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Abstract

In this note, we consider a minimum degree condition for a hamiltonian graph to have a 2-factor
with two components. Le® be a graph of ordet > 3. Dirac’s theorem says that if the minimum
degree ofGis at Ieas%n, thenG has a hamiltonian cycle. Furthermore, Brandt et al. [J. Graph Theory
24 (1997) 165-173] proved thatif> 8, thenG has a 2-factor with two components. Both theorems
are sharp and there are infinitely many gra@af odd order and minimum degr%|G| — 1) which
have no 2-factor. However, if hamiltonicity is assumed, we can relax the minimum degree condition
for the existence of a 2-factor with two components. We prove in this note that a hamiltonian graph
of ordern > 6 and minimum degree at Iea%n + 2 has a 2-factor with two components.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this note, we study how hamiltonicity affects a minimum degree condition for the
existence of a 2-factor with two components. Our starting point is Difa¢theorem.
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Theorem 1.1. Every graph of order. >3 and minimum degree at Iea%h has a hamilto-
nian cycle

A hamiltonian cycle is a 2-factor with one component. This interpretation naturally leads
us to consider a minimum degree condition for a graph to have a 2-factor with a specified
number of components. Actually, Brandt et[d]. studied this problem, and proved that the
same bound of minimum degree as in Dirac's Theorem guarantees the existence of such a
2-factor.

Theorem 1.2(Brandt et al.[4]). Let k be a positive integer. Then every graph of order
n >4k and minimum degree at Iea%h has a2-factor with k components

The notion of hamiltonicity has been extended in several other directions. One extension
is pancyclicity. A graph of ordef > 3 is said to bgancyclicif it has a cycle of lengtt for
every integel between 3 and. Bondy[3] studied a minimum degree condition for a graph
to be pancyclic, and gave the same bound as in Dirac’s theorem.

Theorem 1.3(Bondy[3]). Let G be a graph of ordet >3 and minimum degree at least
n. Then G is pancyclic unless n is even aid~ K /2,/2.

The bound%n is sharp for all of Theorems 1.1, 1.2 and 1.3. The complete bipartite graph
G = Ky x+1 has ordefG| = 2k + 1 and minimum degreke = %(|G| — 1). ButG has no
2-factor. This example shows that if we lower the boun(% bthen we have infinitely many
counterexamples.

Theorems 1.1, 1.2 and 1.3 indicate that in terms of sufficient conditions based on mini-
mum degree, we cannot observe any difference among hamiltonicity, pancyclicity and the
existence of a 2-factor with a specified number of components. However, Amai &t al.
considered a variation for studying a relationship between hamiltonicity and pancyclic-
ity. They proved that if hamiltonicity is assumed, then the minimum degree condition for
pancyclicity can be relaxed.

Theorem 1.4(Amar et al.[1]). Let G be a hamiltonian graph of order n. If the minimum
degree of G is at leagtn + 1) /5, then G is pancyclic or bipartite

A possible interpretation of Theorems 1.1 and 1.4 is that the b(%lunist required to
force G to have a cycle of length, and that once the existence of a cycle of lengik
assured (ané is not bipartite), then a smaller bound of minimum degree guarantees the
existence of cycles of other lengths.

Now we turn our attention to a 2-factor with specified number of components. Considering
the relationship between hamiltonicity and pancyclicity, we may suspect that if hamiltonicity
is assumed, then a bound of minimum degree smaller than that in Theorem 1.2 guarantees
the existence of a 2-factor with specified number of components. Here we are interested in
a smaller coefficient ofi. More specifically, we make the following conjecture.
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Conjecture 1. For each integek with k> 2, there exist real numbetg andc; and an
integern; such thatay <% and every hamiltonian graph of ordee=n; and minimum
degree at leastyn + ¢ has a 2-factor witlk components.

In this note, we prove this conjecture foe= 2.

Theorem 1.5. Let G be a hamiltonian graph of order>6 and minimum degree at least
%n + 2.Then G has 2-factor with two components

We give a proof of the above theorem in Section 2. We do not think Theorem 1.5 is
best-possible. We discuss the detail and give some remarks in Section 3.

