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ABSTRACT

Let T be the unique graph with degree sequence 1, 1
1,

3,3,3. We show that every connected graph G that COX~ ’
tains

no induced subgraph isomorphic to or F is -traceahsl
e.

K1,3
Moreover, if G is 2-connected then G 1is hamiltonian.

1. Introduction.

In this article we consider finite simple graphs witilg
ut

of
vertices is joined by a path, while a graph is n-connectecy
if the

%t‘éph_

loops or multiple edges. A graph is connected if each paj\b

removal of fewer than n vertices results in a connected

The distance d{x,y) between vertices x and y of ack:;11
Nected

graph G is the least number of edges in an x-y  path. T
f s

is a set of vertices, the distance from the vertex x to
d(x,5) = min{d(x,s)|s € S}. The diameter, diam G, of

a4 con-
nected graph G 1is the maximum distance between two vertig
€8 of

Sis

G, If S 4is a subset of the vertex set V(G) of a Brapy,

L]
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298 Forbidden Subgraphs and The Hamiltonian Theme

then the subgraph induced by S 1is denoted by (S). The neigh-
borhood, N(x), of a vertex x 1is the set of all vertices
adjacent to x. A graph G is locally conmected if (N(x))

is connected for each x € V(G) . The graph G is fraceable
(hamiltontan) if it contains a path (cycle) through all its ver-—

tices. Such a path (cycle) is called a hamiltonian path (cycle).

7

Figure 1.

Let ¢(G) denote the number of components of the graph G. A

graph is I-tough if c(G-8) f_lS| for every nonempty proper

subset S of V(G). The complement of the graph G, denoted

G, is the graph with vertex set V(G) and e is an edge of
G 1if and only if e 1is not an edge of G.

The literature aBounds with results concerning traceable
and hamiltonian graphs. Recent studies have related the idea of
forbidden subgraphs with other properties to obtain sufficient
conditions for a graph to be hamilteonian. The object of this
paper is to investigate the graphs K and F (cf. Figure 1)

1,3
and their relation tec the hamiltonian theme.

Theorem A. (Oberly and Sumner [4]). A connected, locally con-
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nected graph that contains no induced subgraph isomorphic to

Kl,3 is hamiltonian.

Theorem B. ([2]). A 2-connected graph with diameter at most 2
that contains no induced subgraph isomorphic to Kl 3 is ham—
3

iltonian.

Theorem C. (Jung [3], cf. Bermond [1]). If G 1is l-tough then

either G is hamiltonian, or its complement G contains the
graph F as a subgraph.
In terms of forbidden induced subgraphs Theorem C has the

following natural Corollary.

Corollary D. 1If G 1is 2-connected and contains no hamiltonian
cycle, then G has an induced subgraph isomorphic to Kl 3 of
H

to a gpanning subgraph of F.

In this paper we prove the following theorems.

Theorem 1. A connected graph that contains no induced subgraph

isomorphic to or F 18 traceable.

1,3
Theorem 2. A 2-connected graph that contains no induced subgraph

isomorphic to Kl 3 Of F is hamiltonian.
]

Before beginning the proof of Theorem 1, a few observations

will be helpful.

2. Observations.

Throughout the next two sections G  denotes a connected

graph of diameter d with no induced subgraphs isomorphic to

Kl 5 OF F. It was shown in [2] that if d < 2 then G is
traceable; hence, we assume that d > 3. Let P: VasVys s o
Vo1 V4 be a path of length d = d(vo,vd). Define the fol-

lowing subsets of V(G) :
u; = {X:éV(P)|xvi,xvi+le:E(G) and xv, |,xv, , £ E(G)}

for 0<i<d~-1, and
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{xéV(P)|XV XV, e E(G) and xv l,xv éE(G)}

for 0<j<d- 2.

