Variations of pancyclic graphs Jill Faudree University of Alaska, Fairbanks > R. Jasper Faudree University of Memphis > > Ronald J. Gould Emory University Michael S. Jacobson University of Colorado at Denver > Linda Lesniak Drew University October 16, 2003 #### Abstract A graph G of order n is pancyclic if it contains a cycle of length ℓ for every ℓ such that $3 \leq \ell \leq n$. If the graph is bipartite, then it contains no cycles of odd length. A balanced bipartite graph G of order 2n is bipancyclic if it contains a cycle of length ℓ for every even ℓ , such that $4 \leq \ell \leq 2n$. A graph G of order n is called k-semipancyclic, $k \geq 0$, if there is no "gap" of k+1 among the cycle lengths in G, i.e., for no $\ell \leq n-k$ is it the case that each of $C_{\ell}, ..., C_{\ell+k}$ is missing from G. Generalizing this to bipartite graphs, a bipartite graph G of order n is called k-semibipancyclic, $k \geq 0$, if there is no "gap" of k+1 among the even cycle lengths in G, i.e., for no $\ell \leq n-2k$ is it the case that each of $C_{2\ell}, ..., C_{2\ell+2k}$ is missing from G. In this paper we generalize a result of Hakimi and Schmiechel in several ways. First to k-semipancyclic, then to bipartite graphs, giving a condition for a hamiltonian bipartite graph to be bipancyclic or one of two exceptional graphs. Finally, we give a condition for a hamiltonian bipartite graph to be k-semibipancyclic or a member of a very special class of hamiltonian bipartite graphs. Keywords: pancyclic, cycle, hamiltonian, degree, degree sum AMS Classification: 05C38 JCMCC 51 (2004), pp. 33-48 #### 1 Introduction A graph G of order n is pancyclic if G contains a cycle of length ℓ for every ℓ such that $3 \leq \ell \leq n$. If the graph is bipartite, then it contains no cycles of odd length. Generalizing the concept of a pancyclic graph, a balanced bipartite graph G of order 2n is bipancyclic if it contains a cycle of length ℓ for every even ℓ , such that $4 \leq \ell \leq 2n$. In this paper, we also consider another such property and its bipartite analogue. A graph G of order n is called k-semipancyclic, $k \geq 0$, if there is no "gap" of k+1 among the cycle lengths in G, i.e., for no $\ell \leq n-k$ is it the case that each of C_ℓ , ..., $C_{\ell+k}$ is missing from G. In addition, a bipartite graph G of order n is called k-semibipancyclic, $k \geq 0$, if there is no "gap" of k+1 among the even cycle lengths in G, i.e., for no $\ell \leq n-2k$ is it the case that each of $C_{2\ell}$, ..., $C_{2\ell+2k}$ is missing from G. Thus every pancyclic graph is k-semipancyclic and every bipancyclic graph is k-semibipancyclic for all $k \geq 0$. Note, 0-semipancyclic and 0-semibipancyclic graphs are just pancyclic and bipancyclic graphs, respectively. In Section 2 we give a generalization of a result by Hakimi and Schmiechel [2] to k-pancyclicity. In Section 3 we give several examples of hamiltonian bipartite graphs which are not bipancyclic, and in certain cases, not k-semibipancyclic. These examples will be the limiting examples of the results presented in Sections 4 and 5. In Section 4 we further generalize a result of Hakimi and Schmiechel to bipartite graphs and give a condition for a hamiltonian bipartite graph to be bipancyclic or one of two exceptional graphs. In Section 5 we will generalize the result of Section 2 to bipartite graphs and give a condition for a hamiltonian bipartite graph to be k-semibipancyclic or an element of a very specific class of hamiltonian bipartite graphs. ### 2 k-Semipancyclic hamiltonian graphs In [2] the following result on pancyclic graphs was given. **Theorem 1** Let G be a graph of order n with $V(G) = \{v_1, ..., v_n\}$ and hamiltonian cycle $v_1, ..., v_n, v_1$. Suppose that deg $v_1 + \deg v_n \ge n$. Then G is either pancyclic, bipartite or missing only an (n-1)-cycle. Here we establish the following extension for k-semipancyclic graphs, $k \ge 1$. Theorem 2 Let G be a graph of order r hamiltonian cycle $v_1, ..., v_n, v_1$. Suppose integer k satisfying $1 \le k \le n/2$. Then G **Proof.** Suppose, to the contrary, that some ℓ satisfying $3 \le \ell \le n - k$, G contains Case 1. Suppose that $\ell \leq n/2 - k$. (7. symmetric argument.) Since $C_{\ell}, ..., C_{\ell+k} \not\subseteq G$, it follows the $i \leq \ell+k$ and $n-\ell-k+2 \leq i \leq n-\{v_{\ell+k+1}, ..., v_{n-\ell-k+1}\}, C = \{v_{n-\ell+3}, ..., v_{\ell-\ell+k-2}, ..., v_{n-2}\}$ and $C' = \{v_2, ..., v_{\ell-2+\ell-2}, ..., v_{\ell-2+\ell-2}\}$ in $A \cup B \cup C$ with the exception of v_n . Let a, b, and c be the number of adjac Let $v_{i_1}, v_{i_2}, ..., v_{i_a}$ with $2 \le i_1 < i_2 < ... <$ A. It follows that $v_n v_{i_1+\ell-3}, v_n v_{i_2+\ell-3}, ...,$ otherwise an ℓ - cycle would result. Furth $v_n v_{i_a+\ell-3+t}$ is not an edge of G since a cycle that these a+k nonadjacencies of v_n are all v_1 in B force b+k nonadjacencies of v_n in $\ell + 3 \le i_1 < i_2 < ... < i_a \le n - 1$ are the adja $v_n v_{\ell-(n-i_1+1)}$ is not an edge of C since v_1,v_2 an ℓ - cycle. Similarly, $v_n v_{\ell-(n-i_2+1)}, ..., v_n$ not edges of G for again an ℓ - cycle would re we see that $v_n v_{i_a+\ell-3+\ell}$ is not an edge of result. Note that these are c+k nonadjacenb+c+1, and $\deg v_n \leq (n-1)-(a+k+b+k+1)$ of the intersection of A' and C'. Since A' of have that $\deg v_n \le (n-1) - (a+k+b+k+1)$ so that $\deg v_1 + \deg v_n \le n - 2k$, which is Case 2. Suppose n is even and $\ell = n/k/2 - 1 < t \le k - 1$ is handled by a symmetry Since $C_{\ell},...,C_{\ell+k} \nsubseteq G$, it follows that $v_{n/2+t+2}$. Let $A = \{v_2,...,v_{n/2-t-1}\}, C = \dots, v_{n-2t-4+k}\}$ and $C' = \{v_2,...,v_{n/2-t-5}\}$ of v_1 are in $A \cup G$ with the exception of v_1 k-semipancyclic, the a adjacencies of v_1 in in A'. Likewise, the c adjacencies of v_1 in in C'. Note that if the adjacencies of v_1 i another previously uncounted nonadjacency and $v_{i+1}v_i \in E(G)$, then v_n is adjacent to c if G contains a cycle of length ℓ for every ph is bipartite, then it contains no cycles of ept of a pancyclic graph, a balanced bipartite ic if it contains a cycle of length ℓ for every another such property and its bipartite analed k-semipancyclic, $k \geq 0$, if there is no "gap" in G, i.e., for no $\ell \leq n-k$ is it the case that G. In addition, a bipartite graph G of order 0, if there is no "gap" of k+1 among the even n-2k is it the case that each of $C_{2\ell},...,C_{2\ell+2k}$ rcyclic graph is k-semipancyclic and every biclic for all $k \geq 0$. Note, 0-semipancyclic and pancyclic and bipancyclic graphs, respectively. ration of a result by Hakimi and Schmiechel [2] give several examples of hamiltonian bipartite, and in certain cases, not k-semibipancyclic, gexamples of the results presented in Sections generalize a result of Hakimi and Schmiechel dition for a hamiltonian bipartite graph to be onal graphs. In Section 5 we will generalize graphs and give a condition for a hamiltonian cyclic or an element of a very specific class of ### namiltonian graphs cyclic graphs was given. order n with $V(G) = \{v_1, ..., v_n\}$ and hamiltothat $\deg v_1 + \deg v_n \ge n$. Then G is either ly an (n-1)-cycle. g extension for k-semipancyclic graphs, $k \geq 1$. **Theorem 2** Let G be a graph of order $n \geq 9$ with $V(G) = \{v_1, ..., v_n\}$ and hamiltonian cycle $v_1, ..., v_n, v_1$. Suppose deg $v_1 + \deg v_n \geq n - k$ for some integer k satisfying $1 \leq k \leq n/2$. Then G is k-semipancyclic. **Proof.