

Periodica Mathematica Hungarica Vol. 12 (4), (1981), pp. 261-266

GRAPHS WITH PRESCRIBED DEGREE SETS AND GIRTH

by

G. CHARTRAND (Kalamazoo), R. J. GOULD (Kalamazoo) and S. F. KAPOOR (Kalamazoo)

Abstract

For a finite nonempty set $\mathfrak D$ of integers, each of which is at least two, and an integer $n \geq 3$, the number $f(\mathfrak D;n)$ is defined as the least order of a graph having degree set $\mathfrak D$ and girth n. The number $f(\mathfrak D;n)$ is evaluated for several sets $\mathfrak D$ and integers n. In particular, it is shown that $f(\{3,4\};5)=13$ and $f(\{3,4\};6)=18$.

1

For integers $r \geq 2$ and $n \geq 3$, the integer f(r, n) is defined as the smallest order of an r-regular graph having girth n (the girth being the length of a smallest cycle in the graph). Erdős and Sachs [1] have shown that f(r, n) exists for all integers $r \geq 2$ and $n \geq 3$. The problem of evaluating f(r, n) for various values of r and n has received considerable attention. The r-regular graphs having girth n and order f(r, n) are known as (r, n)-cages. The object of this paper is to extend the function f(r, n) and the (r, n)-cages.

The degree set $\mathfrak{D}_G = \{a_1, a_2, \ldots, a_k\}$ of a graph G is the set of degrees of the vertices of G. We henceforth assume for $\mathfrak{D}_G = \{a_1, a_2, \ldots, a_k\}$ that $a_1 < a_2 \ldots < a_k$.

For a set $\mathfrak{D} = \{a_1, a_2, \ldots, a_k\}$ of integers with $2 \le a_1 < a_2 < \ldots < a_k$ and for an integer $n \ge 3$, we define

$$f(\mathfrak{D}; n) = f(a_1, a_2, \ldots, a_k; n)$$

to be the smallest order of a graph having girth n and degree set \mathfrak{D} . The existence of $f(\mathfrak{D}; n)$ is guaranteed by the above result of Erdős and Sachs. In particular, if H_i is an a_i -regular graph of girth n, where $V(H_i) \cap V(H_j) = \emptyset$ $(i \neq j)$, then the graph G defined by

$$V(G) = \bigcup_{i=1}^k V(H_i)$$
 and $E(G) = \bigcup_{i=1}^k E(H_i)$

has degree set \mathfrak{D} and girth n. We shall refer to a graph G of order $f(\mathfrak{D}; n)$ having degree set $\mathfrak{D} = \{a_1, a_2, \ldots, a_k\}$ and girth n as a $(\mathfrak{D}; n)$ -cage or an $(a_1, a_2, \ldots, a_k; n)$ -cage.

Research of the third author was partially supported by a Faculty Research Fellowship from Western Michigan University.

AMS (MOS) subject classifications (1980). Primary 05C38; Secondary 05C35.

Key words and phrases. (r, n)-cage, complete bipartite graph, n-cycle, degree set, girth, order of a graph, vertex.

CHARTRAND, GOULD, KAPOOR: GRAPHS WITH PRESCRIBED DEGREE SETS

In [2] Kapoor, Polimeni and Wall showed that for a given set $\mathfrak{D} = \{a_1, a_2, \ldots, a_k\}$ of positive integers (with $a_1 < a_2 < \ldots < a_k$), the minimum order of a graph G with degree set \mathfrak{D} is $1 + a_k$. If v is a vertex of degree a_k in a graph G with degree set $\mathfrak{D}_G = \mathfrak{D}$ containing no vertices of degree 1, then there must be two adjacent vertices which are themselves adjacent to v, producing a 3-cycle. This gives the following observation.

THEOREM 1. If $\mathfrak{D} = \{a_1, a_2, \ldots, a_k\}$ is a set of positive integers with $2 \leq a_1 < a_2 < \ldots < a_k$, then $f(\mathfrak{D}; 3) = 1 + a_k$.

The difficulty of evaluating $f(\mathfrak{D}; n)$ appears to increase sharply when n > 3. By placing restrictions on \mathfrak{D} , however, we are able to determine $f(\mathfrak{D}; n)$ in certain cases. In particular, if \mathfrak{D} has cardinality two and $a_1 = 2$, the follow-fng result can be obtained.

THEOREM 2. For $m \geq 3$, $n \geq 3$,

262

$$f(2, \, m; \, n) = egin{cases} rac{m(n-2)+4}{2} & \emph{if} & \emph{n} \ \emph{is} \ \emph{even}, \ rac{m(n-1)+2}{2} & \emph{if} & \emph{n} \ \emph{is} \ \emph{odd}. \end{cases}$$

PROOF. We observe that $f(2, m; n) \leq 2 + m(n-2)/2$ for n even and $(2, m; n) \leq 1 + m(n-1)/2$ if n is odd, since the graphs G_1 and G_2 of Fig. 1 have degree set $\{2, m\}$, girth n and the appropriate orders.