Before proceeding we establish some notation. For graph-theoretic terminology not ex-
plained in this note, we refer the readel[%. Let G be a graph. We denote the minimum
degree ofc by 6(G). For a vertexx of G, we denote by (x) and degx the neighborhood
of xand the degree ofin G, respectively. Given a vertexon a cycleC with an orientation,

C, then the successor ®bn C will be denoted byt and the predecessor by . Further,

let NT(x) denote the set of successors of the neighborsawfd N~ (x) denote the set of
predecessors of neighbors»fGiven a pair of vertices, v in C, we denote bytE)U the
subpath inC that starts fronu, traverses in the direction o and ends ab. The subpath
o%C that starts fromu and ends ab, but traverses in the opposite direction, is denoted by
u V.

2. Proof of the main theorem
In this section, we prove Theorem 1.5.

Proof of Theorem 1.5. If n = 6, thend(G) >5, which impliesG = Kg and clearlyG
has a 2-factor with two components.df= 7, thend(G) >5 andG is obtained fromK;
by removing at most three independent edges, and it is easy to sée hiagta required
2-factor.

Suppose & <24, thend(G) > n + 2> 3n and henceG has a 2-factor with two
components by Theorem 1.2. Therefore, we may assiipn2s.

AssumeG has no 2-factor with two components. LEt= x1x2x3- - - x,x1 be a fixed
hamiltonian cycle o6. Forx € V(C) ande=uu™ € E(C), (x, e) is said to be amsertion
if {u,u™} C N(x). By the definition if (x, uu™) is an insertion, them # u, u™. Let|
be the set of all insertions. Far € V(G) ande € E(C), we definei(x) and j(e) by
i(x)=1|{e € E(C):(x,e) € I}|andj(e) = |{x € V(C): (x, e) € I}|. Note

Yo=Y je=l (1)

xeV(G) eeE(C)

Forx e V(C) anduu™ € E(C), (x,uu™) e I'ifand only ifx € N(u) N Nu™), and it
follows thatj (uu™) = [N () N Nu™)|.
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X1 X

Fig. 1. A 2-factor with two cycles.

Claim 1.

11| >n?/8.

Proof. Observe, foreach € N (x;)—{x;_3, x;_1, x;+1} itmustbethe casethat ¢ N (x;_1),
for otherwise a 2-factor with 2 cycles would result ($eg. 1).

Also, note that there are at least/A2+4-2—i(x;) verticesy € N(x;) sothaty™ ¢ N(x;),
which follows from the definition of (x;). Hence we have

[(V(G) = Nxi) N (V(G) = N(xi—1)| = 1%” —1-i(x),
which implies|N (x;) U N (x;—1)| < 11211 + 1+ i(x;). But this yields
Jxixi—1) =[N (x;)) " N(xi—1)| = [N @x)| + IN(xi—1)| — [N(x;) UN(x;-1)|
S S S (AP TPTAS T
/1271 12n 12]’[ (X >4 1(X;).

Hence, we see that

Xn: (% - i(x,-)) <.

i=1
This gives by Eq. (1):
2
7 i<l

Thus, we see thaf | > n2/8, completing the proof of Claim 1.

Consequently, by averaging over the vertices, it follows that there is a versexch that
i(x;))>n/8.LetX=N(x;) = {xi—1, xi41}, Y =N T (xi31) — {xi43, x;} andZ=N"(x; 1) —
{xi_3, xi}. Clearly,|Al, |B|, |C| >5r/12. O
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Xj-|—1 ] X.

51 xR

Fig. 2. An example of insertion.

Claim 2.
XNY=XNZ=4.

Proof. AssumeX NY # ¢ andletv € X NY. It follows thatCy = xi+1€v’xi+1 and
Cor= xivt’)xl forms a 2-factor of5 with two components, a contradiction. An analogous
argument showsth& Nz =¢. 0O

Claim 3.
ynzi=2.
4

Proof. Since|X]|, |Y],|Z|>5n/12 and|X U Y U Z|<n, the previous claim implies that
lYNZ|>3 (%) — n. This implies thatY N Z| >n/4, concluding the proof of Claim 3.