** Suppose, to the contrary, that G is not k-semipancyclic. Then for some ℓ satisfying $3 \leq \ell \leq n-k$, G contains none of the cycles $C_{\ell}, ..., C_{\ell+k}$. Case 1. Suppose that $\ell \le n/2 - k$. (The case $\ell \ge n/2 + 1$ is handled by a symmetric argument.) Since $C_{\ell},...,C_{\ell+k} \not\subseteq G$, it follows that v_1 is not adjacent to v_i , for $\ell \leq i \leq \ell+k$ and $n-\ell-k+2 \leq i \leq n-\ell+2$. Let $A=\{v_2,...,v_{\ell-1}\}, B=\{v_{\ell+k+1},...,v_{n-\ell-k+1}\}, C=\{v_{n-\ell+3},...,v_{n-1}\}, A'=\{v_{\ell-1},...,v_{2\ell-4+k}\}, B'=\{v_{2\ell+k-2},...,v_{n-2}\}$ and $C'=\{v_2,...,v_{\ell-2+k}\}$. Note that all adjacencies of v_1 are in $A \cup B \cup C$ with the exception of v_n . Let a, b, and c be the number of adjacencies of v_1 in A, B, C, respectively. Let $v_{i_1}, v_{i_2}, ..., v_{i_a}$ with $2 \leq i_1 < i_2 < ... < i_a \leq \ell - 1$ be the adjacencies of v_1 in A. It follows that $v_n v_{i_1+\ell-3}, v_n v_{i_2+\ell-3}, ...,$ and $v_n v_{i_a+\ell-3}$ are not edges of G for otherwise an ℓ - cycle would result. Furthermore, for t=1,2,...,k, we see that $v_n v_{i_a+\ell-3+t}$ is not an edge of G since a cycle of length $\ell+t$ would result. Observe that these a+k nonadjacencies of v_n are all in A'. Similarly, the b adjacencies of v_1 in B force b+k nonadjacencies of v_n in B'. Finally, if $v_{i_1}, v_{i_2}, ..., v_{i_c}$ with n-1 $\ell+3 \leq i_1 < i_2 < \ldots < i_a \leq n-1$ are the adjacencies of v_1 in C then it follows that $v_n v_{\ell-(n-i_1+1)}$ is not an edge of C since $v_1, v_2, ..., v, v_n, v_{n-1}, ..., v_{i_1}, v_1$ would form an ℓ -cycle. Similarly, $v_n v_{\ell-(n-i_2+1)}, ..., v_n v_{\ell-(n-i_{c-1}+1)}$ and $v_n v_{\ell-(n-i_{c+1})}$ are not edges of G for again an ℓ -cycle would result. Additionally, for t=1,2,...,k, we see that $v_n v_{i_a+\ell-3+t}$ is not an edge of G since a cycle of length $\ell+t$ would result. Note that these are c+k nonadjacencies of v_n in C'. Now the deg $v_1=a+$ b+c+1, and deg $v_n \leq (n-1)-(a+k+b+k+c+k-m)$, where m is the cardinality of the intersection of A' and C'. Since $A' \cap C' = (\ell + k - 2) - (\ell - 1) + 1 = k$, we have that $\deg v_n \leq (n-1) - (a+k+b+k+c+k-k) = (n-1) - (\deg v_1 + 2k-1)$ so that $\deg v_1 + \deg v_n \le n - 2k$, which is a contradiction
since $k \ge 1$. Case 2. Suppose n is even and $\ell = n/2 - t$ for $0 \le t \le k/2 - 1$. (The case $k/2 - 1 < t \le k - 1$ is handled by a symmetric argument.) Since $C_{\ell},...,C_{\ell+k} \not\subseteq G$, it follows that v_1 is not adjacent to $v_{n/2-\ell},...,v_{n/2+\ell+2}$. Let $A=\{v_2,...,v_{n/2+\ell-1}\}, C=\{v_{n/2+\ell+3},...,v_{n-1}\}, A'=\{v_{n/2+\ell-1},...,v_{n-2\ell-4+k}\}$ and $C'=\{v_2,...,v_{n/2-\ell-2+k}\}$. Note that all of the adjacencies of v_1 are in $A\cup C$ with the exception of v_n . Arguing as before, since G is not k-semipancyclic, the a adjacencies of v_1 in A force a+k nonadjacencies of v_n in A'. Likewise, the c adjacencies of v_1 in C force c+k nonadjacencies of v_n in C'. Note that if the adjacencies of v_1 in A are not consecutive, this forces another previously uncounted nonadjacency of v_n . For example, if $v_iv_1 \notin E(G)$ and $v_{i+1}v_1 \in E(G)$, then v_n is adjacent to neither $v_{i+\ell-2}$ nor $v_{i+\ell-1}$. Define $\Delta_A(\Delta_C)$ to be 1 if the adjacencies of v_1 in A (respectively C) are not consecutive along the hamiltonian cycle and 0 otherwise. Now the $\deg v_1=a+c+1$, and as above, $\deg v_n \leq (n-1)-(a+k+c+k+\Delta_A+\Delta_C-m)$, where m is the cardinality of the intersection of A' and C'. Since $|A'\cap C'|=(n/2-t-2+k)-(n/2-t-1)+1=k$, we have that $\deg v_n \leq (n-1)-(a+c+k+\Delta_A+\Delta_C)=(n-1)-(\deg v_1-1+k+\Delta_A+\Delta_C)$. So $\deg v_1+\deg v_n \leq n-k-(\Delta_A+\Delta_C)$, which is a contradiction unless $\Delta_A=\Delta_C=0$ and $\deg v_1+\deg v_n=n-k$. Hence, we may assume the adjacencies of v_1 in A and C are consecutive. Thus v_1 is adjacent to the vertices $v_2, ..., v_{a+1}$ in A and v_1 is adjacent to the vertices $v_{n-1}, ..., v_{n-c}$ in C. This gives us cycles of lengths n-(a+c+1)+2 up to n. Now, we can assume $\deg v_1 \geq (n-k)/2$ and, that $\deg v_n \leq (n-k)/2$. Thus we have cycles of lengths n-(n-k)/2+2=n/2+k/2+2 and larger and this case is complete if t < k/2-1 or if t=k/2-1 and $\deg v_1 > (n-k)/2$. So we can assume that t=k/2-1 and $\deg v_1 = \deg v_n = (n-k)/2$. Note, since $n \geq 9$, it follows that $(n-k)/2 \geq 3$. Suppose v_1 has all of its adjacencies, except v_n in A. As previously noted, v_1 is adjacent to $v_2, v_3, ..., v_{(n-k)/2}$. This yields cycles of length 3 up to (n-k)/2 and from (n+k+4)/2 to n. Now consider the adjacencies of v_n . Since $\deg v_n \geq 3$, it follows that v_n is adjacent to either v_{n-2} or v_2 , which implies that G contains a cycle of length (n+k+2)/2 or a cycle of length (n-k+2)/2, either case being a contradiction. Consequently, we can assume that each of v_1 and v_n have adjacencies to both A and C. Now the cycle $v_1, v_{n-c}, v_{n-c+1}, ..., v_n, v_2, ..., v_1$ has length (n-k+2)/2 thus completing this case. Case 3. Suppose n is odd and $\ell = \lfloor n/2 \rfloor - t$ for $0 \le t \le k/2 - 1$. (The case $k/2 - 1 < t \le k - 1$ is handled by a symmetric argument.) Since $C_{\ell}, ..., C_{\ell+k} \not\subseteq G$, it follows that v_1 is not adjacent to the vertices $v_{\lfloor n/2 \rfloor - t}, ..., v_{\lfloor n/2 \rfloor + t + 3}$. Let $A = \{v_2, ..., v_{\lfloor n/2 \rfloor - t - 1}\}$, $C = \{v_{\lfloor n/2 \rfloor + t + 4}, ..., v_{n-1}\}$, $A' = \{v_{\lfloor n/2 \rfloor - t - 1}, ..., v_{n-2t-5+k}\}$ and $C' = \{v_2, ..., v_{\lfloor n/2 \rfloor - t - 2 + k}\}$. Note that all adjacencies of v_1 are in $A \cup C$ with the exception of v_n . Further, if the adjacencies of v_1 in A are not consecutive, then, as before, this forces another previously uncounted nonadjacency of v_n . Define $\Delta_A(\Delta_C)$ to be 1 if the adjacencies of v_1 in A (respectively in C) are not consecutive on the hamiltonian cycle, and 0 otherwise. Let a be the number of adjacencies of v_1 in A and let c be the number of adjacencies of v_1 in C. Then, as above, $\deg v_1 = a+c+1$ and $\deg v_n \leq (n-1) - (a+k+c+k+\Delta_A+\Delta_C-m)$, where m is the cardinality of the intersection of A' and C'. Since $|A' \cap C'| = (\lfloor n/2 \rfloor - t - 2 + k) - (\lfloor n/2 \rfloor - t - 1) + 1 = k$, we conclude $\deg v_n \leq (n-1) - (a+k+c+k-k+\Delta_A+\Delta_C) = (n-1) - (a+c+k+\Delta_A+\Delta_C) = (n-1) - (\deg v_1 - 1 + k + \Delta_A + \Delta_C)$. So $\deg v_1 + \deg v_n \leq (n-k) - (\Delta_A + \Delta_C)$, which is a contradiction unless $\Delta_A = 0 = \Delta_C$ and $\deg v_1 + \deg v_n = n - k$. The remainder of the proof of Case 3 is identical to that of Case 2. The requirement that $n \geq 9$ in Theorer can be seen to be a necessary condition from which fails to be 4-semipancyclic. Corollary 3 Let G be a hamitonian graph for some k satisfying $1 \le k \le n/2$. Then (Let $\sigma_2(G) = \min\{\deg u + \deg v\}$, where u, v of nonadjacent vertices of G. Corollary 4 Let G be a hamitonian graph some k satisfying $1 \le k \le n/2$. Then G is **Proof.