3. For the remainder of this paper, we will consider only prolific
graphs.

For any terms not defined here, consult [13].

2.1. Hamiltonian line graphs

A dominating circuit of G is a circuit in G such that each edge of G is
either in the circuit or adjacent to an edge of the circuit. Harary and Nash-
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Williams [6] used the notion of a dominating circuit to characterize the
graphs G such that L(G) is hamiltonian.

Theorem 1 (Harary and Nash-Williams [6]). Let G be a connected graph.

Then L(G) is hamiltonian if and only if G contains a dominating circuit.

Theorem 2 (Chartrand [2]). For every prolific graph G, there exists an

integer Th such that for all t ≥ Th, Lt(G) is hamiltonian.

Theorem 3 (Chartrand [2]). If G is a prolific graph with δ(G) ≥ 3, then

L2(G) is hamiltonian.

In the proof of Theorem 3, Chartrand uses an important description of
the structure of line graphs. If H = L(G) for some G, then H can be
decomposed into maximal edge-disjoint cliques that intersect in at most
one vertex. Each vertex v in G in can be associated with a unique clique
Kv in this decomposition of L(G), in that the vertices of Kv in H are
precisely those edges adjacent to v in G. As δ(G) ≥ 3, each clique in
the decomposition has order at least three, and is therefore hamiltonian.
It is then simple to construct a dominating circuit in L(G) by selecting a
hamiltonian cycle from each clique and considering the subgraph of L(G)
induced by the edges of these cycles.

2.2. 2-factors in line graphs

Gould and Hynds [5] generalized Theorem 1 to 2-factors with more than one
cycle.

Definition. A k-system that dominates is a collection C of k edge-disjoint
circuits and stars (K1,s with s ≥ 3) in G such that each edge e of G is either
in one of the circuits or stars of C, e is adjacent to an edge of a circuit of C,
or e is incident to the center of a star of C.

Theorem 4 (Gould and Hynds [5]). L(G) contains a 2-factor with exactly

k cycles if and only if G contains a k-system that dominates.

Several of the results in this paper will use a technique similar to the the
one given in the proof of Theorem 3 to construct a k-system that dominates
for various values of k. The following well-known result will be useful.
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Theorem 5. Let k ≥ 1 be a positive integer. Then K2k+1 can be decomposed

into k edge-disjoint hamiltonian cycles and K2k+2 can be decomposed into k
edge-disjoint hamiltonian cycles and a matching of size k + 1.

3. 2-Factors with Specified Number of Cycles

The following lemma was used by Knor and Niepel [9] for determining the
distance-independent domination number of iterated line graphs.

Lemma 6 (Knor and Niepel [9]). Let G be a connected graph. If δ(G) ≥ 5,
then L(G) contains ⌊n2/3⌋ edge-disjoint copies of a claw K1,3.

As ⌊n2/3⌋ = ⌊|E(L(G))|/3⌋, this lemma implies that if δ(G) ≥ 5, then L2(G)
contains the maximum possible number of edge-disjoint triangles. However,
this does not imply that L2(G) contains a 2-factor with the maximum pos-
sible number of cycles, since if n1 is not divisible by 3, then there may be
one or two extra edges not covered by a claw and not incident to a cen-
ter of a claw. In that case, the set of claws from Lemma 6 do not form
an ⌊n2/3⌋-system that dominates. We present a strengthening of Lemma 6
that addresses this issue.

Lemma 7. Let G be a connected graph. If δ(G) ≥ 6, then E(L(G)) can be

decomposed into ⌊n2/3⌋ edge-disjoint copies of the claw K1,3, the star K1,4,

or the star K1,5.

P roof. In Knor and Niepel’s proof of Lemma 6, they prove that there
exists an orientation D of L(G) such that the indegree of every vertex except
possibly one is a multiple of 3. If the indegree of every vertex is a multiple
of 3, then the claw decomposition C is formed by partitioning the incoming
edges at each vertex into sets of size 3. Otherwise, let v be the sole vertex
whose indegree is not a multiple of 3. To form the set C of ⌊n2/3⌋ claws,
partition the incoming edges at every vertex except v into sets of size 3; at
v discard n2 mod 3 incoming edges, and partition the remaining incoming
edges into sets of size 3.

If the indegree of v is at least 3, then all the incoming edges incident
on v can be partitioned into ⌊deg−L(G)(v)/3⌋ sets of size 3, 4, and 5.∗ Along

∗Note that if deg−

L(G)(v)/3 ≡ 1 mod 3, then there will be exactly one set of size 4 and

no set of size 5, while if deg−

L(G)(v)/3 ≡ 2 mod 3, then there will be either exactly two sets
of size 4 and no set of size 5, or exactly one set of size 5 and no sets of size 4.
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with the partitions at the other vertices, we obtain a decomposition C
′ of

the edges of L(G) into ⌊n2/3⌋ edge-disjoint copies of the claw K1,3, the star
K1,4, or the star K1,5.