+1’XVJ

Also define
Ay = 1x € V(®)[xv, € E(G) and xwv, € B(G)],
Ag=Ix¥ V(P)|xvd € E(&) and xv, ; £ E(@®)]}.
If u,wEUi(Oiiid~2) and uw 1is not an edge of G
then ({u,w,vi+l,vi+2}> = K . Thus <Ui> (0<i<d-2) is

1,3
complete. If 1 =d - 1 then ({u,w,vd_l,vd_2}> = Kl,3 unless

uw 1is an edge of G. Thus (wa_.1> is complete as well. A
similar argument shows (Vj> is complete (0<j<d-2).
If a€U, and b€V, (1<i<d-2) and ab ¢ E(G) then
{{a,b,v, i Vo }) 1,3; ‘thus <Ui U Vi> is complete
(lilid - 2) . Similarly <Ui+l U Vi> is complete
(0<i<d=-3). We have shown:
(A). The graphs (Ui>(0£iid—l) , (Vj) (0<j<d~-2), (UiU Vi)
(1<i<d-2), and <Ui+l UVi>(Oiiid-3) are complete.
Suppose x & V(G) and x 1is adjacent to some 4 € v(pP)

(l<i<d-1). Then (I{x,v, iV l’vl+l}> l 3 unless one of
the edges XV, 1 XV 4 OT VvV, V. ig in G. If Vi 1V

is in G then d(vo,vd) <d, a contradiction. Hence, at

least one of xv, and xv, is in G, that is, x 1is
i-1 i+1

adjacent to at least twe consecutive vertices of P, Since

d(vo,vd) = d, no vertex is adjacent to four vertices of P

and by (A) all adjacencies to P must be consecutive. Thus
the sets Ui(Oiiid -1) and Vj (0<j<d-2) are all distinct.
Thus:

(B). Any vertex of G adjacent to a vertex of P lies in
exactly one of Ui(Oiiid—l), Vj(Oijid—Z) or Ak(k=0,d).

Now suppose the vertex x 1s not adjacent to a vertex of

P, but 1s adjacent to y where yvi(Ziiid— 2) is an edge

of G. By (B), the vertex vy 1is adjacent to vi_q Of
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v Say A € E(G) (a similar argument applies if

i+l ’
SASEYY € E(G) ). 1If YVig is in G. then <{X’Y’Vi+1’viml}> =

unless at least one of xv, or xv, is in G. If
i-1 i+l

is not in G, then ({x,y,vi_z,vi_l,vi,vi+l}) 2 F

Ki,3
MVit1
unless xvj € E(G) for some j € {i-2,i-1,4i,i+1}t. If

v E'VO, then ({x,y,vO,VZ}) & Kl,3 unless at least one of

XV and xv is in G. In any case, x must be adjacent to

0 2
a vertex of P, a contradiction. We have shown:

(C). Every vertex that is adjacent to avertex in Ui(l:ii:id- 2)

or Vj(Oijid—-2) is contained in one of Uk(Oikf_d—l),
YV, (0<8<d-2), A iy
Let X = {x € V(G)[d(x,V(P)) >1}. Clearly V{(G) is par-

or A

d=1 d-2
L1 U
titioned by X, AO, Ad, 20 u; }20 Vj and V(P) . The next

two observations concern the structure of X.

Note by - (C), if =x €X then x 1is not adjacent to any
vertex of Ui(liiid—Z) or Vj(Oijid—Z). Let
d{x,V(P)) = 2. Then there exists y in AO, UO’ Ad or Uj_q
such that =xy & E(G) . Since vy & AO U Uy ©or vy € Ad U Uy_q >
we may assume without loss of generality vy € AO U U0 . If
y € UO and AO # @ then for all a & AO’ xa €E(G); other-
wise ({vo,vl,vz,x,y,a}> 2 F implying ay € E(G) and
({y,vl,a,x}> = K1’3.

Suppose X # 0.

Case 1. 1If AO # 0 then define the following sets:

Sl = {x € X| for some y € Ay Xy € E(G)},
i-1
- - U i
Si {x € X| for some vy € Si—l’ xy € E(G)} k=1.Sk (1<1).
Case 2. 1If Ay = ff then define the following sets:
Tl = {x € X| for some y € Uy » XY € E(G)},
i-1
Ti = {x € XI for some vy € Ti—l , Xy € E(G)} - églATk (1<1).
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(D). Let X # . If AO # § then Sl # 9 and if AO = p
then Tl # 0.

Choose any two vertices x,y & AO. Then Gvb,vl,x,y}>
shows that xy is in G . Hence, (A0> and, similarly, (Ad>
are complete.

Let X,y €85 By definition of S1 there exist

1-
x',y' € AO such that xx' and yy' are in G. If x' =y’
then ({VO,X',x,y}> implies that x is adjacent to y. If

x' # y' then xy € E(G) for otherwise ({vo,vl,x',y',x,yD £2F .,
We conclude that 6l> is complete. Also, observe that if
A. =@ then a similar argument shows that <Tl> is complete,.