** Let $C: v_1, v_2, ..., v_n, v_1$ be a soft consecutive vertices of C has degree su complete by Theorem 2. Fix the pair v_n, v the $\lfloor \frac{n-2}{2} \rfloor$ disjoint consecutive pairs. If for that $v_n v_{i+1}$ and $v_1 v_i$ are not edges of C (all edges of C) then $$2(n-k) \leq (deg v_n + deg v_{i+1}) + = (deg v_n + deg v_1) + (eg v_n + deg v_n) +$$ a contradiction. Thus, there are at least two $\deg v_n + \deg v_1 \ge \lfloor \frac{n-2}{2} \rfloor + 2 \ge n-1$, and t # 3 Hamiltonian bipartite semibipancyclic In this section we present several classes of cases for results presented in the next two: the resulting graph is bipartite, with partite and hamiltonian cycle $$C = x_1, y_1, x_2, y_2, \dots$$ Example 1 Consider the family of graph (X, Y, E), with the hamiltonian cycle C, ad for each i = 4, 5, ..., n - 2, exactly one of th adjacencies of v_1 in A (respectively C) are not n cycle and 0 otherwise. Now the $\deg v_1 = i-1)-(a+k+c+k+\Delta_A+\Delta_C-m)$, where m is of A' and C'. Since $|A'\cap C'|=(n/2-t-2+t)$ that $\deg v_n \leq (n-1)-(a+c+k+\Delta_A+\Delta_C)=\Delta_C$. So $\deg v_1+\deg v_n \leq n-k-(\Delta_A+\Delta_C)$, $\Delta_A=\Delta_C=0$ and $\deg v_1+\deg v_n=n-k$. encies of v_1 in A and C are consecutive. tices $v_2, ..., v_{a+1}$ in A and v_1 is adjacent to the gives us cycles of lengths n-(a+c+1)+2 g $v_1 \geq (n-k)/2$ and, that $\deg v_n \leq (n-k)/2$. -(n-k)/2+2=n/2+k/2+2 and larger and 1 or if t=k/2-1 and $\deg v_1>(n-k)/2$. So and $\deg v_1=\deg v_n=(n-k)/2$. Note, since ≥ 3 . encies, except v_n in A. As previously noted, v_1 this yields cycles of length 3 up to (n-k)/2 and nsider the adjacencies of v_n . Since $deg \ v_n \geq 3$, ither v_{n-2} or v_2 , which implies that G contains or a cycle of length (n-k+2)/2, either case ty, we can assume that each of v_1 and v_n have we the cycle $v_1, v_{n-c}, v_{n-c+1}, ..., v_n, v_2, ..., v_1$ has sting this case. d $\ell = \lfloor n/2 \rfloor - t$ for $0 \le t \le k/2 - 1$. (The case y a symmetric argument.) pllows that v_1 is not adjacent to the vertices $A = \{v_2, ..., v_{\lfloor n/2 \rfloor - t - 1}\}$, $C = \{v_{\lfloor n/2 \rfloor + t + 4}, v_{n-2t-5+k}\}$ and $C' = \{v_2, ..., v_{\lfloor n/2 \rfloor - t - 2 + k}\}$. The in $A \cup C$ with the exception of v_n . Further, we not consecutive, then, as before, this forces ionadjacency of v_n . Define $\Delta_A(\Delta_C)$ to be 1 respectively in C are not consecutive on the isc. cencies of v_1 in A and let c be the number of above, $\deg v_1 = a+c+1$ and $\deg v_n \leq (n-1)-$ ere m is the cardinality of the intersection of $A'-t-2+k-(\lfloor n/2\rfloor-t-1)+1=k$, we conclude $k+\Delta_A+\Delta_C=(n-1)-(a+c+k+\Delta_A+\Delta_C)=\Delta_C$. So $\deg v_1+\deg v_n\leq (n-k)-(\Delta_A+\Delta_C)$, $\Delta_A=0=\Delta_C$ and $\deg v_1+\deg v_n=n-k$. If Case 3 is identical to that of Case 2. The requirement that $n \ge 9$ in Theorem 2 and the following two corollaries can be seen to be a necessary condition from the graph C_8 , with k = 4 = n/2 which fails to be 4-semipancyclic. Corollary 3 Let G be a hamitonian graph of order $n \geq 9$ with $\delta(G) \geq (n-k)/2$ for some k satisfying $1 \leq k \leq n/2$. Then G is k-semipancyclic. Let $\sigma_2(G) = \min\{\deg u + \deg v\}$, where the minimum is taken over all pairs u, v of nonadjacent vertices of G. Corollary 4 Let G be a hamiltonian graph of order $n \ge 9$ with $\sigma_2 \ge n-k$ for some k satisfying $1 \le k \le n/2$. Then G is k-semipancyclic. **Proof.** Let $C: v_1, v_2, ..., v_n, v_1$ be a hamiltonian cycle of G. If any pair of consecutive vertices of C has degree sum at least n-k, then the proof is complete by Theorem 2. Fix the pair v_n, v_1 and beginning with v_2, v_3 consider the $\lfloor \frac{n-2}{2} \rfloor$ disjoint consecutive pairs. If for one such pair v_i, v_{i+1} it is the case that $v_n v_{i+1}$ and $v_1 v_i$ are not edges of G (alternately, if $v_n v_i$ and $v_1 v_{i+1}$ are not edges of G) then $$\begin{array}{rcl} 2(n-k) & \leq & (\deg v_n + \deg v_{i+1}) + (\deg v_1 + \deg v_i) \\ & = & (\deg v_n + \deg v_1) + (\deg v_i + \deg v_{i+1}) < 2(n-k), \end{array}$$ a contradiction. Thus, there are at least two edges from v_n, v_1 to v_i, v_{i+1} . Hence, $\deg v_n + \deg v_1 \geq \lfloor \frac{n-2}{2} \rfloor + 2 \geq n-1$, and the result follows by Theorem 1. # 3 Hamiltonian bipartite graphs that are not ksemibipancyclic In this section we present several classes of graphs that will be the exceptional cases for results presented in the next two sections. In each of these examples, the resulting graph is bipartite, with partite sets X and Y having |X| = |Y| = n, and hamiltonian cycle $$C = x_1, y_1, x_2, y_2, ..., x_n, y_n, x_1.$$ Example 1 Consider the family of graphs \mathcal{F}_n containing the graphs $F_n = (X, Y, E)$, with the hamiltonian cycle C, additional edges x_1y_3 and y_nx_{n-2} and for each i = 4, 5, ..., n-2, exactly one of the edges x_1y_i or y_nx_{i-1} . Each
member F_n of \mathcal{F}_n is a hamiltonian bipartite graph with deg x_1+ deg $y_n=n+1$ containing all possible even cycle lengths, with the exception of 2n-2. To see that F_n doesn't contain a cycle of length 2n-2, note that if a cycle of length 2n-2 was contained in any such graph, then the edges x_1y_1, y_1x_2, x_2y_2 and y_2x_3 as well as the edges $y_nx_n, x_ny_{n-1}, y_{n-1}x_{n-1}$ and $x_{n-1}y_{n-2}$ would necessarily be contained on the cycle. But then the only way to leave off exactly two vertices would require that both edges x_1y_i and y_nx_{i-1} were included for some i=4,5,...,n-2. To see that F_n contains all other even cycle lengths, let $2 \le t \le n-2$ be an integer and we want to exhibit the cycle of length 2t. If x_1y_t is an edge, then the 2t-cycle results immediately, hence y_nx_{t-1} must be an edge. Similarly, if y_nx_t is an edge, the 2t-cycle results immediately, hence x_1y_{t+1} must be an edge. But now looking at the pair x_1y_{t+2} and y_nx_{t+1} we get $y_n, x_{t-1}, y_{t-2}, x_1, y_{t+1}, x_{t+1}, y_n$ forming a 2t-cycle when y_nx_{t+1} is an edge and $x_1, y_{t+2}, x_{t+2}, x_t, x_0$, x_1 forming a x_1 -cycle when x_1 -cycle when x_1 -cycle is an edge. **Example 2** Let $H_{n,t} = (X, Y, E)$, be the bipartite graph with the hamiltonian cycle C and additional edges $$x_1y_2, x_1y_3, ..., x_1y_{t-1},$$ $$y_n x_2, y_n x_3, ..., y_n x_{t-1}$$ and $$y_n x_{n-1}, y_n x_{n-2}, ..., y_n x_{2t-1},$$ where t is an integer such that $(n+3)/3 \le t \le n/2$. The graph $H_{n;t}$ is a hamiltonian bipartite graph with deg $x_1 = t$ and deg $y_n = n - t + 1$. Consequently, deg $x_1 + \deg y_n = n + 1$ and it is easy to see that $H_{n;t}$ contains all possible even cycles lengths, with the exception of 2t. **Example 3** Let $I_{n;r,s} = (X, Y, E)$, be the graph with the hamiltonian cycle C and the additional edges $$x_1y_2, x_1y_3, ..., x_1y_r,$$ $$x_1y_{n-1}, x_1y_{n-2}, ..., x_1y_{n-s+1},$$ $$y_n x_{n-1}, y_n x_{n-2}, ..., y_n x_{n-s+1},$$ and $$y_n x_2, y_n x_3, ..., y_n x_{r-1}, y_n x_r,$$ with r and s positive integers and k a non-negative integer, such that r + s = (n+1-k)/2. Example 4 Let $J_{n;r,s} = (X, Y, E)$, with constructed as follows: start with a K_{r+s} x_r , x_n , x_{n-1} , ..., x_{n-s+2} and $\{y_1, y_2, ..., y_r\}$ $y_n x_{n-s+1}$ and the edges of the path y_r , x_r , $y_r x_r$ The graphs $I_{n;r,s}$ and $J_{n;r,s}$ are hamilt cycles of length, 4, 6, ..., 2(r+s-1) and "lc 2n-2(r+s)+6, 2n-2, 2n. In the case n we note that these graphs contain cycles of n+1. When n+1 is a consecutive even cycle lengths n+1, n that $I_{n;r,s}$ is a subgraph of $I_{n;r,s}$ and for a G must also have cycles of lengths as described. These examples will be exceptions for presented in Sections 4 and 5 and will occur or k-semibipancyclic. ## 4 Hamiltonian graphs the In [2] the following result on pancyclic grap **Theorem 5** Let G be a graph of order n w nian cycle $v_1, ..., v_n, v_1$. Suppose that deg 1 pancyclic, bipartite or missing only an (n - In [1], Amar gives the following generali Theorem 6 Let G be a bipartite hamiltonian v_1 and v_2 which lie a distance two apart deg $v_1 + \deg v_2 \ge n + 1$. Then G is either graphs. Here we establish the following versior which considers the degree sum of consecuti did Hakimi and Schmeichel. Theorem 7 Let G = (X, Y, E) be a bipar $Y = \{y_1, ..., y_n\}$ and hamiltonian cycle x_1, y_1 deg $y_n \ge n+1$ then either namiltonian bipartite graph with deg x_1 + tble even cycle lengths, with the exception of ain a cycle of length 2n-2, note that if a cycle by such graph, then the edges $x_1y_1, y_1x_2, x_2y_2, x_n, x_ny_{n-1}, y_{n-1}x_{n-1}$ and $x_{n-1}y_{n-2}$ would de. But then the only way to leave off exactly oth edges x_1y_i and y_nx_{i-1} were included for F_n contains all other even cycle lengths, let we want to exhibit the cycle of length 2t. If results immediately, hence y_nx_{t-1} must be edge, the 2t-cycle results immediately, hence w looking at the pair x_1y_{t+2} and y_nx_{t+1} we y_n forming a 2t-cycle when y_nx_{t+1} is an edge ting a 2t-cycle when x_1y_{t+2} is an edge. , be the bipartite graph with the hamiltonian $$x_1y_3,...,x_1y_{t-1}, \ y_nx_3,...,y_n\overset{\circ}{x}_{t-1}$$ $y_n x_{n-2}, ..., y_n x_{2t-1},$ + 3)/3 \leq t \leq n/2. nian bipartite graph with deg $x_1 = t$ and dy, deg $x_1 + deg y_n = n + 1$ and it is easy ble even cycles lengths, with the exception of i), be the graph with the hamiltonian cycle C $$x_1, x_1, x_2, \dots, x_1, x_2, \dots, x_n, x_n, \dots, x_n, x_n, \dots, x_n$$ $x_1y_{n-2},...,x_1y_{n-s+1},$ $y_n x_{n-2}, ..., y_n x_{n-s+1},$ $_{1}x_{3},...,y_{n}x_{r-1},y_{n}x_{r},$ id k a non-negative integer, such that r + s = Example 4 Let $J_{n;r,s} = (X,Y,E)$, with $X = \{x_1,...,x_n\}, Y = \{y_1,...,y_n\}$ be constructed as follows: start with a $K_{\tau+s-1,\tau+s}$ between the sets $\{x_1, x_2, ..., x_r, x_n, x_{n-1}, ..., x_{n-s+2}\}$ and $\{y_1, y_2, ..., y_r, y_n, y_{n-1}, ..., y_{n-s+1}\}$. Add the edge $y_n x_{n-s+1}$ and the edges of the path $y_r, x_\tau, y_{r+1}, x_{r+1}, ..., y_{n-s}, x_{n-s+1}, y_{n-s+1}$. The graphs $I_{n;r,s}$ and $J_{n;r,s}$ are hamiltonian bipartite graphs with "short" cycles of length, 4, 6, ..., 2(r+s-1) and "long" cycles of length 2n-2(r+s)+4, 2n-2(r+s)+6, 2n-2, 2n. In the case when r+s=(n+1)/2, and n is odd, we note that these graphs contain cycles of all even lengths, with the exception of n+1. When r+s=(n+1)/2-k, the graphs do not contain the k+1 consecutive even cycle lengths n-k+1, n-k+3, ..., n+k+1. We also note that $I_{n;r,s}$ is a subgraph of $J_{n;r,s}$ and for any G with $I_{n;r,s} \subseteq G \subseteq J_{n;r,s}$, then G must also have cycles of lengths as described above. These examples will be exceptions for the conditions given in the results presented in Sections 4 and 5 and will occur if the graph is in fact not bipancyclic or k-semibipancyclic. ### 4 Hamiltonian graphs that are bipancyclic In [2] the following result on pancyclic graphs was given. **Theorem 5** Let G be a graph of order n with $V(G) = \{v_1, ..., v_n\}$ and hamiltonian cycle $v_1, ..., v_n, v_1$. Suppose that deg $v_1 + \deg v_n \ge n$. Then G is either pancyclic, bipartite or missing only an (n-1)-cycle. In [1], Amar gives the following generalization for bipartite graphs. **Theorem 6** Let G be a bipartite hamitonian graph of order 2n with two vertices v_1 and v_2 which lie a distance two apart on a hamiltonian cycle of G, with deg $v_1 + \deg v_2 \ge n+1$. Then G is either bipancyclic or one of several special graphs. Here we establish the following version for hamiltonian bipartite graphs which considers the degree sum of consecutive vertices of a hamiltonin cycle, as did Hakimi and Schmeichel. Theorem 7 Let C = (X, Y, E) be a bipartite graph with $X = \{x_1, ..., x_n\}$, $Y = \{y_1, ..., y_n\}$ and hamiltonian cycle $x_1, y_1, x_2, y_2, ..., x_n, y_n, x_1$. If deg $x_1 + \deg y_n \ge n+1$ then either i. G is bipancyclic, ii. $F_n \subseteq G$ for some $F_n \in \mathcal{F}_n$, thus G is missing at most the 2n-2 cycle, iii. $H_{n,t} \subseteq G$, thus G is missing at most the 2t cycle or, iv. $I_{n;r,s} \subseteq G$ with 2(r+s) = n+1 and n odd, thus G is missing at most an (n+1)-cycle. **Proof.** We proceed by induction on n. It is clear that if n=2 then G is bipancyclic. When n=3, then G is either a G, and thus $G=I_{3;1,1}$ or G is bipancyclic. When n=4 it is again clear that G is bipancyclic, while when n=5, it follows that G is bipancyclic, $G=H_{5;3}$, $G=I_{5;2,1}$ or $G=I_{5;1,2}$. Let G be a bipartite graph, with partite sets X and Y having |X|=|Y|=n, and hamiltonian cycle $$C_{2n} = x_1, y_1, x_2, y_2, ..., x_n, y_n, x_1.$$ Furthermore, assume that deg $x_1 + \deg y_n \ge n + 1$. We define the $\ell - pairing$ of possible edges from x_1 and y_n as $x_1y_{n-(\ell-i)}$ is paired with y_nx_i if $1 \le i \le \ell$, and $x_1y_{i-(\ell-1)}$ is paired with y_nx_i if $\ell+1 \le i \le n-1$. Observe that a cycle of length 2ℓ results if for some i both edges of the ℓ - pairing are edges of G. Suppose that G is not bipancyclic. It follows that for some ℓ satisfying $4 \le 2\ell \le 2(n-1)$, the graph G does not contain a cycle of length 2ℓ and thus not both pairs from the ℓ - pairing can be edges. Claim 1 If deg $x_1 + \deg y_n \ge n + 2$ then G is bipancyclic. **Proof.** Suppose that deg $x_1 + \deg y_n \ge n + 2$. By the ℓ - pairing, it must be the case that for each i, at least one of those pairs are not an edge of G. But this implies that $$\begin{array}{rcl} \deg x_1 & \leq & n-(\deg y_n-1) \\ \deg x_1 + \deg y_n & \leq & n+1, \end{array}$$ which contradicts the assumption. • Hence we may assume that the $deg \ x_1 + deg \ y_n = n + 1$. This also implies that if G is not bipancyclic and does not contain a cycle of length 2ℓ then, for each $1 \le i \le n - 1$, exactly one of the edges in the ℓ - pairing must be an edge in G. The proof of Theorem 7 will be completed by considering the possible cases for the inclusion of the edges x_1y_{n+1} and y_nx_2 in G. Claim 2 If G is not bipancyclic and both x_1y_{n-1} and y_nx_2 are edges of G, then $I_{n,r,s} \subseteq G$ with 2(r+s)=n+1. **Proof.** Suppose G is not bipancyclic contain a cycle of length 2ℓ , for some ℓ t edges in the ℓ - pairing must be an edge having $y_n x_2$ in G implies that a (2n-2) Case 1. Suppose $\ell < \frac{n}{3}$. Since G contains no cycles of length : edge of G. By the ℓ - pairing, this implie $\ell \leq \frac{n}{2}$. Now if $y_n x_{n-\ell}$ were an edge of G $$y_n, x_{n-\ell}, y_{n-\ell-1}, x_{n-\ell-1}, \dots$$ would be a cycle of length 2ℓ . Thus x_1y this argument, it must be the case that y_r hence it must be that $x_1y_{n-2\ell},...,x_1y_2$ ar that x_1y_ℓ is an edge, since $\ell < \frac{n}{3}$, which in 2ℓ