We now consider when the indegree of v is less than 3 by distinguish-
ing two cases. First, suppose that deg−L(G)(v) = 1, and let −→uv be the sole
incoming edge. If the indegree of u is positive, then we can reverse the edge
−→uv and obtain a decomposition C

′ as above, with u playing the role of v.
Thus, we may assume that the indegree of u is 0. Since δ(G) ≥ 6, −→uv is
in a clique Q of size at least 6 in L(G), and hence there exists a vertex y
in Q − {u, v} such that deg−Q−{u,v}(y) ≥ 2. Let −→xy be an edge in Q. Since

u has indegree 0 and v has indegree 1, the directed edges −→ux, −→uy, −→vx, and
−→vy are present in D. Form a new orientation D′ of L(G) from D by re-
versing the edges −→uv, −→uy, −→ux, and −→xy, as depicted in Figure 1. Notice that
the indegree of v becomes 0, the indegree of u becomes 3, the indegree of
x is unchanged, and the indegree of y is reduced by 2. Prior to any edge
reversals, deg−Q(y) ≥ 4 and deg−L(G)(y) ≡ 0 mod 3 by assumption. Hence,
after reversing these edges, the indegree of y is at least 4, and the indegree
of all other vertices is 0 mod 3, completing the proof in this case.

u v

x y

Figure 1. The edges to reverse in the case when deg−
L(G)(v) = 1 are shown with

dashed edges.

Next, suppose that deg−L(G)(v) = 2, and let −→u1v and −→u2v be the two incoming

edges. If both u1 and u2 have positive indegree, then by reversing both −→u1v
and −→u2v we can obtain a decomposition C

′ as above. If the two cliques Q1 and
Q2 that contain −→u1v and −→u2v are edge-disjoint, then we may also apply the
same proof separately to each clique that we did when deg−L(G)(v) = 1. Hence

we may assume that both −→u1v and −→u2v lie in the same clique Q. Without
loss of generality, assume that the edge −−→u1u2 is present in Q, implying that
deg−L(G)(u2) ≥ 3. Since Q − {u1, v} has at least 4 vertices, there exists a

vertex y in Q − {u1, v} with deg−Q−{u1,v}(y) ≥ 2.
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Assume first that y 6= u2, and note that, as above, there exists a vertex x in
Q−{u1, u2, v} such that −→xy is an edge. As above, we reverse the edges −→u1v,
−→u1y, −−→u1x, and −→xy, so that the indegree of y is at least 4 and ≡ 1 mod 3 and
the indegrees of x and u1are 0 mod 3. We will then reverse the orientation
of the edge −→u2v so that the degree of u2 is at least 4 and ≡ 1 mod 3 and the
indegree of v ≡ 0 mod 3.

If y = u2, then we may assume that u2 is the only vertex in in Q−{u1, v}
with deg−Q−{u1,v}(y) ≥ 2. Hence there are exactly 3 vertices in Q−{u1, u2, v}
which are oriented as a directed cycle, and all three have incident edges
oriented towards u2.

u1 v

x u2

w z

Figure 2. The subcase where y = u2. Note that the edges −−→u1w, −→u1z, −→vw, and −→vz
are not shown for clarity. The edges to reverse in this case are shown

with dashed edges.

Figure 2 depicts Q. Let −−→xu2 be a directed edge in Q − {u1, u2, v}. Form a
new orientation D′ of L(G) from D by reversing the edges −→u1v, −−→u1u2,

−−→u1x,
−−→xu2, and −→vu2. Notice that the indegree of v becomes 0, the indegree of u1

becomes 3, the indegree of x is unchanged, and the indegree of u2 is reduced
by 1. By assumption deg−Q(u2) ≥ 4, but deg−L(G)(u2) ≡ 0 mod 3. Hence the

indegree of u2 in D′ is at least 5. Thus, we may obtain a decomposition C
′

as above, with u2 playing the role of v.

The following corollary is immediate.

Corollary 8. Let G be a connected graph with δ(G) ≥ 6. Then L2(G)
contains a 2-factor with ⌊n2/3⌋ cycles.

It is possible, depending on δ1, that many of the stars constructed in Lemma 7
will have common centers. We can therefore construct larger stars, and
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hence different types of 2-factors, by joining stars with common center ver-
tices.

Lemma 9. If G has an edge decomposition into ⌊n1/3⌋ stars, then L(G)
contains a 2-factor with k cycles, for n0 ≤ k ≤ ⌊n1/3⌋.