0
We shall show that <Si>/ is complete for each 1. Assume

that (Sj) is complete for all 1 < j <k, and let x,y € 5 .
By definition there exist x',y' ¢ Sk such that

xx" ,yy' € E(G) . Also, there are x",y" € Sk—l such that
x'x",y'y" € E(G) (if k=1 then x",y"€ AD) . If x' = y!
then ({x",x',x,y}) =K unless x 1is adjacent to y. If

1,3

x' # y' then, since (Sk> is complete, x'

is adjacent to

y' . Consider {{x",x',y',x}? ; it follows that x"y' or xy'

is in G. In the former case, by our choice of x'" there is a
vertex p such that px" € E(G) and p 1is not adjacent to any
of x',yv',x,y. WNow {{p,x",x',y',x,y}) shows that x is

adjacent to y or, as in the former case, xy' 1s in G. The
graph ({x,y,y',y"}) dimplies that x 1is adjacent to y. Thus

we have:

(). Let X # 9. If AO # @ then <Si> is complete for all

i, If Ay = @ then (r; > 1is complete for all 1i.

Let x Since d(xl,vd) < d and d(vo,vd) =d,

1 € Sl'
it follows from (C) that there exists a vertex X in some
Si such that X, s adjacent to 2z for some z € Ud—l U Ad'
Choose 1 maximum with this property. If 1 > 3, let

X: 4 € Si—l be adjacent to X, and X; 9 € Si—2 be adjacent
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to In the case that 1 = 2, let

*i-1- *1-
case that 1 = 1, let X 1 € AO and X g 0 -

Suppose that Si+l £ 0, say X4 “ Si+l . Since X541

I~

& AO and in the
v

is not adjacent to =z, ({xi_l,xi,xi+l,z}) implies =z is

adjacent to x, Consideration of <{Xi—Z’Xi—l’xi’Xi+1’z’vdD

i-1"

'_ e d + .
yields an adjacency between X: o and z, since Xi oo Xi 10

X{ s and x are not adjacent to vy Now a contradiction

i+l
. arises from ({xi_z,xi,z,vd}> . Therefore, Sj =@ for all

j>4i+1.

(F). Let 1 be the maximum such that Si # @ . Then there are

x € Si and z € Ad’ or z € Ud—l if Ad =}, such that x

is adjacent to z. If AO = ) then the preceding statement
holds with Ti replacing Si'
Let Y= {y€ X|y# LJSk}. Suppose Y # . Since G is

U Ad such that

connected there exist y €Y and y' € Ud—l
yy' € E(G) . Choose x, and z as guaranteed by (F) . By an
argument similar to that establishing (D), =z and y' are

. : . _ — !
both in Ad’ or both in Ud—l when Ad 6., If z =1y
then ({Xi,y,z,vd}> implies that y 1is adjacent to x,,
which contradicts y € Y. If =z # y' then
({xi,y,y',z,vd,vd_l}) leads to a contradiction when Ad # 0,
while ({Xi,y,y',z,vd_z,vd_l}> gives a contradiction if
Ad=®.

(¢). If AO # P then X =US If AO =@ then X = U T, -

3 "

-3. Proof of Theorem 1,

For C,D S V(G) write C ~ D whenever there exist ver-

tices ¢ € C and d € D such that cd € E(G) . Let

‘Cl, C2, C e, Cn be a partition of V(G) satisfying: <Ci> is

complete and Ci ~ Ci+l' Then the sequence Cl ,C2 s ¢+ 005 C

" is used to denote a hamiltonian path of G in which the ver-

n

tices of Ci are traced consecutively and precede the vertices
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of Ciy in the hamiltonian path. Also, if C., = {v}l we write

v in place of Ci'

Let i be chosen as in (F).