, a contradiction. Thus we may assume Case 2. Suppose $$\frac{n}{3} \le \ell \le \frac{n}{2}$$. Again since G contains no cycles of not an edge of G. By the ℓ - pairing, ℓ of G since $\ell \leq \frac{n}{2}$. Arguing as in the proof of an edge in G while $x_1y_{n-2\ell+1}$ is an adjacent to $y_1, y_2, ..., y_{n-2\ell+2}$. Since $\ell \leq y_nx_{n-\ell+2}$ is not an edge of G for otherw $$y_n, x_{n-\ell+2}, y_{n-\ell+2}, x_{n-\ell+1}$$ would form a cycle of length 2ℓ . But $x_1y_{n-2\ell+3}$ is an edge of G. Continuing y_n is not adjacent to $x_{n-(\ell-1)}, x_{n-(\ell-2)}$, adjacent to $y_{n-2\ell+2}, y_{n-2\ell+3}, ..., y_{n-\ell}$, for $n-\ell \geq \ell$, it follows that x_1y_ℓ is an econtradiction. Thus we may assume that Case 3. Suppose $$\frac{n+1}{2} = \ell$$. In this case clearly y_n is not adjacent an edge then $y_n x_{(n+3)/2}$, is not an edge This non-edge implies that $x_1 y_2$ is an ed an edge for j = 1, 2, ...r and $x_1 y_{r+1}$ is not ℓ – pairing we get that y_n is not adjac and is adjacent to $x_{r+(n+1)/2}$. Now if x_1 $x_1, y_{r+2}, x_{r+3}, y_{r+3}, ..., x$ thus G is missing at most the 2n-2 cycle, at most the 2t cycle or, +1 and n odd, thus G is missing at most an ction on n. It is clear that if n=2 then G 1 G is either a G_6 , and thus $G=I_{3;1,1}$ or G again clear that G is bipancyclic, while when yclic, $G=H_{5;3}$, $G=I_{5;2,1}$ or $G=I_{5;1,2}$. Let ite sets X and Y having |X|=|Y|=n, and $y_1, x_2, y_2, ..., x_n, y_n, x_1.$ + deg $y_n \ge n+1$. We define the ℓ -pairing as $x_1y_{n-(\ell-i)}$ is paired with y_nx_i if $1 \le i \le \ell$, x_i if $\ell+1 \le i \le n-1$. Observe that a cycle i both edges of the ℓ - pairing are edges of cyclic. It follows that for some ℓ satisfying does not contain a cycle of length 2ℓ and thus ng can be edges. $_1+2$ then G is bipancyclic. $+ \deg y_n \ge n+2$. By the ℓ - pairing, it must st one of those pairs are not an edge of G. But $$x_1 \leq n - (\deg y_n - 1)$$ $$y_n \leq n + 1,$$ *3n* _ . he $deg \ x_1 + deg \ y_n = n + 1$. This also implies does not contain a cycle of length 2ℓ then, for of the edges in the ℓ - pairing must be an edge be completed by considering the possible cases y_{n+1} and $y_n x_2$ in G. and both x_1y_{n-1} and y_nx_2 are edges of G, then **Proof.** Suppose G is not bipancyclic. As noted above, since G does not contain a cycle of length 2ℓ , for some ℓ then it follows that exactly one of the edges in the ℓ - pairing must be an edge in G. Also note that $\ell < n-1$ since having $y_n x_2$ in G implies that a (2n-2) - cycle is contained in G. Case 1. Suppose $\ell < \frac{n}{3}$. Since G contains no cycles of length 2ℓ , it follows that $y_n x_{n-\ell+1}$ is not an edge of G. By the ℓ - pairing, this implies that $x_1 y_{n-2\ell+2}$ is an edge of G since $\ell \leq \frac{n}{2}$. Now if $y_n x_{n-\ell}$ were an edge of G then $$y_n, x_{n-\ell}, y_{n-\ell-1}, x_{n-\ell-1}, ..., y_{n-2\ell+2}, x_1, y_1, x_2, y_n$$ would be a cycle of length 2ℓ . Thus $x_1y_{n-2\ell+1}$ is an edge of G. Continuing this argument, it must be the case that $y_nx_{n-\ell-1},...,y_nx_{\ell+1}$ are not edges of G, hence it must be that $x_1y_{n-2\ell},...,x_1y_2$ are edges of G. Consequently, it follows that x_1y_ℓ is an edge, since $\ell < \frac{n}{3}$, which implies that G contains a cycle of length 2ℓ , a contradiction. Thus we may assume that $\frac{n}{3} \le \ell$. Case 2. Suppose $\frac{n}{3} \le \ell \le \frac{n}{2}$. Again since G contains no cycles of length 2ℓ , it follows that $y_n x_{n-\ell+1}$ is not an edge of G. By the ℓ - pairing, this implies that $x_1 y_{n-2\ell+2}$ is an edge of G since $\ell \leq \frac{n}{2}$. Arguing as in the previous case, it follows that $y_n x_{n-\ell}$ is not an edge in G while $x_1 y_{n-2\ell+1}$ is an edge in G. Hence it follows that x_1 is adjacent to $y_1, y_2, ..., y_{n-2\ell+2}$. Since $\ell \leq \frac{n}{2}$ implies that $2 \leq n-2\ell+2$, the edge $y_n x_{n-\ell+2}$ is not an edge of G for otherwise $$y_n, x_{n-\ell+2}, y_{n-\ell+2}, x_{n-\ell+3}, \dots y_{n-1}, x_1, y_2, x_2, y_n$$ would form a cycle of length 2ℓ . But $y_nx_{n-\ell+2}$ not an edge implies that $x_1y_{n-2\ell+3}$ is an edge of G. Continuing to argue in this fashion, it follow that y_n is not adjacent to $x_{n-(\ell-1)}, x_{n-(\ell-2)}, x_{n-(\ell-3)}, ..., x_{n-2}$, implying that x_1 is adjacent to $y_{n-2\ell+2}, y_{n-2\ell+3}, ..., y_n$. ℓ , for otherwise a 2ℓ - cycle results. Since $n-\ell \geq \ell$, it follows that x_1y_ℓ is an edge and thus a 2ℓ - cycle results, a contradiction. Thus we may assume that $\ell > \frac{n}{2}$. Case 3. Suppose $\frac{n+1}{2} = \ell$. In this case clearly y_n is not adjacent to $x_{(n+1)/2}$ and $x_{(n-1)/2}$. Since y_nx_2 is an edge then $y_nx_{(n+3)/2}$, is not an edge, for otherwise a 2ℓ -cycle would result. This non-edge implies that x_1y_2 is an edge. Hence we may assume that x_1y_j is an edge for j=1,2,...r and x_1y_{r+1} is not an edge for some $r \leq (n-1)/2$. By the ℓ - pairing we get that y_n is not adjacent to $x_{(n+1)/2}, x_{(n+3)/2}, ..., x_{r+(n-1)/2}$ and is adjacent to $x_{r+(n+1)/2}$. Now if x_1y_{r+2} were an edge, the cycle $x_1, y_{\tau+2}, x_{\tau+3}, y_{\tau+3}, ..., x_{\tau+(n+1)/2}, y_n, x_2, y_1, x_1$ would be a 2ℓ - cycle. Now using ℓ -pairings and the edge y_nx_2 it follows that x_1 is not adjacent to $y_{r+1}, y_{r+2}, ..., y_{(n+2)/2}$ and consequently y_n would be adjacent to $x_{r+1+n/2}, x_{r+2+n/2}, ..., x_n$. If either x_1 or y_n had an adjacency among the collection of vertices $y_{r+1}, x_{r+2}, y_{r+2}, x_{r+2}, ..., x_{r+n/2}, y_{r+n/2}$ then a 2ℓ - cycle results. Since deg x_1 + deg $y_n = n+1$, it must be the case that x_1 is also adjacent to $y_{r+1+n/2}, y_{r+2+n/2}, ..., y_n$ and y_n is also adjacent to $x_1, x_2, ..., x_r$. Thus $I_{n;r,s} \subseteq G$ with 2(r+s) = n+1 and n odd. Case 4. Suppose $\ell = \frac{n+2}{2}$. In this case it follows that y_n is not adjacent to $x_{(n+2)/2}, x_{n/2}$, and $x_{(n+4)/2}$, the later non-edge implying that x_1y_2 is an edge. Hence we may assume that x_1y_j is an edge for j=1,2,...r and x_1y_{r+1} is not an edge for some $r \leq (n-2)/2$. By the ℓ - pairing we get that y_n is not adjacent to $x_{(n+4)/2}, x_{(n+6)/2}, ..., x_{r+n/2}$ and is adjacent to $x_{r+1+n/2}$. Now if x_1y_{r+2} were an edge, the cycle $$x_1, y_{r+2}, x_{r+3}, y_{r+3}, ..., x_{r+1+n/2}, y_n, x_2, y_1, x_1$$ would be a 2ℓ – cycle, thus x_1 is not adjacent to $y_{r+1}, y_{r+2}, ..., y_{(n+2)/2}$ and y_n would be adjacent to $x_{r+1+n/2}, x_{r+2+n/2}, ..., x_n$. If either x_1 or y_n had an adjacency among the collection of vertices $y_{r+1}, x_{r+2}, y_{r+2}, x_{r+2}, ..., x_{r+n/2}, y_{r+n/2}$ then a 2ℓ – cycle results. But this implies that deg x_1 + deg $y_n \le n$, a contradiction. Case 5. Suppose $\frac{n+3}{2} \le \ell \le \frac{2n}{3}$. Since G contains no cycles of length 2ℓ , it follows that x_1y_ℓ is not an edge of G. By the ℓ - pairing, this implies that $y_nx_{2\ell-n}$ is an edge of G. As in the previous cases, if $x_1y_{\ell-1}$ were an edge a 2ℓ - cycle would result. Hence, y_n is adjacent to $x_{2\ell-n}, x_{2\ell-n-1}, ..., x_2$ and x_1 . But since it is the case that $\frac{n+3}{2} \le \ell$, it follows that y_n is adjacent to x_3 , but this implies that $x_1y_{\ell-1}$ is not an edge, and thus $y_nx_{2\ell-n+1}$ is an edge. Consequently, $y_nx_{n-\ell+1}$ is an edge, resulting in a 2ℓ - cycle, again a contradiction. Case 6. Suppose $\frac{2n+1}{3} \le \ell \le n-2$. Since G contains no cycles of length 2ℓ , it follows that x_1y_ℓ is not an edge of G. By the ℓ - pairing, this implies that $y_nx_{2\ell-n}$ is an edge of G. As in the previous cases, if $x_1y_{\ell-1}$ were an edge a 2ℓ - cycle would result. Hence, y_n is adjacent to $x_{2\ell-n}, x_{2\ell-n-1}, ..., x_2$ and x_1 . But since it is the case that $\frac{2n+1}{3} \leq \ell$, it follows that $y_nx_{n-\ell+1}$ is an edge of G, which results in G containing a cycle of length 2ℓ , a contradiction. With all cases considered the claim follows. Claim 3 If G is not bipancyclic and exactly one of x_1y_{n-1} and y_nx_2 is an edge of G then G contains $H_{n;t}$ for $n/3 \le \ell \le n/2$, thus G is missing at most the 2t cycle. **Proof.