P roof. Let C be the edge decomposition of G into ⌊n1/3⌋ stars. Let C
′ be

a subset of the stars in C such that for every vertex v in G, at most one star
of C

′ is centered at v, and such that C
′ is a |C′|-system that dominates. Note

that |C′| ≤ n0. For any n0 ≤ k ≤ ⌊n1/3⌋, let E be any subset of C \ C
′ such

that |E| = k − |C′|. Then C
′ ∪ E is a k-system that dominates, and hence by

Theorem 4, L(G) contains a 2-factor with k cycles.

Lemma 10. Let G be a graph containing a 2-factor with k cycles and con-

taining an edge decomposition into ⌊n1/3⌋ stars. Then L(G) contains a

2-factor with j cycles, for k ≤ j ≤ k + ⌊n1/3⌋ − n0.

P roof. Let F be a 2-factor in G with k components, and let C be an edge
decomposition of G into ⌊n1/3⌋ stars. Let C

′ be the set of stars in C which
are edge-disjoint from F. Since F has n0 edges, |C′| ≥ ⌊n1/3⌋ − n0. For any
k ≤ j ≤ k + ⌊n1/3⌋ − n0, let E be any subset of C

′ such that |E| = j − k.
Then F ∪ E is a j-system that dominates, and hence by Theorem 4, L(G)
contains a 2-factor with j cycles.

Definition. A graph G is 2-factor spectrum complete if there exists a 2-
factor in G with exactly k cycles for every 1 ≤ k ≤ ⌊n0/3⌋.

We are now able to show the following.

Proposition 11. Let G be a prolific graph. If δ(G) ≥ 6, δ1 ≥ 12, and L(G)
is hamiltonian, then L2(G) is 2-factor spectrum complete.

P roof. Since δ(G) ≥ 6, Lemma 7 implies that L(G) has an edge de-
composition into ⌊n1/3⌋ stars. By Lemma 9, L2(G) contains a 2-factor with
k-cycles for n1 ≤ k ≤ ⌊n2/3⌋. By Lemma 10 and using the hamiltonian cycle
in L(G), L2(G) contains a 2-factor with k-cycles, for 1 ≤ k ≤ 1+⌊n2/3⌋−n1.
Since δ1 ≥ 12, then n2 ≥ 6n1, and therefore 1 + ⌊n2/3⌋ − n1 ≥ n1. Thus,
L2(G) contains a 2-factor with k-cycles for 1 ≤ k ≤ ⌊n2/3⌋, and hence L2(G)
is 2-factor spectrum complete.
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Note that if L2(G) has a 2-factor with ⌊n2/3⌋ cycles, and we assume that
δ0 ≥ 4, then ⌊n2/3⌋+⌊n3/3⌋−n2 just abuts with n2. Therefore any 2-factors
in L2(G) with fewer than ⌊n2/3⌋ cycles do not allow us to generate any new
types of 2-factors. If we wish to strengthen Lemma 11, we would need a
new method by which we could construct 2-factor with many cycles.

Corollary 12. Let G be a prolific graph. If δ(G) ≥ 5, then L3(G) is 2-
factor spectrum complete. If δ(G) ≥ 4, then L4(G) is 2-factor spectrum

complete. If δ(G) ≥ 3, then L5(G) is 2-factor spectrum complete.

P roof. The results follow from Proposition 11, Theorem 2, and the fact
that δ(L(G)) ≥ 2δ(G) − 2.

The following is a well-known fact about iterated line graphs (see, for
example [7]).

Lemma 13. For every prolific graph G, there exists an integer Tδ such that

for all t ≥ Tδ, δt ≥ 3.

Corollary 14. For every prolific graph G, there exists an integer Ttfsc such

that for all t ≥ Ttfsc, Lt(G) is 2-factor spectrum complete.

P roof. By Lemma 13, there exists an integer Tδ such that δt = 3 for all
t ≥ Tδ. Applying Corollary 12, we have that Lt(G) is 2-factor spectrum
complete for all t ≥ Tδ + 5.

We strongly feel that the following is true, although we are unable to verify
the conjecture.

Conjecture 15. If G is a prolific graph with δ(G) ≥ 3, then L2(G) is
2-factor spectrum complete.

4. 2-Factors with Specified Cycle Lengths

We have shown that, given a sufficient minimum degree, L2(G) contains a
2-factor of every type. However we did not explicitly discuss the lengths
of the cycles in many of these 2-factors. We will now give conditions that
allow us to prescribe not only the number of cycles in a 2-factor, but also
the lengths of these cycles.
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4.1. Pancyclic and cycle complementary line graphs

A simple graph G is pancyclic if G contains a cycle of length k for every
3 ≤ k ≤ n0. Furthermore, G is said to be vertex pancyclic if every vertex in
G lies on a cycle of each length. A simple graph G is cycle complementary

if for any k between 3 and n0 − 3, G contains a 2-factor with exactly two
cycles of length k and n0 − k.

