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Abstract

In [2], Brousek characterizes all triples of graphs, G1, G2, G3, with
Gi = K1,3 for some i = 1, 2, or 3, such that all G1G2G3-free graphs
contain a hamiltonian cycle. In [6], Faudree, Gould, Jacobson and
Lesniak consider the problem of finding triples of graphs G1, G2, G3,
none of which is a K1,s, s ≥ 3 such that G1, G2, G3-free graphs of
sufficiently large order contain a hamiltonian cycle.

In this paper, a characterization will be given of all triples G1, G2, G3

with none being K1,3, such that all G1G2G3-free graphs are hamilto-
nian. This result, together with the triples given by Brousek, com-
pletely characterize the forbidden triples G1, G2, G3 such that all
G1G2G3-free graphs are hamiltonian.
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1. Introduction

The problem of recognizing graph properties based on forbidden subgraphs
has received considerable attention. A wide variety of properties and for-
bidden families have been studied. In particular, the property of being
hamiltonian has been considered. A series of results culminated in the char-
acterization, by Bedrossian [1], of the pairs of forbidden subgraphs which
imply all graphs are hamiltonian. In his proof, Bedrossian used some small
order counterexamples to eliminate some cases. Faudree and Gould [4] ex-
tended the collection to characterize the forbidden pairs which imply all
graphs of order n ≥ 10 are hamiltonian.

Since the only single forbidden subgraph that implies a graph is hamil-
tonian is P3 (the path on 3 vertices) and it forces the graph to be complete,
the problem of all single or pairs of forbidden subgraphs implying hamil-
tonicity has been completely characterized, both for all graphs and for all
sufficiently large graphs.

C(2,2,1)

K
1,3

Figure 1. Common forbidden graphs

An interesting feature of both of these characterizations for pairs is that
the claw K1,3 (see Figure 1) must be one of the graphs in each pair. This
led to the question: If we consider triples of forbidden subgraphs implying
hamiltonicity, must the claw always be one of the graphs in the triple? This
question was answered negatively in [6]. There, all triples containing no
K1,t, t ≥ 3 which imply all sufficiently large graphs are hamiltonian were
given. Brousek [2] gave the collection of all triples which include the claw
that imply all 2-connected graphs are hamiltonian.
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The purpose of this paper is to complete the triples question for all 2-
connected graphs by providing those triples not including K1,t, t ≥ 3 which
imply all 2-connected graphs are hamiltonian, as well as triples containing
K1,t, t ≥ 4.

We follow the notation of [3]. In addition, we say a graph H is G1G2G3-
free if H does not contain Gi, i = 1, 2, 3 as an induced subgraph. We also de-
fine the graph C(i, j, k) (see Figure 1 for C(2, 2, 1)) to be the graph obtained
by identifying the end vertex of paths of lengths i, j and k, respectively. This
graph may be thought of as a kind of generalized claw as K1,3 = C(1, 1, 1).

Given a cycle with an implied orientation, we write x+ and x− for the
successor and predecessor of x on the cycle, repsectively. Further, by [x, y]
we mean the subpath of C beginning at x and ending at y and following the
orientation of C. We define the graphs J1 and J2 to be the complete graph
Km on m vertices (m ≥ 3) with one or two edges joined to a single vertex,
respectively (see Figure 2). The book Bn is obtained by identifying an edge
from each of n triangles (see Figure 2 for B2). The graph Zi is obtained by
adjoining a path of length i at one vertex of a triangle (see Figure 2 for Z1).
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Figure 2. More common forbidden graphs
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2. Main Results

Since Brousek gave all triples where one graph is a K1,3, to complete the
characterization of triples G1, G2, G3 such that all 2-connected G1G2G3-free
graphs are hamiltonian, we will consider two cases. First, we consider the
case where one of the Gi

∼= K1,t for t ≥ 4 and second is the case where no
Gi

∼= K1,t for t ≥ 3.

In [5], Faudree, Gould and Jacobson give the following result:

Theorem 1. If G is a 2-connected graph of sufficiently large order which is
G1G2G3-free where G1, G2, G3 are one of the following triples:

(i) P4, K1,t, J2, t ≥ 4,

(ii) P4, K1,t, B2, t ≥ 4,

(iii) Pr, K1,t, J1, r ≥ 5, t ≥ 4,

(iv) C(l, 1, 1), K1,t, Z1, l ≥ 2, t ≥ 4,

or G1, G2, G3 is a triple of induced subgraphs of one of these triples, then G
is hamiltonian. Furthermore, these are the only possible triples that contain
K1,t, t ≥ 4.