** Without loss of generality l is not. If G is not bipancyclic, then we regard 10 length 2 ℓ . Arguing as in the previous character 2 and Case 3, the edge x_1y_{n-1} is 1 follow as above. When $\ell = \frac{n+1}{2}$ a contracted 3 deges to x_1 as in Case 3. Thus we only Observe that x_1y_{n-1} not an edge of G if the ℓ - pairing. If $y_nx_{\ell+1} \in E$ then y_n of length 2 ℓ , thus $y_nx_{\ell+1} \notin E$ and hence If $x_1y_{n-2} \in E$ then the 2ℓ - cycle; $x_1, y_{n-2}, x_{n-1}, y_{n-1}, x_n, y_n, x_n$ results. Consequently, we may assume t E. Continuing in this fashion, we get ..., $y_{n-\ell}$ and $y_{n-\ell+1}$ and that y_n is adja $y_{\ell-1}, x_\ell, ..., y_{2\ell-3}, x_1, y_n$ would form a cy E. Arguing in a similar fashion, we get ..., y_ℓ and by the ℓ - pairing that $y_n x_{2\ell}$ observe that $y_n x_{2\ell-1} \notin E$ for $t=1,...,\ell$ $x_{\ell-1-t}, y_n$ would form a cycle of length adjacent to $y_{\ell-1}, y_{\ell-2}, ..., y_1$. With all part and the $\deg y_n = n+1-\ell$ and thus H, So we may assume that neither x_1y_1 Claim 4 If G is not bipancyclic and r then for some $F \in \mathcal{F}_n, F \subseteq G$, thus G: **Proof.** By the ℓ - pairing, since ne follows that $y_n x_{\ell-1}$ and $x_1 y_{n-\ell+2}$ are ϵ Case 1. Suppose $\ell \leq \frac{n+2}{2}$. By the ℓ - pairing exactly one of x former case,
$x_1y_{n-\ell+2}x_{n-\ell+3}y_{n-\ell}$ would form a cycle of length 2ℓ , while $y_n x_{\ell-1} y_{\ell-1} x_{\ell}$ would form a cycle of length 2ℓ , a cont Case 2. Suppose $\frac{n+3}{2} \le \ell \le \frac{2n}{3}$. sing ℓ -pairings and the edge y_nx_2 it follows $+2, ..., y_{(n+2)/2}$ and consequently y_n would be ..., x_n . If either x_1 or y_n had an adjacency $r+1, x_{r+2}, y_{r+2}, x_{r+2}, ..., x_{r+n/2}, y_{r+n/2}$ then $x_1 + \deg y_n = n+1$, it must be the case $x_1/2, y_{r+2+n/2}, ..., y_n$ and y_n is also adjacent to $x_1/2, x_1/2, ..., x_n/2$ and x_1/2$ is not adjacent to $x_{(n+2)/2}, x_{n/2}$, and $x_{(n+4)/2}, x_{1}y_{2}$ is an edge. Hence we may assume that $d x_{1}y_{r+1}$ is not an edge for some $r \leq (n-2)/2$. is not adjacent to $x_{(n+4)/2}, x_{(n+6)/2}, ..., x_{r+n/2}$ w if $x_{1}y_{r+2}$ were an edge, the cycle $x_{r+3}, ..., x_{r+1+n/2}, y_n, x_2, y_1, x_1$ is not adjacent to $y_{r+1}, y_{r+2}, ..., y_{(n+2)/2}$ and $y_{r+1}, x_{r+2+n/2}, ..., x_n$. If either x_1 or y_n had an of vertices $y_{r+1}, x_{r+2}, y_{r+2}, x_{r+2}, ..., x_{r+n/2}$, But this implies that deg x_1 + deg $y_n \le n$, a <u>In</u> - f length 2ℓ , it follows that x_1y_ℓ is not an edge nplies that $y_nx_{2\ell-n}$ is an edge of G. As in the 1 edge a 2ℓ – cycle would result. Hence, y_n is 2 and x_1 . But since it is the case that $\frac{n+3}{2} \le \ell$, x_3 , but this implies that $x_1y_{\ell-1}$ is not an edge, Consequently, $y_nx_{n-\ell+1}$ is an edge, resulting in on. n-2. of length 2ℓ , it follows that x_1y_ℓ is not an edge mplies that $y_nx_{2\ell-n}$ is an edge of G. As in the n edge a 2ℓ – cycle would result. Hence, y_n is y_n and y_n . But since it is the case that $\frac{2n+1}{3} \leq \ell$, dge of G, which results in G containing a cycle e claim follows. c and exactly one of x_1y_{n-1} and y_nx_2 is an edge $i/3 \le \ell \le n/2$, thus G is missing at most the 2t **Proof.** Without loss of generality let y_nx_2 be an edge of G, while x_1y_{n-1} is not. If G is not bipancyclic, then we may assume that G contains no cycle of length 2ℓ . Arguing as in the previous claim, for all cases with the exception of Case 2 and Case 3, the edge x_1y_{n-1} is unused, thus the proofs for those cases follow as above. When $\ell = \frac{n+1}{2}$ a contradiction arises with the inclusion of the edges to x_1 as in Case 3. Thus we only need to consider the case $\frac{n}{3} \leq \ell \leq \frac{n}{2}$. Observe that x_1y_{n-1} not an edge of G implies that $y_nx_{\ell+1}$ is an edge of G, by the ℓ - pairing. If $y_nx_{\ell+1} \notin E$ then $y_n,x_{\ell+1},y_\ell,...,x_2,y_n$ would form a cycle of length 2ℓ , thus $y_nx_{\ell+1} \notin E$ and hence by the ℓ - pairing have that $x_1y_2 \in E$. If $x_1y_{n-2} \in E$ then the 2ℓ - cycle; $$x_1, y_{n-2}, x_{n-1}, y_{n-1}, x_n, y_n, x_{\ell-1}, y_{\ell-2}, x_{\ell-2}, ..., x_3, y_2, x_1$$ results. Consequently, we may assume that $x_1y_{n-2} \notin E$ and thus that $y_nx_{\ell-2} \in E$. Continuing in this fashion, we get that x_1 is not adjacent to $y_{n-1}, y_{n-2}, \ldots, y_{n-\ell}$ and $y_{n-\ell+1}$ and that y_n is adjacent to $x_1, x_2, \ldots, x_{\ell-1}$. Since $y_n, x_{\ell-1}, y_{\ell-1}, x_\ell, \ldots, y_{2\ell-3}, x_1, y_n$ would form a cycle of length 2ℓ it follows that $x_1y_{2\ell-3} \notin E$. Arguing in a similar fashion, we get that x_1 is not adjacent to $y_{2\ell-4}, y_{2\ell-5}, \ldots, y_\ell$ and by the ℓ -pairing that $y_nx_{2\ell-1+\ell} \in E$ for $\ell=0,1,\ldots,n-2\ell+1$. Also observe that $y_nx_{2\ell-\ell} \notin E$ for $\ell=1,\ldots,\ell-1$ for otherwise $y_n, x_{2\ell-\ell}, y_{2\ell-\ell-1}, \ldots, x_{\ell-1-\ell}, y_n$ would form a cycle of length 2ℓ . By the ℓ -pairing it follows that x_1 is adjacent to $y_{\ell-1}, y_{\ell-2}, \ldots, y_1$. With all pairs exhausted, it follows that $deg(x_1) \in E$ and the $deg(x_1) \in E$ and the claim follows. So we may assume that neither x_1y_{n+1} nor y_nx_2 are edges of G. Claim 4 If G is not bipancyclic and neither x_1y_{n-1} nor y_nx_2 are edges of G then for some $F \in \mathcal{F}_n$, $F \subseteq G$, thus G is missing at most the 2n-2 cycle. **Proof.** By the ℓ - pairing, since neither x_1y_{n-1} nor y_nx_2 are edges of G, it follows that $y_nx_{\ell-1}$ and $x_1y_{n-\ell+2}$ are edges of G. Case 1. Suppose $\ell \leq \frac{n+2}{2}$. By the ℓ - pairing exactly one of $x_1y_{\ell-1}$ or $y_nx_{2\ell-2}$ is an edge of G. In the former case, $$x_1y_{n-\ell+2}x_{n-\ell+3}y_{n-\ell+3}...x_ny_nx_{\ell-1}y_{\ell-1}x_1$$ would form a cycle of length 2l, while in the later case, $$y_n x_{\ell-1} y_{\ell-1} x_{\ell-1} x_{\ell-2} y_{2\ell-3} x_{2\ell-2} y_n$$ would form a cycle of length 2 ℓ , a contradiction. Case 2. Suppose $\frac{n+3}{2} \le \ell \le \frac{2n}{3}$. By the ℓ - pairing, the edge $y_n x_{2\ell-n}$ is in G since the edge $x_1 y_\ell$ is clearly not in G. Also, by the ℓ - pairing and the range of ℓ for this case, exactly one of $x_1 y_{2\ell-n}$ and $y_n x_{3\ell-n-1}$ is an edge of G. In the former case, $$x_1 y_{n-\ell+2} x_{n-\ell+3} y_{n-\ell+3} \dots x_n y_n x_{2\ell-n} y_{2\ell-n} x_1$$ would form a cycle of length 2l, while in the later case, $$y_n x_{2\ell-n} y_{2\ell-n} x_{2\ell-n+1} \dots y_{3\ell-n-2} x_{3\ell-n-1} y_n$$ would form a cycle of length 2l, a contradiction. Case 3. Suppose $$\frac{2n+1}{3} \le \ell \le n-2$$. Suppose for some $1 \le t \le n-1-\ell$, that $y_n x_{2+\ell} \in E$. Since $$x_1y_{n-\ell+2}x_{n-\ell+3}...y_nx_{2+\ell}y_{2+\ell}x_1$$ would form a cycle of length 2ℓ , it follows that $y_{2+\ell}x_1 \notin E$. By the ℓ - pairing, it follows that $y_nx_{\ell+\ell+2}$ is an edge of G, but this gives the 2ℓ cycle $$y_n x_{2+l} y_{2+l} \dots x_{\ell+l+2} y_n$$ Consequently, for each $1 \le t \le n-1-\ell$, it must be the case that $y_n x_{2+t} \notin E$, and by the ℓ - pairing, it follows that $x_1 y_{n-\ell+2+\ell} \in E$. A symmetric argument shows that for $2 \le t \le n-\ell$, $x_1 y_{n-\ell} \notin E$ while $y_n x_{\ell-\ell} \in E$. Suppose $y_n x_{n-1} \in E$. Since y_n is adjacent to the vertices $x_{\ell-1}, x_{\ell-2}, ... x_{2\ell-n}$ and y_n is not adjacent to $x_{n-\ell+1}$, there is a first place in this range, say r, such that $y_n x_r \in E$ and $y_n x_{r-1} \notin E$. By the ℓ - pairing we get that $x_1 y_{n-\ell+r-1} \in E$. But now $$y_n x_r y_{r-1} x_{r-1} \dots x_1 y_{n-\ell+r-1} x_{n-\ell+r} \dots x_{n-1} y_n$$ forms a cycle of length 2ℓ . Thus we may conclude that $y_nx_{n-1} \notin E$ and that $x_1y_{n-\ell} \in E$. Note since $\ell \le n-2$ and y_n is not adjacent to $x_{n-\ell}$ there is a first place say r, such that $y_nx_r \in E$ and $y_nx_{r-1}, y_nx_{r-2} \notin E$. Arguing in a similar fashion, it follows that $y_nx_{n-2} \notin E$. For each neighbor of y_n , say x_t , with $n - \ell + 2 \le t \le n - 3$, it follows that x_1 is not a neighbor of y_{t+1} since $$x_1 y_{n-\ell} x_{n-\ell+1} ... x_t y_n x_n ... y_{t+1} x_1$$ would form a cycle of length 2ℓ . Also note that x_1 is not adjacent to y_{n-1} and $y_{n-\ell+1}$, both not excluded by the previous argument and that all of the neighbors of y_n lie in the range of t above, with the exception of x_1 and x_n . Hence we get $$\deg x_1 \le n - 2 - (\deg y_n - 2)$$ which implies that $\deg x_1 + \epsilon$ a contradiction, thus leaving only the I Case 4. Suppose $\ell = n - 1$. Since $\ell=n-1$, it follows that both the ℓ -pairing exactly one of x_1y_i or the desired conclusion, that for some F the 2n-2 cycle. Consequently, with all cases exhaus ### 5 Hamiltonian graphs t In this section we establish the follow graphs: Theorem 8 Let G = (X, Y, E) be a bi $\{y_1, ..., y_n\}$, $n \geq 7$, with hamiltonia deg $x_1 + \deg y_n \geq n + 1 - k$ for some either G is k-semibipancyclic or $I_{n;r,s}$ **Proof.** Let G be a bipartite graph |X| = |Y| = n, and hamiltonian cycle $$C_{2n} = x_1, y_1, x_2$$ Furthermore, assume that deg x_1 + de k-semibipancyclic. It follows that for graph G does not contain any cycles o Case 1. Suppose that $\ell \le n/2 - k$ symmetric argument.) Since G does not contain any cycles that x_1 is not adjacent to y_i , for $\ell \le i \le$ Let $A = \{y_1, ..., y_{\ell-1}\}, B = \{y_{\ell+k+1}, ..., x_{\ell+k-1}\}, B' = \{x_{2\ell+k+1}, ..., x_{\ell+k-1}\}$ that all adjacencies of x_1 are in $A \cup B$ Let a,b, and c be the number of adjacet $y_{i_1},y_{i_2},...,y_{i_a}$ with $2 \le i_1 < i_2 < x_1$ in A. It follows that $y_nx_{i_1+\ell-1},y_nx_{i_1}$ for otherwise a cycle of length 2ℓ wou we see that $y_nx_{i_a+\ell-1+\ell}$ is not an ed $y_n x_{2\ell-n}$ is in G since the edge $x_1 y_\ell$ is clearly g and the range of ℓ for this case, exactly one edge of G. In the former case, $3y_{n-\ell+3}...x_ny_nx_{2\ell-n}y_{2\ell-n}x_1$ while in the later case, $c_{2\ell-n+1}...y_{3\ell-n-2}x_{3\ell-n-1}y_n$ a contradiction. n-2. $-1-\ell$, that $y_nx_{2+\ell}\in E$. Since $x_{n-\ell+3}...y_nx_{2+\ell}y_{2+\ell}x_1$ it follows that $y_{2+\ell}x_1 \notin E$. By the ℓ - pairing, go of G, but this gives the 2ℓ cycle $1+iy_2+i...x_{\ell+l+2}y_n$ $i-1-\ell$, it must be the case that $y_nx_{2+\ell} \notin E$, that $x_1y_{n-\ell+2+\ell} \in E$. A symmetric argument $y_{n-\ell} \notin E$ while $y_nx_{\ell-\ell} \in E$. in is adjacent to the vertices $x_{\ell-1}, x_{\ell-2}, ... x_{2\ell-n}$, there is a first place in this range, say r, such By the ℓ - pairing we get that $x_1y_{n-\ell+r-1} \in E$. $$..x_1y_{n-\ell+r-1}x_{n-\ell+r}...x_{n-1}y_n$$ s we may conclude that $y_n x_{n-1} \notin E$ and that 2 and y_n is not adjacent to $x_{n-\ell}$ there is a first and $y_n x_{r-1}, y_n x_{r-2} \notin E$. Arguing in a similar $\notin E$. x_{ℓ} , with
$n-\ell+2 \le \ell \le n-3$, it follows that $x_{n-\ell+1}...x_{\ell}y_nx_n...y_{\ell+1}x_1$ 2 ℓ . Also note that x_1 is not adjacent to y_{n-1} by the previous argument and that all of the ε of t above, with the exception of x_1 and x_n . $< n-2 - (\deg y_n - 2)$ which implies that $\deg x_1 + \deg y_n \le n,$ a contradiction, thus leaving only the possibility of $\ell = n - 1$. Case 4. Suppose $\ell = n - 1$. Since $\ell=n-1$, it follows that both x_1y_3 and $y_nx_{n-2}\in E$. In addition, by the ℓ - pairing exactly one of x_1y_i or y_nx_{i-1} is an edge of G. This results in the desired conclusion, that for some $F\in \mathcal{F}_n$, $F\subseteq G$, thus G is missing at most the 2n-2 cycle. Consequently, with all cases exhausted, the theorem follows. ### 5 Hamiltonian graphs that are k-semibipancyclic In this section we establish the following version of Theorem 2 for bipartite graphs: Theorem 8 Let G = (X, Y, E) be a bipartite graph with $X = \{x_1, ..., x_n\}$, $Y = \{y_1, ..., y_n\}$, $n \geq 7$, with hamiltonian cycle $x_1, y_1, x_2, ..., x_n, y_n, x_1$. Suppose deg $x_1 + \deg y_n \geq n + 1 - k$ for some integer k satisfying $1 \leq k \leq n/2$. Then either G is k-semibipancyclic or $I_{n;r,s} \subseteq G \subseteq J_{n;r,s}$ with 2(r+s) = n+1-k. **Proof.** Let G be a bipartite graph, with partite sets X and Y having |X| = |Y| = n, and hamiltonian cycle $$C_{2n} = x_1, y_1, x_2, y_2, ..., x_n, y_n, x_1.$$ Furthermore, assume that deg $x_1 + \deg y_n \ge n + 1 - k$. Suppose that G is not k-semibipancyclic. It follows that for some ℓ satisfying $4 \le 2\ell \le 2(n-k)$, the graph G does not contain any cycles of length $2\ell, 2\ell + 2, ..., 2(\ell + k)$. Case 1. Suppose that $\ell \le n/2 - k$. (The case $\ell \ge n/2 + 1$ is handled by a symmetric argument.) Since G does not contain any cycles of length $2\ell, 2\ell+2, ..., 2(\ell+k)$, it follows that x_1 is not adjacent to y_i , for $\ell \le i \le \ell+k$ and for $n-\ell-k+2 \le i \le n-\ell+2$. Let $A = \{y_1, ..., y_{\ell-1}\}, B = \{y_{\ell+k+1}, ..., y_{n-\ell-k}\}, C = \{y_{n-\ell+2}, ..., y_{n-1}\}, A' = \{x_{\ell}, ..., x_{2\ell+k-1}\}, B' = \{x_{2\ell+k+1}, ..., x_{n-1}\} \text{ and } C' = \{x_2, ..., x_{\ell+k-1}\}.