Samodivkin [12] has determined the minimum t such that Lt(G) is ver-
tex pancyclic. The following can be shown using a technique similar to the
proof of Theorem 3.

Proposition 16. Let G be a connected graph. If δ(G) ≥ 3, then L2(G) is

vertex pancyclic.

P roof. We will show that each edge e in L(G) lies on a circuit dominating
k edges for any 3 ≤ k ≤ n2. Suppose that e lies in a maximal clique K of
order t, then e lies on a cycles of length k ≤ t in L(G). If this cycle, C, is
hamiltonian, it dominates each edge in K, and hence implies the existence
of cycles of length up to

(

t
2

)

in L2(G). Choose any other clique K ′ ∼= Kt1

in L(G) that shares a vertex v with K. Since v dominates t1 − 1 edges
in K ′, we are able to identify cycles in L2(G) of length up to

(t
2

)

+ t1 − 1
through the vertex corresponding to e. Choose any hamiltonian cycle in
K ′. This cycle forms a circuit with C that dominates between

(t
2

)

+ t1 and
(

t
2

)

+
(

t1
2

)

edges in L(G). We are able to extend this circuit by continuing
to incorporate additional maximal cliques in L(G). As L(G) is connected,
we may continue this process until we have dominated a sufficient number
of edges.

Using a technique similar to that used in Proposition 16, we are able to show
the following.

Proposition 17. If δ(G) ≥ 6, then L2(G) is cycle complementary.

P roof. Let k be an integer between 3 and ⌊n2(G)
2 ⌋. By Theorem 5 and the

fact that δ(G) ≥ 6, each clique in L(G) contains at least two edge-disjoint
hamiltonian cycles. Additionally, it is not difficult to see that if t ≥ 6, Kt

contains a hamiltonian cycle and a copy of Cℓ that are edge disjoint, for
any ℓ ≤ t. Thus, if k < 2n1 we can easily join hamiltonian cycles from each
clique to form circuit C1 that spans L(G) and has 2n1 edges. We can also
construct a circuit C2 with k edges that is edge disjoint from C1 using at
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most an additional hamiltonian cycle from each clique. If C2 is considered
to dominate E(C2) and C1 is considered to dominate all remaining edges in
L(G), we will obtain the desired pair of cycles in L2(G).

If k ≥ 2n1, we will construct a 2-system that dominates as follows.
By theorem 5 and the fact that δ(G) ≥ 6 each clique in L(G) contains at
least two edge-disjoint hamiltonian cycles. We can form two edge-disjoint
spanning circuits C1 and C2 in L(G) by joining a hamiltonian cycle from
each clique. As each of these circuits dominates each remaining edge in the
graph, we will associate k − 2n1 of these edges with C1 and the remaining
edges with C2, yielding the desired complementary cycles in L2(G).

4.2. The EZk property

The problem of determining when a graph has a 2-factor of a given type
has been of considerable interest. One of the most well-known conjectures
in this area is due to El-Zahar [3], who verified the conjecture when t = 2.

Conjecture 18 (El-Zahar, 1984). Let G be a graph on n = ℓ1+ℓ2+ · · ·+ℓt

vertices. If

δ(G) ≥

⌈

ℓ1

2

⌉

+

⌈

ℓ2

2

⌉

+ · · · +

⌈

ℓt

2

⌉

,

then G contains a 2-factor with cycles of length ℓ1, ℓ2, . . . , ℓt.

This motivates the following definition.

Definition. Let k be an integer greater than 1. A simple graph G has the
EZk property if G contains a 2-factor with k cycles of lengths ℓ1, ℓ2, . . . , ℓk,
for all possible sets of lengths ℓi where 3 ≤ ℓi ≤ n0 for all 1 ≤ i ≤ k and
∑k

i=1 ℓi = n0.

We will prove that if G has sufficiently high minimum degree, then L2(G)
has the EZk property. We begin with a result of Bondy and a lemma.

Theorem 19 (Bondy [1]). Let G be a simple graph. If deg(u)+deg(v) ≥ n0

for all non-adjacent pairs of vertices u and v, then G is either pancyclic or

the complete bipartite graph Kn/2,n/2. If G is Kn/2,n/2, then equality of the

degree sum holds for all pairs of non-adjacent vertices.
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Lemma 20. Let n ≥ 4k − 2, and H be a collection of k − 1 edge-disjoint

subgraphs of Kn, each with maximum degree at most 2. Then Kn − ∪H is

pancyclic.

P roof. Let u and v be two nonadjacent vertices in Kn − ∪H. Note that
degKn

(u) = n − 1 and that deg∪H(u) ≤ 2(k − 1). Then

degKn−∪H(u) + degKn−∪H(v) ≥ 2 [(n − 1) − 2(k − 1)]

= n + [n − (4k − 2)]

≥ n,

and by Theorem 19, Kn − ∪H is pancyclic.