If AO = and Ad # ¢ then U
Vaoo 0 Vaoo s Vg1 0 Vgor o Va o Bae Too Taore o
a hamiltonian path of G. If AO = f§ and Ad = @ then UO’

s Va5 = s v 3
1’71
represents

0° Y0 ,V » U
T

VO’VO’Ul’Vl""’vd—Z’Vd—Z’vd—l’vd’Ud—l’T"T:L1’
., Ty is a hamiltonian path. Let Ay # 0 and Ay # 0. If
= = ~ A ’ ’
one of V, , ) » Uy g ? » Vaoo ~ Ugo1 holds then A5, Vv, U4
... 8
vy Vs Uy oo v s Vg Yaop o Ugop o Va0 Aa 8¢ 851> » 1

represents a hamiltonian path. TIf none of the three conditions

hold then consider

(@) Ag s Vg Ugs vy s Voo Ups oo Vgy o Vap o Ve Ve Ba B
Si—l’ v ’Sl;

(b). AO’ Vg s Uys vy VO ,Ul s Vg ’Ud-l ’Vd-2’ Ad, Si’

S, 15«5

If vd—2 ~ Ad then (b) yields a hamiltonian path. If

Ud—l ~ Ad then (a) gives a hamiltonian path. An induced

Kl,3 occurs if neither Vd—2 ~ Ad nor Ud~l ~ Ad. Finally,
if AO # ¢ and Ad = then AO, 4 » Ugs ¥y ’VO’ Ups -oves
V-1 ? vd—2’ ZE Ud-l’ Si’ Si-l’ e ey Sl is a hamiltonian path.

Note that we are able to trace G, under the appropriate
conditions as listed above, even when subsets of V(G) are
empty. Also observe that whenever X # ¢, that is, Sl # 0
or T, # 9, then G is in fact hamiltonian.

The graph. G 1is traceable and the proof of Theorem 1 is
complete, =

Clearly, connectedness is a necessary hypothesis in Theorem
1. Also it is easy to construct nontraceable graphs containing
an induced KX or F; of course, these can be contained in

1,3
traceable graphs.
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4. Proof of Theorem 2.

Let G be a 2-connected graph that contains no induced

subgraph isomorphic to or F. Fix a pair Vo s Vg € V(G)

1,3
such that d(vo,vd) = d = diam G. The proof of Theorem 1.

allows us to assume that every v, - vy path P of length d

0
. possesses property (*) :
X = {x gPjd(P,x) > 1}

Also, by Theorem B, we may assume that d > 3.

(%)

Il
=

Let us suppose that d > 3. We claim that there are
Vo T Yy paths P and Q such that P has length d,
VeI N V@ = vgvg} and G(Q) = ((V(B) - V@) U {vy, v, b s

connected with neither v. nor v a cutvertex of G(Q) .

0 d

For each Vo T Vg4 path P* of length d let
Uy (0=i<d-1), Vv, (0<i<d-2),A,, and A, be defined as
in Section 2. Relabel the sequence of sets AO, UO’ VO, e e,
UioVioe oo Ugnn Vgp o Ugg s Ag BY W Wy Wy e W s

&

W2i+2, Coe e, w2d~3’ de—Z’ w2d~l’ w2d' Let D(P*) be the
collection of paths R*: v, ,x ,...,X such that x, &€ W,
and j, = max{j,,j,s...,3, }. Choose R € |J D(P*) such that

k 1’32 i vt Such maat
jk is maximum. Say R € D(P) where P PV Vs s e s VY and
R,:vo, xl, SRR We show that 2d - 3 i-jk~i 2d . Other-

wise, one of the following cases holds.

Case 1, 0. Then X, € AO. This is impossible as G 1is

3y =
2—connected.
Case 2, jk=2t+l(oitid—3). Then X, € Ut. If ye V
‘then, by (A), X,

choice of R. Thus, Vt =0, As v

t
is adjacent to vy, contradicting our

e+l is not a cutvertex,
there exist x,y € V(G) such that =xy € E(G) and one of the

following holds;:
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(1). x €U, , €U (11). X € U_,y€ Vi i,
(iii). X € Ut , V€ U yo s
(v). X € Ut—l , vV € Ut+l , (vi). x € AO’

y el uu, (t = 0).

(iV) . X € Vt_l y ¥ € Ut+l ’

2t+1
(Observe that there must be an edge xy for some X e U W
7d i=0
vyeE U Wi . All possibilities, other than (i) - (vi), either
i=2¢+2

contradict d(vo,vd) = d, or give rise to an induced Ry 4 or
b

F when t =0 or t=4d-3.)

If one of (i) - (iv) holds then x = X, or, by (A),
XKy is in G . Then one of Vg s Ky v e Xy x,y ({€f
x € V(R) ) or Vg X s e s e s Xy Y (if x = xi) contradicts
the choice of R.

Supposg that (v) holds. Examining <{vt+1,vt+2,vt+3,x,xk,
y}) shows that XX, OTf XY is in G. It is obvious that
either edge gives a contradiction.