Fig. 1. The (2, m; n)-cages for n even and for n odd

CHARTRAND, GOULD, KAPOOR: GRAPHS WITH PRESCRIBED DEGREE SETS

263

Now suppose $n(\geq 4)$ is an even integer and let v be a vertex of degree m in a graph G having degree set $\{2, m\}$ and girth n. Since $n \geq 4$, the vertices $v_{1,1}, v_{1,2}, \ldots, v_{1,m}$ adjacent to v are distinct and pairwise non-adjacent; therefore, G contains more than m+1 vertices, which gives the desired result for n=4. Thus, we assume $n \geq 6$. Since $\mathfrak{D}_G = \{2, m\}$, each vertex $v_{1,i}$ ($i=1,2,\ldots,m$) is adjacent to at least one new vertex $v_{2,i}$. Since $n \geq 6$, the vertices $v_{2,1}, v_{2,2}, \ldots, v_{2,m}$ are distinct and pairwise non-adjacent, so that G has order at least 2m+2, which gives the required result for n=6.

If $n \geq 8$ we repeat the above process until the vertices

$$v_{\frac{n-2}{2},1}, v_{\frac{n-2}{2},2}, \dots, v_{\frac{n-2}{2},m}$$

have been added (see Fig. 1/a). These vertices are distinct and pairwise non-adjacent, for otherwise, an (n-1)-cycle is produced. Thus, G has order at east 2 + m(n-2)/2, i.e.,

$$f(2, m; n) > 2 + m(n-2)/2$$

which completes the proof of the theorem if n is even.

The argument if n is odd is similar and is omitted.

Another case in which $f(\mathfrak{D}, n)$ can be evaluated rather easily occurs when $|\mathfrak{D}| = 2$ and n = 4.

THEOREM 3. For $2 \le r < s$,

$$f(r, s; 4) = r + s.$$

PROOF. The complete bipartite graph K(r, s) has degree set $\{r, s\}$ and girth four; hence $f(r, s; 4) \leq r + s$.

In order to show that $f(r, s; 4) \ge r + s$, let G be a graph with degree set $\{r, s\}$ and girth four. Let $u_1 \in V(G)$ such that deg $u_1 = s$. Let v_1, v_2, \ldots, v_s be the s vertices adjacent to u_1 . Since G has no 3-cycles, $\langle \{v_1, v_2, \ldots, v_s\} \rangle$ contains no edges. Since the degree of v_1 is at least r and v_1 is not adjacent to any of v_2, v_3, \ldots, v_s , at least r other vertices must be present in G, i.e., $|V(G)| \ge r + s$. Hence $f(r, s; 4) \ge r + s$, giving the desired result.

Since it is well known that f(r; 4) = 2r, the above result could be extended to include the case r = s.

Due to the difficulty of determining f(r, n) when $n \geq 5$, it is probably not surprising that the problem of evaluating $f(\mathfrak{D}; n)$ when $|\mathfrak{D}| = 2$ and $n \geq 5$ seems to be extremely difficult. We now consider this problem when $\mathfrak{D} = \{3, 4\}$ and n = 5 or n = 6.

264

THEOREM 4. f(3, 4; 5) = 13.

PROOF. Let G be a graph with degree set $\{3, 4\}$ and girth 5. Let v be a vertex of degree 4 in G, and let v_0 , v_1 , v_2 , v_3 be the vertices adjacent to v. Since G contains no 3-cycles, no two of the vertices v_0 , v_1 , v_2 , v_3 are adjacent to each other. Since every vertex of G has degree 3 or 4, the vertex v_i (i=0,1,2,3) is adjacent to at least two vertices different from v, say $v_{i,1}$ and $v_{i,2}$. Further, since G contains no 4-cycles, for $i \neq j$, we have $v_{i,k} \neq v_{j,l}$ when $i,j \in \{0,1,2,3\}$ and $k,l \in \{1,2\}$. Thus G contains at least 13 vertices so that $f(3,4;5) \geq 13$.

To show that f(3, 4; 5) = 13, it now suffices to verify the existence of a graph of order 13 having girth 5 and degree set $\{3, 4\}$. To the graph partially constructed above, add the edges

$$v_{i,1} v_{i+2,2}, v_{i,1} v_{i+3,2}, v_{i,2} v_{i+1,1}$$
 and $v_{i,2} v_{i+2,1}$

for i=0,1,2,3, where i+1,i+2 and i+3 are expressed as 0,1,2 or 3 modulo 4. The graph H so described is shown in Figure 2. The graph H has order 13 and $\mathfrak{D}_H=\{3,4\}$. Also $v,v_0,v_{0,1},v_{3,2},v_3,v$ is a 5-cycle of H. It remains only to show that H contains no 3-cycles or 4-cycles. It is straightforward to see that H has no 3-cycle or 4-cycle containing any vertex in the set $U=\{v,v_0,v_1,v_2,v_3\}$. If H contains a 3-cycle or 4-cycle, all vertices of such a cycle must belong to the set V(H)-U. Such a cycle C must contain a vertex $v_{i,1}$ for i=0,1,2 or 3. Thus, C must contain the path

$$v_{i,1}, v_{i+2,2}, v_{i+3,1}, v_{i+1,2}$$

or the path

$$v_{i,1}, v_{i+3,2}, v_{i+1,1}, v_{i,2}$$

which cannot occur if C has length 3 or 4. Thus G has girth 5.