Theorem 21. If G is a prolific graph with δ(G) ≥ 4k − 2, then L2(G) has

the EZk property.

P roof. Order the vertices v1, v2, . . . , vn0 of G such that for all 1 ≤ r ≤
n0, the subgraph G[v1, v2, . . . , vr] induced by the vertices v1, v2, . . . , vr is
connected. Let ℓ1, ℓ2, . . . , ℓk be specified cycle lengths for the 2-factor with
k cycles in L2(G). Note that ℓk = n2 −

∑k−1
i=1 ℓi. For each 1 ≤ i ≤ k − 1,

let si denote the minimum s such that
∑s

r=1 degG(vr) ≥ ℓi. Let Qr denote
the clique in L(G) corresponding to the edges incident on vr in G. For each
1 ≤ i ≤ k and r < si, let Hi,r denote a hamiltonian cycle in Qr such that
Hi,r is edge-disjoint from Hj,r for j < i. For r = si, let Hi,r denote a cycle
of length ℓi −

∑si−1
r=1 degG(vr) in Qr such that Hi,r is edge-disjoint from Hj,r

for j < i. Such edge-disjoint cycles can be chosen in Qr by Lemma 20. For
r > si, let Hi,r be an empty graph. For each i, let Hi =

⋃n0
r=1 Hi,r. Partition

the edges of L(G)−∪Hi into sets E1,E2, . . . ,Ek such that |E(Hi) ∪ Ei| = ℓi.
Then {Hi ∪ Ei : 1 ≤ i ≤ k} is a k-system that dominates L(G). Hence by
Lemma 4, L2(G) contains a 2-factor F with k cycles. Moreover, Hi ∪ Ei

corresponds to a cycle in F of length ℓi. Thus F is the desired 2-factor.

Throughout the preceding sections, we have repeatedly utilized the notion
of adjoining cycles from maximal cliques to construct dominating circuits or
components of k-systems that dominate. It is possible, with more in-depth
analysis, to construct these subgraphs in a way that permits additional
structure. For instance, note that if a clique is sufficiently large, then it will
contain a hamiltonian cycle after the removal of a moderately large collection
of edge-disjoint triangles. Choosing these triangles to contain specified edges
gives rise to results akin to the following.



518 M. Ferrara, R.J. Gould and S.G. Hartke

Proposition 22. Given t vertices in L2(G), with δ(G) ≥ 2t+2, there exists

a 2-factor with t cycles such that each vertex lies in a different cycle.

5. A Characterization of Iterated Line Graphs Containing

a 2-Factor

In this section, given a graph G, we determine exactly those values of k for
which Lk(G) has a 2-factor.

In this section, we will also consider graphs with multiple edges. We
first introduce some additional notation that we will use in this section. For
any 0 ≤ i ≤ ∆(G), let Vi(G) denote the set of vertices of G having degree i.
For any subgraph H of a graph G, we will let Ē(H) denote those edges in G
adjacent to at least one vertex in H. Given any subset S of V (G), we shall
write G[S] to denote the subgraph of G induced by S. If G1 and G2 are two
subgraphs of G, we will define dG(G1, G2), the distance between G1 and G2

in G, to be the minimum of the distances dG(x1, x2) where xi is in Gi. If x
is in V (G′), for some subgraph g′ of G we let dG′(x) denote the degree of x
in G′.

A branch b in G is a path of length at least 2 with internal vertices that
lie in V2(G) and end-vertices that do not lie in V2(G). We will let B(G)
denote the collection of branches in G, and we will let B1(G) denote those
branches having at least one end-vertex in V1(G). For any subgraph H of
G, we let BH(G) denote those branches contained wholly within H.

5.1. EUk(G) and Fk(G)

Theorem 1 was extended by Liu and Xiong [11] as follows.

Definition. Let G be a graph, and let EUk(G) denote those subgraphs H
of G with the following properties.

(i) dH(x) ≡ 0(mod 2) for every x ∈ V (H).

(ii) V0(H) ⊆
⋃∆(G)

i=3 Vi(G) ⊆ V (H).

(iii) dG(H1,H − H1) ≤ k − 1 for any subgraph H1 of H.

(iv) |E(b)| ≤ k + 1 for every branch b with E(H) ∩ E(b) = ∅.

(v) |E(b)| ≤ k for every branch b in B1(G).

With this definition of EUk(G) we present the following.
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Theorem 23 (Xiong [11]). For k ≥ 2, Lk(G) is hamiltonian if and only if

EUk(G) 6= ∅.

We now wish to characterize when Lk(G) has a 2-factor, and we proceed in
a manner similar to [11].

Definition. Let Fk(G) denote the subgraphs H of a graph G that satisfy
the following conditions.