If (vi) holds then vy, %,V contradicts the choice of

R.

Case 3. =2t +2 (0<t<d-3). Then X, € Vt' As before,

Iy
(A) implies that Ut+1 ={.

Assume first that Vt+l = . Since Voo 18 not a cut-
vertex of G and d(vo,vd) = d there must exist an edge Xy
such that

0y, {4 € ~d-
(1) x €U UV, , v €U 4y (i1). x SU;_45¥ EAd(t d-3),

(11i). x €V, 4, ¥€ Ay (£=d-3), (iv). x €Ay, y€ U, (£=0) .

If (i) holds then one of the paths Voo Ky oo Xy s X

y (if x ¢ V(R)) and v N I (if Xﬂ=xi) con-

X
g*7 1" "
tradicts the choice of R. If (ii) holds then <{Vd—4’vd—3’

vd_z,vd_l,x,y}> = F. We argue in a similar way if (iv) holds.

In the event (iii) holds, then ({x,vd_3,vd_l,y}> = Kl,3'
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1

neither v

Let z g€V . Consider the v, - v path

t+1 0 d

P': Vs Vis e r s V1325V as eV,
of length d. Define the sets Ui ,Vi for the path P'.

Note that U:'L = U, (1#c+1,t+2), vi =V, (i#¢¢t,t+1,t+2),

v

¥ ] . .
x, € Ut and v 2 e v Now X, is adjacent to Viips SO

k t t+1

- <{VO’X1""’Xk’Vt+2}> contains a path contradicting our choice

of R.

As a consequence of these cases, Xy S} v U

d-2 "d-2° “d4-1°’
or A,. Let us show that o v leads to a contradiction.

d d-2
If X, €U then V . If both A, and U were

d-2 - d d-1
would be a cutvertex of G, an impossibility.

d-2

empty then V-1

If Ad = ¢ and Ud—l # @ then, because Vyop 1S not a cut-
vertex, we obtain, as in case 2, a path terminating in Ud—l'
This contradicts our choice of R. So assume Ad # 0. As G

ig 2~connected there exist vy & Ad and x in one of AO, Ui’

or Vi such that =x 1is adjacent to vy. 1If

X € Uy (1<i<d-3) then <{X’y’vi—l’vi’vi+l’vi+2}> = p; if
X € AO U UO then d(vo,vd) < 43 if y € Vi (0<i<d-3) then
({x,y,vi,vi+2}> = K1,3' Hence, Ad ~ (Ud_2 U Ud~l)' If

Ad'ﬁ Ud—Z
path terminating in U

then, again arguing as in case 2, we obtain a

g-1® contrary to x € Ud—2 . Thus,

A, ~ T which again invalidates our choice of R.

d d-2
We conclude that Xy e U Vd—2 , Or Ad . Let Q be

to R. Then

d=-1"
the path obtained by adjoining 7
vQ) n v() = {vo,vd} and, because of property (%), G(Q) is
connected. It remains to show that Q may be chosen so that

nor v, are cutvertices of G(Q) .

0 d
Suppose that vy is a cutvertex of G(Q) . As a result

“of property (%), (V(G(Q)) - {VO}> has two components, one

being (V(G{(Q))N AO>. Since G 4is 2-connected, some x € AO

and y € V(Q) are adjacent in G. Choose 1 maximum such

that X5 is adjacent to a vertex of AO and let
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' = 1 _
v(Q") {VO’Xi’Xi+l""’xk’Vd} U A - Then v, 1s not a cut
vertex of G(Q'). A similar argument allows us to adjust Q'
if \Z is a cutvertex of G(Q").

The initial claim has been shown. That G 1is hamiltonian

follows upon showing that G(Q) contains a hamiltonian Vg T Vg

path. For convenience, let Ui (respectively, Vi,AO,Ad)
denote Ui - V(Q) (respectively, Vi-—V(Q),AO-V(Q),Ad-V(Q)).
In order to be brief we list several observations.