Fig. 2. Two drawings of a (3, 4; 5)-cage

CHARTRAND, GOULD, KAPOOR: GRAPHS WITH PRESCRIBED DE REE SETS

265

THEOREM 5. f(3, 4; 6) = 18.

PROOF. Let G be a graph with degree set $\{3,4\}$ and a vertex of degree 4 in G and let v_0, v_1, v_2, v_3 be the vertices v_0, v_1, v_2, v_3 be the vertices adjacent to v. Since every vertex of G has degree 3 or 4, the vertex v_i (i o, v_3 are adjacent. cent to at least two vertices different from v, say $v_{i,1}$ and v_i on the vertex v_i (i of $i \neq j$), we have $v_{i,k} \neq v_{j,l}$, where i expressions $i \neq j$, we have $v_{i,k} \neq v_{j,l}$, where i expressions $i \neq j$ and $i \neq j$.

Again, each $v_{i,j}$ $(i=0,1,2,3;\ j=1,2)$ has degree at at least four additional vertices, must be present in G, say u_0 , only these 17 vertices, then each u_k (k=0,1,2,3) must have adjacent to exactly four of the vertices $v_{i,j}$ $(i=0,1,2,3;\ j=1,2)$. If G has adjacent to exactly one of $v_{i,1}$ and $v_{i,2}$, a 4-cycle is produced. Thus adjacent to exactly one of $v_{i,1}$ and $v_{i,2}$ (i=0,1,2,3). But then two of the vertices u_k (k=0,1,2,3) must be adjacent to two of $(i=0,1,2,3;\ j=1,2)$, thereby producing a 4-cycle. Thus the vertices $v_{i,j}$ must contain at

To show that $f(\{3,4\};6) = 18$, it now suffices to verify the existence of a graph of order 18 having girth 6 and degree set $\{3,4\}$. To the graph

$$u_i v_{i,1}, u_i v_{i+1,2}, u_i v_{i+2,2}, w v_{i,1}$$
 (i = 0, 1, 2, 3)

where the subscripts i+1 and i+2 are expressed as 0, 1, 2 or 3 modulo 4.

Observe that $v, v_0, v_{0.1}, u_0, v_{1,2}, v_1, v$ is a 6-cycle. It remains only to show that G contains no r-cycle for $3 \le r \le 5$. It is straightforward to see that G

Fig. 3. Two drawings of a (3, 4; 6)-cage

Periodica Math. 12 (4)

CHARTRAND, GOULD, KAPOOR: GRAPHS WITH PRESCRIBED DEGREE SETS

contains no such cycle containing any vertex in the set $M = \{v, v_0, v_1, v_2, v_3\}$. If G contains a cycle of length five or less, all vertices of such a cycle must belong to the set V(G) - M.

Such a cycle C must contain a vertex u_i (i = 0, 1, 2, 3). Thus C must contain one of the following paths:

 $(1) \ u_i, v_{i,1}, w, \ v_{i+k,1}, u_{i+k}$

266

- $(2) \ u_i, v_{i+1,2}, \quad u_{i+3}, \ v_{i,2}, u_{i+2}$
- (3) $u_i, v_{i+1,2}, u_{i+3}, v_{i+3,1}, w$
- (4) $u_i, v_{i+2,2}, u_{i+1}, v_{i+3,2}, u_{i+2}$
- (5) $u_i, v_{i+2,2}, u_{i+1}, v_{i+1,1}, w$

where i = 0, 1, 2, 3 and k = 1, 2, 3 and all subscripts are expressed modulo 4. Since these paths do not extend to a cycle of length less than six, the graph G has girth six. Also $\mathfrak{D}_G = \{3, 4\}$. Thus f(3, 4; 6) = 18.

REFERENCES

- P. Erdős and H. Sachs, Reguläre Graphen gegebener Taillenweite mit minimaler Knotenzahl, Wiss. Z. Martin-Luther-Univ. Halle—Wittenberg, Math.-Natur. Reihe 12 (1963), 251—258. MR 29 # 2797
 S. F. Kapoor, A. D. Polimeni and C. E. Wall, Degree sets for graphs, Fund. Math. 95 (1977), 189—194. MR 58 # 381

(Received October 19, 1979)

DEPARTMENT OF MATHEMATICS WESTERN MICHIGAN UNIVERSITY KALAMAZOO, MI 49008 U.S.A.