(I) dH(x) ≡ 0(mod 2) for every x ∈ V (H).

(II) V0(H) ⊆
⋃∆(G)

i=3 Vi(G) ⊆ V (H).

(III) dG(H1,H − H1) ≤ k + 1 for any subgraph H1 of H.

(IV) |E(b)| ≤ k + 1 for every branch b with E(b) ∩ E(H) = ∅.

(V) |E(b)| ≤ k for every branch b in B1(G).

We will prove the following theorem.

Theorem 24. Let G be a connected graph with at least three edges. For any

k ≥ 2, Lk(G) has a 2-factor if and only if Fk(G) 6= ∅.

Intuitively, we are searching for subgraphs which will converge into a t-
system that dominates for some t as we iterate the line graph. The con-
ditions describing the sets EUk(G) and Fk(G) differ only in the condition
describing the distance between components of their elements (conditions
(iii) and (III)). This is because we do not require a t-system that dominates
to be connected, unlike a dominating circuit. Theorem 24 follows immedi-
ately from induction on k using the following two theorems.

Theorem 25. Let G be a connected graph with at least three edges and let

k ≥ 1 be an integer. Then Fk(L(G)) 6= ∅ if and only if Fk+1(G) 6= ∅.

Theorem 26. Let G be a connected graph with at least three edges. Then

L2(G) has a 2-factor if and only if F2(G) 6= ∅.

Before we begin proving the above results, several lemmas are necessary.
The first is a well-known fact about line graphs.

Lemma 27. For any graph G, L(G) does not contain an induced copy

of K1,3.
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Lemma 28 (Xiong [11]). If H is a subgraph of G in Fk(G) having a min-

imum number of components, then there exist no multiple edges in Ē(H1)∩
Ē(H2) for any two components H1 and H2 of H.

Lemma 29 (Xiong [11]). Let b = u1u2 . . . us (s ≥ 3) be a path of G and

let ei = uiui+1. Then b is in B(G) if and only if b′ = e1e2 . . . es−1 is in

B(L(G)).

We say a subgraph H of G is an eulerian subgraph if it is a circuit in G
containing a cycle of length at least three.

Lemma 30 (Xiong [11]). Let G be a connected graph and H be an eulerian

subgraph of L(G). Then there exists a subgraph C of G that satisfies the

following:

(1) dC(x) ≡ 0 (mod 2) for every x ∈ V (C).

(2) Every isolated vertex of C has degree at least 3 in G.

(3) For any two components C0, C00 of C, there exists a sequence of com-

ponents C0 = C1, C2, . . . , Cs = C00 of C such that dG(Ci, Ci+1) ≤ 1
for all 1 ≤ i ≤ s − 1.

(4) L(Ē(C)) contains H, and V (H) contains all elements of E(C).

We now prove our two key theorems.

Proof of Theorem 25. Suppose that Fk+1(G) 6= ∅, and choose an H ∈
Fk+1(G) with a minimum number of components, C1, C2, . . . Ct. Since each
vertex in Ci has even degree, we can find a cycle C ′

i in L(G) that spans
Ē(Ci). Let

H ′ =

t
⋃

i=1

C ′
i.

We now show that H ′ is in Fk(L(G)).

Since H is in Fk+1(G), we have that

∆(G)
⋃

i=3

Vi(G) ⊆ V (H).
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As H ′ clearly has no isolated vertices,

V (H ′) =
t
⋃

j=1

Ē(Cj)

we can see that H ′ satisfies (II).
Since dG(Ci, Cj) ≥ 1, Lemma 28 yields that any C ′

i and C ′
j are edge

disjoint. Hence H ′ satisfies (I).
For any T ⊂ {1, . . . , t}, our choice of H assures that dG(H −

⋃

T Ci,
⋃

T Ci) ≤ k + 2. If P is a shortest path between
⋃

T Ci and H −
⋃

T Ci

having at most k + 2 edges, then clearly L(P ) is a path between C ′
i and

H ′ − C ′
i having at most k + 1 edges. Thus H ′ satisfies (III).

We can immediately see that H ′ satisfies (IV) and (V) using Lemma 29.
Conversely, assume that Fk(L(G)) is not empty, and choose any H therein
having a minimum number of isolated vertices. We then claim that H has
no isolated vertices. Indeed, any isolated vertex e in V (H) has degree at
least three in L(G). Since L(G) is claw-free, it must be that e lies on some
triangle ee1e2 in L(G). Construct H0 as follows.

{

H + {ee1, e1e2, e2e} if e1e2 /∈ E(H) ,

H + {ee1, ee2} − {e1e2} if e1e2 ∈ H .

Clearly H0 is in Fk(L(G)) and has fewer isolated vertices than H, verifying
the claim.