(1). 1f AO # # then AO ~ (UOIJUlLJVO)-
This holds because VO is not a cutvertex of G(Q) and AO ~ Ui
(3<i<d-1) contradicts d(vo,vd) =d > 4 ’AO ~ U2 gives rise
to F as an induced subgraph of G, and AO ~ Vi (1<i<d~-2)
yields Kl,3'

(2). If U, # 9§ then Ay~ Uy, or Ay = 8.
Let z € AO and x & Ul U VO be adjacent, and let X, € UO'
Then <{Z’X’V1’v2’v3’xo}> implies zx, oOr XX, is in G(Q) -
If xx. is in G(Q) then <{XO’X’Z’VZ}> = Kl,3 unless zx, is

0

an edge. Thus AO ~ UO'
(3). 1f AO £ @, UO = @ then (a) AO - VO or (b)
AO ~ Ul.
Let (L)', (2)', (3)" denote the corresponding facts con-

cerning Ad’ Ud—l’ Ud—2 ’Vd—2'

(4)., If UO’ VO, Vl # ¢ then either (c) UO - VO’

(d) UO”Vl’ or (e) v0~vl.
Examining ({vl,xo,yo,yl}) for x, €7, , ¥ €V, vy €v,
shows that (4) holds.
Suppose UO # 0, Uit 4 9. By (2), (2)" and in accord-

ance with which of (4), (¢), (d), or (e) holds trace G(Q)
as follows:

(c). Voo AO, UO’ VO, vy ,Ul sV s e Vg ’Ud—l’ Ad’ vy

(d). VO,AO,UO,Vl,vl,VO,Ul,VZ,UZ,Vz,...,vd_l,
A

Ug1 2890 Vg3
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(e). Vg o AO, UO’ vy VO’ Ul’ Vl > Vs ,U2 s Vg s e sV g
Ud—l’ Ad,‘vd.
{These represent hamiltonian paths whether or not AO is empty.
Also, 1if one or more of VO or Vl is empty then the appro-
priate one of (c) or (d) still yields a hamiltonian path.)
Suppose U, = B, Ui_q # 0. Apply (2)' and whichever of

(3a) or (3b) holds to trace G(Q) :

LI (33)' VOsAOsVO:Vl!UlJVla'":Vd_l)Ud_lSAdivd;
(3b). Vg AO, Ul ’VO » vy ’Vl > Vo ,Uz ,V2 see e Vg
Ud—l’ Ad, vd.

Suppose _UO =0, Ud—l = @. Then one of (3a), (3b) holds
and one of (3a)', (3b)' holds. We trace G(Q) as follows:

(3a), (Ba)'. vy, Ay, Vo, vy Ui Ve vy o Uy o
Va1 Va2 r Aa o Vg

(3a) , (3b)'. vy, Ay Vg, vy s U sV s e o ¥y s Vg o
Va1 Ugeo s g0 Vg

(3b) , (3p) 7, Vo AO, Ul’ VO’ Vi Vl sV ,Uz, V2’ e e e

Va-2 Vg2 Va1 Ya-27 %> Ve
It now remains to show that if diam G =d = 3 then G 1is
hamiltonian. TFor diameter 3 the preceding approach leads to a
prohibitive number of cases. We employ an alternative tech-
nique.
By Theorem A there is a v e V(G) such that (N(v)) is
disconnected. Since G contains no induced Kl,3 then
N(v) = A(v) U B(v) where A(v) # @ # B(v) , A(v) N B(v) = § and
. both {A(v)) and (B(v)) are complete. Let
Cv) = {xeV(G)|d(x,A(v)) =1,d(x,v) =2} and
D(v) = {xeV(G)|d(x,B(v)) =1,d(x,v) =2},
- 8ince G 1is 2-connected, C(v) U D(v) # §.

il

Il

Case 1. Assume that C(v) ¢ D(v}) and D(v) ¢ C(v) . We wish
to show (C{(v) - D(v)) is complete. Let c,c' & C(v) - D(v)
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and choose a,a' & A(v) such that ac and a'c' are edges of
¢. If a=a' then ({a,c,c’,v}) dimplies cc' dis in G.

If a # a' then with any b & B(v) we use ({a,a',c,c',v,b}>
to conclude that cec' 1is in G . Hence, {C(v) - D(v)) and
similarly (D(v) - C(v)) are nonempty complete graphs. A
similar argument also shows that CQN D can be partitioned into

sets €' and D' such that (C0> and (DO) are complete,

where CO = (C-D) U C"'" and DO = (pD-C)y D'.
Observe that if V(@) = {v} U A(v) U B(v) U C(v) UD(V)
then CO ~ DO as diam G = 3. In this case,
v, A, CO’ DO , B,V

represents a hamiltonian cycle. Thus we may assume that there
are vertices at a distance 3 from v. Let

E(v) = {xs:V(G)|d(x,C(v))==1,d(x,v)==3} and

F(v) = {XE:V(G)|d(x,D(v))==l,d(x,v)=i3}.