But, by considering K2,3, it is easy to see that none of these triples would
imply hamiltonicity for all 2-connected graphs. So, to complete this char-
acterization, we need to consider the triples where none of the graphs are a
K1,m, (m ≥ 3).

In [6], Faudree, Gould, Jacobson and Lesniak, characterized the triples
G1, G2, G3, none of which are K1,t, t ≥ 3 such that sufficiently large G1G2G3-
free graphs are hamiltonian.

The following was shown:

Theorem 2. Let G be a 2-connected graph of sufficiently large order n, and
let G1, G2, G3 be connected graphs with at least three edges, none of which
is a K1,t, t ≥ 3. Then G being G1G2G3-free implies that G is hamiltonian
if, and only if, G1, G2, G3 is one of the following triples:

(i) P4B2K2,dn+1
2
e, (v) C(3, 1, 1)B1K2,2,

(ii) P4B3K2,3, (vi) C(2, 2, 1)B1K2,2,

(iii) P5B1K2,bn
3
c, (vii) P6B1K2,2,

(iv) C(2, 1, 1), B1, K2,bn
2
c−2, (viii) P5B2K2,3,

or G1, G2, G3 is a triple of induced subgraphs of one of these eight triples.
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III
IV

I
II

Figure 3. Forbidden graphs I–IV

By considering the graphs in Figure 3, the triples in Theorem 2 can be
trimmed down to only a few possibilities.

Theorem 3. If G1, G2, G3 is a triple of graphs, none of which is a K1,t,
t ≥ 3, and for all 2-connected G1, G2, G3-free graphs G, G is hamiltonian,
then it is the case that G1, G2, G3 is one of the following triples:

(a) P4B3K2,3,

(b) P5B2K2,2,

(c) C(2, 2, 1)B1K2,2,

or is a triple of induced subgraphs of one of these triples.

Proof. Clearly, it follows since these graphs are hamiltonian regardless of
order, they must be hamiltonian for sufficiently large order. So the triples
must be triples G1, G2, G3 which are induced triples from the eight possibil-
ities in Theorem 2. Graph I in Figure 3 reduces class (i) in Theorem 2 to
P4B2K2,3, which is a triple of induced subgraphs of (a). Graph II in Figure
3 reduces class (iii) to P5B1K2,2, which is a triple of induced subgraphs of
(b), and class (viii) to P5B2K2,2, which is triple (b). Graph III eliminates
class (v) and (vii) totally, while graph IV from Figure 3 reduces class (iv)
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to C(2, 1, 1)B1K2,2, which is a triple of induced subgraphs of (c). Classes
(ii) and (vi) remain uneffected by the graphs in Figure 3. Thus, the result
follows.

To complete the characterization, it only remains to show that in fact for-
bidding any one of these triples actually does imply the graph is hamiltonian
for all such 2-connected graphs. In [6], the following was shown.

Theorem C. Let G be a 2-connected P4-free non-hamiltonian graph. Then
either B3 or K2,3 is an induced subgraph of G.

From this it follows that:

Corollary 4. If G is a 2-connected P4B3K2,3-free graph (or P4B2K2,3-free),
then G is hamiltonian.

We now complete the positive results with the following Theorem.

Theorem 5. If G is a 2-connected C(2, 2, 1)B1K2,2-free or P5B2K2,2-free
graph, then G is hamiltonian.

Proof. Since K2,3 is the only 2-connected non-hamiltonian graph with
fewer than 6 vertices, it follows that we may assume that G contains at
least 6 vertices.

Claim 1. The longest cycle in G has length at least 6.

Proof of Claim 1. Consider a longest cycle C in G. If C is a hamilto-
nian cycle, we are done. If not, then there exists a vertex x with at least
two disjoint (except for x) paths to C. Say these paths end at y and z,
respectively. Clearly, these paths do not end at consecutive vertices of C,
so there is at least one vertex in each segment of C determined by y and z.
Say such vertices are a and b.

Suppose first that |V (C)| = 4, that is, each segment has exactly one
vertex. Then, the two paths from x must each be an edge, or else we would
find a cycle longer than C. Now H = 〈x, a, y, z〉 ∼= K2,2 or B2. However, K2,2

and B2 are forbidden and H = K4 allows us to extend C. If |V (C)| = 5, then
a similar argument applies to 〈z, b, y, x〉 or 〈x, a, y, z〉. Thus, each segment of
C between y and z must contain two or more vertices and hence, |V (C)| ≥ 6.
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By Claim 1, we may assume that |V (G)| ≥ 7, for otherwise it follows that
G is hamiltonian.