Let H1,H2, . . . ,Hm be the components of H, each of which is an eulerian
subgraph of L(G). Thus, by Lemma 30, for each Hi there exists a subgraph
Ci of G satisfying the four given conditions. Set

C =





∆(G)
⋃

i=3

Vi(G)



 ∪

(

m
⋃

i=1

Ci

)

.

We now show that C is in Fk+1(G).
Since each of the Hi are vertex disjoint, and V (Hi) contains Ci for all i,

each Ci is edge-disjoint. Thus, by property (1) in Lemma 30, C is an even
subgraph. Each Ci also satisfies (2), and thus (II) holds trivially.

Since
⋃∆(L(G))

i=3 Vi(L(G)) ⊆ V (H) and H is a member of Fk(L(G)),
dG(x,G[V (C) \ {x}]) ≤ k + 2 for every vertex x having degree zero in C.
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Now choose some subset T of {1, . . . ,m} and note that dL(G)(H −
⋃

T Hi,
⋃

T Hi) ≤ k + 1 by our choice of H. Let P = e1e2 . . . es be a shortest
path from

⋃

T Hi to H −
⋃

T Hi, where e1 ∈ V (
⋃

T Hi) ⊆ Ē(
⋃

T Ci) and
es ∈ V (H −

⋃

T Hi) ⊆ Ē(C −
⋃

T Ci) and s ≤ k + 2. As G[e1, . . . , es] is
connected,

dG

(

⋃

T

Ci, C −
⋃

T

Ci

)

≤ |E(G[{e1, . . . , es}])| ≤ s ≤ k + 2,

so C satisfies (III). As H satisfies (III) to (V), Lemma 29 yields that C
satisfies (IV) and (V). Thus C ∈ Fk+1(G).

Proof of Theorem 26. We suppose that F2(G) 6= ∅ and choose an H in
F2(G) having a minimum number of components, H1, . . . , Ht. Since H is
in F2(G), |Ē(Hi)| ≥ 3 for any i, so there exists a cycle Ci in L(G) such that
V (Ci) = Ē(Hi). Let

C =

t
⋃

i=1

Ci.

By Lemma 28, C1, . . . , Ct are edge-disjoint cycles in L(G) and hence C is
even. Since dG(Hi,H − Hi) ≤ 3, we know that dL(G)(Ci, C − Ci) ≤ 2 for
any i. Using Lemma 29, any branch in B(L(G)) \ BH(L(G)) has length at
most 2 and any branch in B1(L(G)) has length at most 1. As H satisfies
(II), we see that

∆(L(G))
⋃

i=3

Vi(L(G)) ⊆ V (C).

Thus, Ē(C) = E(L(G)) which implies that L2(G) has a 2-factor.

Conversely, suppose that L2(G) has a 2-factor. By Theorem 4, L(G) has
a k-system that dominates for some k ≥ 1. Let S be such a system having
a minimum number of stars and amongst such k-systems that dominate, a
maximum number of vertices of degree three or more.

First we note that S includes no stars. Indeed, let Si be any star in S,
having center vertex e and pendant vertices including ea, eb and ec. Since
any line graph is claw-free, we may assume, without loss of generality, that
eaeb is an edge in L(G). We discard Si and modify S. If eaeb is in some
circuit in S, say C, we delete this edge from C and add the edges eae and
ebe creating a new circuit. If eaeb lies in some star Sj , simply delete Sj from
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S and add the triangle eaebe to S. Finally, in any other case, simply add
triangle eaebe to S (which adds a new circuit to our system). In any case,
it is easy to see that we have created a k-system that dominates in L(G)
having fewer stars than S, a contradiction.

One can now also see that S must contain all vertices of degree at least
three in L(G). If not, we may again use the fact that L(G) is claw-free to
reach a contradiction.

Let the components of S be S1, . . . , Sk. As each Si is a circuit, Lemma
30 gives that there are subgraphs H ′

i in G for each Si satisfying properties

(1) to (4). Let H =
⋃k

i=1 H ′
i.

Claim 31. dG(x,H) ≤ 1 for any x ∈
⋃∆G

i=3 Vi(G).

P roof. If G is either a star or a cycle, then the claim is trivial. If not, then
for any vertex x having degree at least three, there is some edge ex adjacent
to x which has degree at least three as a vertex in L(G). Now, via property
(4) and the fact that C contains all vertices of degree three or more in L(G),
we can see that ex ∈ V (S) ⊆ Ē(H). This implies that ex has an endvertex
in H, completing the proof of the claim.

Finally, we prove that

H ′ = H ∪





∆(G)
⋃

i=3

Vi(G)





is in F2(G). Let Hi be a component of H ′. As dL(G)(Si, S − Si) ≤ 2 for any
component Si of S, we can see that dG(H ′ − Hi,Hi) ≤ 3 satisfying (III).
It follows immediately from Lemma 29 and the fact that Ē(S) = E(L(G))
that (IV) and (V) hold for H ′. Thus H ′ ∈ F2(G).