Observe that since G contains no induced K1,3, (¥*%) there isno
element of E(v) UF(v) adjacent to an element of TC(v) N D(v).
Suppose that E(v) # @ and F(v) = ® (note a similar

argument will hold if E(v) = @ and F(v) # #) . Let

deD - C(v) and e e E(v). If d(d,e) =2 then there is’
c & C(v) such that ec and dc are edges in G. As already
observed, ¢ & C(v) - D(v) and {{a,c,d,e}) & Kl,3 for any
a € A adjacent to c¢. Therefore, d(d,e) = 3 and there are
vertices ¢ e C(v) - D(v) and x e C(v) U pD(v) such that
e,c,x,d is a path. Again choosing a & A, with ac e E(G),
we have ax is in G. ©Now {({a,c,d,e,v,x}) = TF and hence
we conclude that E(v) # @ # F(v) .

It is straightforward to show that (E(v)) and <(F(v)) are
complete. If E(v) # F(v), then by (*#%) any path from E(v)
to F{v) which contains elements of C(v) U D(v) has length

at least 4. Thus, E(v) ~ F(v) and in fact, we may assume

that E(v) ¢ F(v) and (E(v)-F(v}) ~ F(v) . Therefore,
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B(v) , Vv

Vo, A(V) ’ CO » E(V) ~ F(V) » F(V) » DO »

represents a hamiltonian cycle.

Case 8. Assume that C(v) D{(v) ., In this case
E(v) UF(v) = @ and V(G) {v} U A(v) UB(w) ycvy. If

diam G = 2 then G 1is hamiltonian by Theorem B, Thus, we

may assume that there exist ¢ and c¢' € C(v) such that
d(c,¢') = 3. We shall show that Case 1, with ¢ replacing v,
" “now applies.

Since ¢ 1is not adjacent to ¢' in G, no a e A(v) 1is
adjacent to both ¢ and c¢' . If there is an a & A(V)
adjacent to neither, then by choosing b ,b' € B(v) with bc
F. Thus,

1

and b'c' in G we have that {{v,b,b',a,c,c'})
A(v) is partitioned as A and A' (A# ¢ and A" # @) with
aec A if and only if ac dis in G and a ¢ A' if and only
if aec' dis in G, Similarly, B(v) can be partitioned into
nonempty sets B and B'., So {(N(c)) is disconnected and we
define A(c) , B(e) ,C(c) ,D(c) with A < A(c) and B < B(c).
Let y ¢ A', Then d(c,y) =2 and d(y,A(c)) =1 =so
y € C{e) . If y e D{ec) then by the definition of D(ec) there
is some =z e B(c) such that yz dis in G. Now z ¢ A(v) as
then z e A< A(c) ; moreover, =z ¢ B(v) for otherwise yz is
not in G. Therefore, z ¢ C(v). Since {{v,y,z,c'}) # K1,3
then ze' is in G. But z ¢ B(ec) dmplies z¢ 1is in G and
hence df(c,c') = 2. This is a contradiction and we now con-
clude that C(c) € D(c) and similarly D(c) & C(c) . Thus

"Case 1 applies with ¢ replacing v.

Case 3. Assume that D(v) € C(v) and that there exists
A~ X & V(G) such that d{(v,x) = 3.
Then E(v), as defined in Case 1, is nonempty and by
(%*%) satisfies E(v) = {x ¢ V(G)|d(x,C(v)-—D(V))==l,d(x,v)=l3}.

Also, v is not a cutvertex of G so D(v) # §. As in Case 1
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{C(v) - D(v)) 1is complete. 1In fact, {D(v)) is also complete
(Observe that if d is not adjacent to d' in (D{(v)) then
there exists a' e A(v) not adjacent to d and b ¢ B(v)
adjacent to d. Now there exists e € E(v) ,c e C{v) — D(v)

and a & A(v) such that e, c,a,d 1s a path and ¢ 1s

adjacent to d. (This is true because if ¢ is adjacent to
d, any vertex a e A(v) adjacent to ¢ must be adjacent to
d, otherwise <{{c,a,d,e}) = Kl 5 If ¢ 1is not adjacent to

>
d there exists a path e, c,c',d with ec' mnot in G, but

{({c,a,e,c'}) dimplies ac' 1is in G and {{c,a,c',v,e,d})
gives a contradiction.) ' Finally, {{a,c,d,e,a’,b}) gives a
contradiction.