Case 1. Suppose that G is a P5B2K2,2-free graph.
Consider a longest cycle C with a vertex z /∈ V (C). Again, z has at least two
disjoint (except for z) paths P1 and P2 to C. Consider them as a shortest
path P outside C except for its end vertices. If the path P contains more
than two vertices not on C, say P : zt, zt−1, . . . , z1, z, w1, w2, . . . ws where
z1 6= z, z1 /∈ V (C) and zt ∈ V (C) and where w1 6= z, w1 /∈ V (C) and
ws ∈ V (C), then since P is a shortest such path, we have that z1w1 /∈ E(G).

Now z1, z and w1 are not adjacent to z+
t by our choice of shortest path.

For the same reason, z and w1 are not adjacent to zt, and z1 is not adjacent
to zt unless t = 2. But now, z+

t , zt, . . . , z1, z, w1 contains an induced P5,
contradicting our assumption. Thus, we may assume the path P off C has
exactly one or two vertices not on C.

Now suppose P : u, u1, u2, v is this path with u, v ∈ V (C) and u1, u2 /∈
V (C). Note that u1v and u2u are not edges since that would contradict
the minimality of P . Clearly, |[u+, v−]| ≥ 2 or we could extend C. Now,
uv /∈ E(G) since K2,2 is forbidden. But now 〈u+, u, u1, u2, v〉 ∼= P5 unless
u+v ∈ E(G). Similarly, 〈u, u1, u2, v, v+〉 ∼= P5 unless uv+ ∈ E(G). But now
〈u, u+, v, v+〉 ∼= K2,2 or B2, a contradiction completing this case.

Finally suppose the path P off C contains exactly one vertex not on C.
Say the path is x, z, y where x, y ∈ V (C). Without loss of generality we may
assume z has no edges to C in [x, y]. Note that x+ and y− must be distinct
or 〈x, y, z, x+〉 ∼= K2,2 or B2, a contradiction.

Now, if xy /∈ E(G), then x+y, xy−, xy+, x−y /∈ E(G) or we would
find K2,2 or B2 induced in G. Further, x+y+ /∈ E(G) or we could extend C.
Similarly, x−y− /∈ E(G). But now, 〈y+, y, z, x, x+〉 ∼= P5 a contradiction.
Hence, we conclude that xy ∈ E(G).

Now note that there exists a vertex w ∈ [x+, y−] such that xw ∈ E(G),
but xw+ /∈ E(G). This follows since xx+ ∈ E(G) and xy− /∈ E(G).
Observe then that yw /∈ E(G) or else 〈x, y, w, z〉 ∼= B2. As before, if
xy+ ∈ E(G) then 〈x, y+, y, z〉 ∼= B2, a contradiction. While if y+w ∈ E(G),
then 〈x, y+, w, y〉 ∼= K2,2, again a contradiction.

But, this implies that yw+ /∈ E(G) or else 〈w, w+, y, x〉 ∼= K2,2 or B2.
Now y+w+ ∈ E(G) or else 〈y+, y, x, w, w+〉 ∼= P5. Then 〈y+, w+, w, x, z〉 ∼=
P5 a contradiction. This completes Case 1.



54 R.J. Faudree, R.J. Gould and M.S. Jacobson

Case 2. Suppose G is C(2, 2, 1)B1K2,2-free.
Let C be a longest cycle in G. Recall that |V (C)| ≥ 6. Suppose x /∈ V (C)
and that xy ∈ E(G), where y ∈ V (C). Let y−− = z1 and y++ = z2.
Consider 〈z1, y

−, y, y+, z2, x〉. This graph contains C(2, 2, 1). However, only
the edge z1z2 can be added without producing either B1 or K2,2.

Now, [z+
2 , z−1 ] must contain at least 3 vertices or a K2,2 or B1 would

result. Hence, |V (C)| ≥ 8.
Consider next 〈z1, z

+
1 , z−−1 , z−1 , z2, z

−
2 〉. This graph contains C(2, 2, 1),

hence, more edges must be present. However, any edge from z+
1 produces a

B1 or K2,2. Similarly, there are no additional edges from z2 or z−1 . Hence,
the only possible edge is z−−1 z−2 .

Similarly, 〈z1, y
−, y, z−1 , z−−1 , z2〉 implies z−−1 y ∈ E(G). But then,

〈z−−1 , y, z−2 〉 ∼= B1, a contradiction, completing this case and the proof of
the result.
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