The proof of Theorem 26 is now complete.

5.2. 2-factors with a given number of cycles

We now examine 2-factors with a given number of cycles in iterated line
graphs. To this end, we restrict our interest to those elements of Fk(G)
having a particular decomposition.

Definition. Let F
(t)
k (G) denote those elements H of Fk(G) such that H

can be partitioned into edge-disjoint subgraphs H1, . . . , Ht such that the
following hold.
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(a) dHi
(x) ≡ 0 (mod 2) for all i and all x ∈ V (Hi).

(b) Ē(H) can be partitioned into disjoint sets E1, . . . , Et of at least three
edges such that for each i,

E(Hi) ⊆ Ei ⊆ Ē(Hi).

The above definition allows us to state a useful theorem.

Theorem 32. For any k ≥ 2 and t ≥ 2, if F
(t)
k (G) 6= ∅, then Lk(G) has a

2-factor with exactly t cycles.

P roof. We proceed as above by proving two claims.

Claim 33. For any k ≥ 2, F
(t)
k+1(G) 6= ∅ ⇒ F

(t)
k (L(G)) 6= ∅.

P roof. Let H be in F
(t)
k+1(G) and let Ei, . . . , Et be as given in the definition

above. Then, as Hi is even for all i, there exist cycles Ci, 1 ≤ i ≤ t, in L(G)
such that V (Ci) = Ei. As in the proof of Theorem 25, the union of these Ci

form a subgraph H ′ in Fk(L(G)).

It remains to show that H ′ is in F
(t)
k (L(G)). Each Ci is an even subgraph

so we take H ′
i = Ci for each i. Thus we satisfy (a), and since each H ′

i has
at least three edges we may distribute those edges in

t
⋃

i=1

Ē(H ′
i) \ E(H ′

i)

any way we wish to construct sets E′
1, . . . , E

′
t that satisfy (b).

Claim 34. If F
(t)
2 (G) 6= ∅ then L2(G) has a 2-factor with exactly t cycles.

P roof. Let H be in F
(t)
2 (G) and let Hi, Ei be as in (a) and (b) respectively.

As in the previous claim, we can find cycles C1, . . . , Ct in L(G) such that
V (Ci) = Ei. It is easy to see that these cycles have distance at most 2 and
thus comprise a t-system that dominates in L(G), implying that L2(G) has
a 2-factor with exactly t cycles, as desired.

The proof of Theorem 32 now follows by induction.
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It is important to note that the converse of Theorem 32 is not true. Consider
any prolific graph. Then there exists some k ≥ 2 such that Lk(G) has a 2-
factor and minimum degree at least 5. Let F be such a 2-factor, and assume
that F has exactly t cycles. Clearly, F forms a t-system that dominates
in Lk(G). However, if we let v be a vertex in Lk(G), our minimum degree
assumption assures us that there are at least three edges adjacent to v that
do not lie on any cycle in F . Thus, F , together with the star formed by
these edges comprise a (t + 1)-system that dominates. Hence, for any t > 0
there exists some k such that for any k′ > k, Lk′

(G) has a 2-factor with
at least t cycles. However, if the converse of Theorem 32 was true, there
would then be an arbitrarily large number of edge-disjoint sets in G, each
containing at least 3 edges. This is clearly impossible, and indicates why we
do not use Theorem 32 to prove, for instance, Corollary 14.

6. Conclusion

The results of this paper show that iterated line graphs have very nice cycle-
structural properties, including hamiltonicity and containing 2-factors with
specified features. Here, however, we present our first negative result: a
cycle-structural property that iterated line graphs do not have, regardless
of how many iterations.

Definition. For any simple graph G, the power Gℓ of G is the simple graph
with vertex set V (G) and where u and v are adjacent in Gℓ if and only if
distG(u, v) ≤ ℓ. The square of G is G2, and the cube of G is G3.

Using techniques from [8], it can be shown that the iterated line graph of a
prolific graph contains the square of a hamiltonian cycle, for a sufficiently
large iteration. However, the cube of a hamiltonian cycle never exists in
iterated line graphs.

Proposition 35. For any simple graph G that is not isomorphic to a tri-

angle or a star, L(G) does not contain the cube of a hamiltonian cycle.

P roof. Suppose that L(G) contains the cube H3 of a hamiltonian cycle H.
Let x, y, z, and w be consecutive vertices along H such that the common
vertex of x and y in G is different than the common vertex of y and z. Since
x and z are adjacent in H3, x and z share a distinct vertex in G, and hence
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x, y, and z are the edges of a triangle in G. Since w is adjacent to all three
of x, y, and z in H3, w must share a vertex with all three in G. However,
this is clearly impossible.
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