Since d(D(v) , E(v)) < 3, there is a ¢ ¢ C(v) - D(v)
adjacent to a vertex of D(v) (otherwise there is a Kl,3
centered in A(v)) . Since G 1is 2-connected there exists
¢',e" e Gv) - D(v) (note (**) holds) such that both <c'
and c" are adjacent to vertices of E(v) and ¢ # ¢" . Then

v,B(),D{) ,c,EW),c",C(v) - (D(v) U {c,c"}) , A(v) , Vv
(if c =¢c') or
v,B(W),D(),c,c" ,E(),c",Cv) - (D(v) U {c,c’,c"1),

A(v) ,v (if ¢ # ¢') represent hamiltonian cycles in G.

Case 4. Suppose D(v) < C(v) and d(v,x) < 2 for all

x ¢ V(G) . TFor simplicity let A = A(v),3B = B(v) , etc. Then
V(G) = {vlIU AUB UC. Observe (C - D) 1is complete (as in
Case 1).

Subcase A. Suppose (D) is complete. If C - D ~ D then
v,A,C-D,D,B,v represents a hamiltonian cyele., If

¢C-D /D, then since G is 2-connected, there exists at leas
two vertices in A, say ay and ay with adjacencies in

C - D (and these adjacencies are distinct unless |C -p|l =D

Further, ay and a, have no adjacencies in D or an induced
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K would result. Since D C ¢, there exists a & A such

ti;i a ~D, thus, a # a, or ap. Then
Vo, ay ,C - D,a, , A - {a,al,az}, a,D,B,vVv

represents a hamiltonian cycle.
Subcase B. Suppose (D) is not complete. Choose nonadjacent
dl’ d2 ¢ D. We note d1 and d2 have mo common adjacencies
in A or B (for an induced Kl,3 would result) . Further,
each a e A is adjacent to exactly one of dl and d2 (since
otherwise, for bl’ b2 ¢ B such that bldl ,b2d2 e B(G) ,
<{a,v,bl,b2,dl,d2}> z F) .

Fix a & A and define Dl = {XESD‘&XEZE(G)} and
D, = {(xeD|ax ¢ EG ] . Clearly ('Dl> is complete or a Kl,3
centered at a would exist. Further, <D2> is complete for
otherwise there exists nonadjacent d,d' e DZ' Then if d
and d' have a common adjacency in B, a Kl,3 exists; while
if b,b' € B such that db and d'b' are edges of G, then
({a,v,b,b',d,d'}) = ¥ . Thus, either case produces a contra-
diction, and (D2> is complete.

Recall that each vertex in C - D has an adjacency in A.
Let c¢ & C - D such that ca' ¢ E(G) (some a' € A . If
a'dl ¢ E(G) then cdl is an edge of G or a Kl,3 would
exist. If a' ¢# dl’ then there exists a'" ¢ A such that
a"d1 ¢ E(G) . Further, choose b ¢ B such that bd2 e B(G) .
Then by considering ({c,a',a”,dl,v,b} Y we see bdl e E(G) or
cdl ¢ E(G) . But bdl contradicts the fact that dl and d2
have no common adjacencies in B. As ¢ was arbitrary in
c-7D, dl is adjacent to each vertex in C-D. A similar
argument shows d2 is adjacent to each vertex in ¢ -D. Now

V,B,Dl~—{dl},dl,C—D,dZ,Dz—{dz},A,v

represents a hamiltonian cycle in G . This completes Case 4

and the proof of the Theorem.
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In Figure 2 we display various examples that demonstrate the
independence of Theorem A and Theorem 2, as well as the need to

forbid both induced subgraphs in Theorem 2.

O O o
aY __{} N

A 2-connected nonhamiltonian graphs

containing no induced K (but containing F) .

1,3

A 2-connected nonhamiltonian graph con-

taining no induced F (but containing Ky 3).
3

Figure 2a.
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A hamiltonian graph that is locally connected,

containing no induced Kl 3 and containing F.

]

O To

A hamiltonian graph, containing no induced

Kl 3 or F, that is not locally connected.
3

Figure 2b.
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