Recall thaty; was chosen so thatx;) > n/8 and the set¥, Y, Z were defined with
respect tog;. O

Claim 4. For eachx; € Y N Z we have(x;) =0.

Proof. Letx; € YN Z and assumi(x;) > 0, with (x;, xxxx41) € 1. Note by Claim 2 that
k #i—1andk # i. Also, since (x;) > n/8>2 we may assume thét;, x,, x,,+1) € I with
k # m. Consider the two cycleeﬂf?xj_lx”l andx~,~+1fx,~_1xj+1 and by inserting;
betweenx,, andx,,+1 and insertingr; betweenx; andxi1, a 2-factor with two cycles
results, a contradiction (S&ég. 2). Thus, it follows that (x;) = 0 for eachw; € Y N Z.

O

Claim 5. There is a vertex; withi(x;) > n/6.
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Proof. From Claim 1, we know that | > n2/8. Furthermore, from Claims 3 and 4 we have
that there are at mosu34 verticesx havingi (x) > 0. Consequently, we have a vertex
with

and the claim follows.

Now to complete the proof of Theorem 1.5,4gbe a vertex witli(x;) > n/6,and ofX, Y
andZ be defined as above. Without loss of generality, we may assuate Also letx; €
YNZ.Sincei(x;)=0, clearlyifx; € N(x;)withk < j—1,thenx; 1 ¢ N(x;). Furthermore,
if xx+1 € N(x1) then the cyclexlkaxj ?xkﬂxl and the cyclecHl?xanl would
form a 2-factor with two cycles. lf; € N(x;) with k> j + 1 then as above it follows
thatx,_1 ¢ N(x;) andxz_1 ¢ N(x1). Also note thatr; ¢ N(x;) andx; ¢ N(x1). Hence, it
follows that there is a s&V of size at least/12+ 2 with W N N(x1) = W N N (x;) = 0.

Furthermore, sincx1) > n/6, itis easy to see that there are more thaertices inv (x1)
that cannot be iV (x ;). Consequently, this implies that

5n n bn
deng<n—<1—2+2>—6=1—2—2,

which contradicts the original hypothesis, and concludes the proof of the Theofém.

3. Concluding remarks

We do not think Theorem 1.5 is best possible. Actually, we do not know whether a linear
bound of minimum degree in Conjecture 1 is appropriate. We cannot even construct a hamil-
tonian graph of minimum degree at least five which has no 2-factor with two components.
But there exist infinitely many hamiltonian graphs of minimum degree four which have no
2-factor with two components. L&5 — ¢ denote the graph obtained frokis by deleting
one edge, and l&b be a graph obtained from a cycle by replacing each vertex with a copy
of K5 — e so that resulting graph is 4-regular (3&g. 3). ThenG is hamiltonian, buG has
no 2-factor with two components. Actuallg has only one non-hamiltonian 2-factor that
consists off|V (G)| cycles.

Fig. 3. A hamiltonian graph with no 2-factor with two components.
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A graph G is said to be Toughif w(G — S)<|S| for every nonempty subs& of
V(G). Trivially, a hamiltonian graph is 1-tough. Since a number of sufficient conditions
for hamiltonicity have been relaxed for 1-tough graphs and 1-toughness is easier to use
than hamiltonicity, one may think that a possible approach to Conjecture 1 is to replace
the assumption that the given graph is hamiltonian with a weaker assumption that it is 1-
tough. However, this approach does not work. The following example is due to Bigalke and
Jung[2]. Let N, referred to as thaet, be the unique graph of order six having the degree
sequencé3, 3,3, 1,1, 1). For an integek with k>2, letGy = kK1 + ((k — 1)K1 U N).
ThenGy is a 1-tough graph with minimum degrée= 3|G| — 3, but G; does not have
a 2-factor. Therefore, we cannot relax the coefficient®f for 1-tough graphs without
allowing infinitely many exceptions.
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