$ Note that all adjacencies of x_1 are in $A \cup B \cup C$ with the exception of y_n . Let a,b, and c be the number of adjacencies of x_1 in A,B, and C, respectively. Let $y_{i_1},y_{i_2},...,y_{i_a}$ with $2 \leq i_1 < i_2 < ... < i_a \leq \ell-1$ be the adjacencies of x_1 in A. It follows that $y_n x_{i_1+\ell-1}, y_n x_{i_2+\ell-1}, ..., y_n x_{i_a+\ell-1}$ are not edges of G for otherwise a cycle of length 2ℓ would result. Furthermore, for t=1,2,...,k, we see that $y_n x_{i_a+\ell-1+\ell}$ is not an edge of G since a cycle of length $2(\ell+t)$ would result. Observe that these a+k nonadjacencies of y_n are all in A'. Similarly, the b adjacencies of x_1 in B force b+k nonadjacencies of y_n in B'. Finally, suppose that $y_{i_1}, y_{i_2}, ..., y_{i_c}$ with $n-\ell+3 \leq i_1 < i_2 < ... < i_c \leq n-1$ are the adjacencies of x_1 in C. It follows that $y_n x_{\ell-(n-i_1)}$ is not an edge of G since $x_1, y_1, x_2, y_2, ..., x_{\ell-(n-i_1)}, y_n, x_n, y_{n-1}, ..., y_{i_1}, x_1$ would form a cycle of length 2ℓ . Similarly, $y_n x_{\ell-(n-i_2)}, ..., y_n x_{\ell-(n-i_{c-1})}$ and $y_n x_{\ell-(n-i_c)}$ are not edges of G for again a 2ℓ -cycle would result. Additionally, for t=1,2,...,k, we see that $y_n x_{\ell-(n-i_c)+\ell}$ is not an edge of G since a cycle of length $2(\ell+t)$ would result. Note that these are c+k nonadjacencies of y_n in G'. Now the deg $x_1=a+b+c+1$, and deg $y_n\leq n-(a+k+b+k+c+k-m)$, where m is the cardinality of the intersection of A' and G'. Note that B' does not intersect either A' or G'. Since $A' \cap G' = (\ell+k-2) - (\ell-1) + 1 = k$, we have that deg $y_n\leq n-(a+k+b+k+c+k-k) = n-(\deg x_1-1+2k)$, so that $\deg x_1+\deg y_n\leq (n+1)-2k$, which is a contradiction since $k\geq 1$. Case 2. Suppose n is even and $\ell=n/2-t$ for $0\leq t\leq k/2-1$. (The case $k/2-1< t\leq k-1$ is handled by a symmetric argument.) Since G does not contain any cycles of length $2\ell, 2\ell+2, ..., 2(\ell+k)$, it follows that x_1 is not adjacent to $y_{n/2-\ell}, ..., y_{n/2+\ell+1}$. Let $A = \{y_1, ..., y_{n/2-\ell-1}\}$, $C = \{y_{n/2+\ell+2}, ..., y_{n-1}\}$, $A' = \{v_{n/2-\ell}, ..., v_{n-2\ell+k-2}\}$ and $C' = \{y_2, ..., y_{n/2-\ell+k-2}\}$. Note that all of the adjacencies of x_1 are in $A \cup C$ with the exception of y_n . Arguing as before, since G is not k-semibipancyclic, containing no cycles of length $2\ell, 2\ell+2, ..., 2(\ell+k)$, the a adjacencies of x_1 in A force a+k nonadjacencies of y_n in A'. Likewise, the c adjacencies of x_1 in C force c+k nonadjacencies of y_n in C'. Note that if the adjacencies of x_1 in A are not consecutive, this forces another previously uncounted nonadjacency of y_n . For example, if $x_1y_{i+1} \notin E$ and $x_1y_i \in E$, and y_i is not the last adjacency of x_1 in A then it is clear that y_n is adjacent to neither $x_{i+\ell}$ nor $x_{i+\ell+1}$. Define $\Delta_A(\Delta_C)$ to be 1 if the adjacencies of x_1 in A (respectively C) are not consecutive on the hamiltonian cycle and 0 otherwise. Now the $\deg x_1 = a+c+1$, and as above, $\deg y_n \leq n-(a+k+c+k+\Delta_A+\Delta_C-m)$, where m is the cardinality of the intersection of A' and C'. Since $|A'\cap C'|=(n/2-t+k-1)-(n/2-t)+1=k$, we have that $\deg y_n \leq n-(a+c+k+\Delta_A+\Delta_C)=(n+1)-(\deg x_1+k+\Delta_A+\Delta_C)$. So $\deg x_1+\deg y_n \leq n+1-k-(\Delta_A+\Delta_C)$, which is a contradiction unless $\Delta_A=\Delta_C=0$ and $\deg v_1+\deg v_n=n+1-k$. Hence, we may assume the adjacencies of x_1 in Λ and C are consecutive vertices of Y on the hamiltonian cycle and further that the adjacencies of y_n are consecutive vertices of X on the hamiltonian cycle. Without loss of generality we can assume that $\deg x_1 \geq (n+1-k)/2$ and, that $\deg y_n \leq (n+1-k)/2$. Suppose x_1 has no adjacencies in C, that is that c=0. Also assume that x_1 is adjacent to the vertices $y_1, ..., y_n$ in Λ . Thus, C contains even cycles of length A, C, C, C as well as C as well as C and C are consecutive vertices C and C are consecutive vertices of ver it follows that G is missing at most k it would follow that G is k — semit $\deg x_1 = (n+1-k)/2$ and, consequence G is missing at most even cycles of $n \geq 7$, it follows that $\deg y_n \geq 3$. I length n+1+k results, and G would be the case that y_n is adjacent to x, then that $I_{n;a,1} \subseteq G \subseteq J_{n;a,1}$ since an between a vertex in $y_n, x_1, y_1, ..., x_n$, would give a cycle in the range n+1 A similar argument results if the adjacent to x_2 then a cycle of length G is k – semibipancyclic. Again, it k. Thus we may assume that $k \ge 2$ and Let x_1 be adjacent to the vertic If y_n is adjacent to x_2 then even c_1 2n-2(a+c+1)+4,...,2n occur in G. that are possibly not in G are n+1-c that $2\ell=n-2t=n+1-k$, which it the assumption that $t \leq k/2-1$. Consist must be the case that y_n is adhave cycles of even lengths between this case is complete if t < k/2-1 on So we can assume that t = k/2-1 this implies, that since n is even, the Thus it follows that G is missing consider the adjacencies of y_n . Sin y_n is adjacent to x_{n-2} , which yield $x_2, x_3, ..., x_{(n-1-k)/2}$, which implies t and s = 1. If x_1 has adjacencies to b graph would necessarily contain cycl n + k + 1. This completes the proof Case 3. Suppose n is odd and ℓ the case $k/2-1 < t \le k-1$ is hand Since $C_{2\ell},...,C_{2(\ell+k)} \nsubseteq G$, it foll $y_{\lfloor n/2 \rfloor - t}$ Let $A = \{y_1, ..., y_{\lfloor n/2 \rfloor - t - 1}\}, C = x_{n-2t-2+k}\}$ and $C' = \{x_2, ..., x_{\lfloor n/2 \rfloor} \text{ in } A \cup C \text{ with the exception of } y_n.$ consecutive, then, as before, this fo se a+k nonadjacencies of y_n are all in A'. in B force b+k nonadjacencies of y_n in B'. y_{i_c} with $n-\ell+3 \leq i_1 < i_2 < ... < i_c \leq n-1$ It follows that $y_n x_{\ell-(n-i_1)}$ is not an edge $(i_1), y_n, x_n, y_{n-1}, ..., y_{i_1}, x_1$ would form a cycle $(i_2), ..., y_n x_{\ell-(n-i_{c-1})}$ and $y_n x_{\ell-(n-i_c)}$ are not would result. Additionally, for t=1,2,...,k, an edge of G since a cycle of length $2(\ell+t)$ e c+k nonadjacencies of y_n in C'. Now the $y_n \leq n-(a+k+b+k+c+k-m)$, where section of A' and C'. Note that B' does not $A' \cap C' = (\ell+k-2) - (\ell-1) + 1 = k$, we $b+k+c+k-k = n-(\deg x_1-1+2k)$, so 2k, which is a contradiction since $k \geq 1$. nd $\ell = n/2 - t$ for $0 \le t \le k/2 - 1$. (The case y a symmetric argument.) y cycles of length $2\ell, 2\ell+2, ..., 2(\ell+k)$, it folin/2-\(\text{t}\), ..., $y_{n/2+t+1}$. Let $A = \{y_1, ..., y_{n/2-t-1}\}$, $= \{v_{n/2-t}, ..., v_{n-2t+k-2}\}$ and $C' = \{y_2, ..., the adjacencies of <math>x_1$ are in $A \cup C$ with the ore, since C is not k-semibipancyclic, contain, ..., $2(\ell+k)$, the a adjacencies of x_1 in A force A. Likewise, the A adjacencies of A in A are not previously uncounted nonadjacency of A. For A is and A is not the last adjacency of A in cent to neither A in A are not A in the normal A and A is not the last adjacency of A in cent to neither A in A are normal A in the normal A and A in A are normal A and A is not the last adjacency of A in cent to neither A in A are normal A and A is not the last adjacency of A in cent to neither A in A are normal A and A is not the last adjacency of A in A are normal A and A is not the last A adjacency of A and A in A are normal A and A and A are normal A and A and A are normal are normal A and A are normal A and A are normal A are normal A and norma it follows that G is missing at most k consecutive even cycle lengths, and thus
it would follow that G is k – semibipancyclic. Hence, we may assume that $\deg x_1=(n+1-k)/2$ and, consequently, $\deg y_n=(n+1-k)/2$, and that G is missing at most even cycles of length n+1-k through n+1+k. Since $n\geq 7$, it follows that $\deg y_n\geq 3$. If y_n is adjacent to x_{n-1} , then a cycle of length n+1+k results, and G would be k- semibipancyclic. Thus it must be the case that y_n is adjacent to $x_n,x_1,x_2,x_3,...$, and x_a . Clearly it follows then that $I_{n;a,1}\subseteq G\subseteq J_{n;a,1}$ since any additional edge in the bipartite graph G between a vertex in $y_n,x_1,y_1,...,x_a,y_a$ and a vertex in $x_{a+1},y_{a+1},...,y_{n-1},x_n$ would give a cycle in the range n+1-k to n+1+k. A similar argument results if the only adjacency of x_1 in A is y_1 . If y_n is adjacent to x_2 then a cycle of length n+1-k results and it would follow that G is k – semibipancyclic. Again, it would be the case that $I_{n;a,1} \subseteq G \subseteq J_{n;a,1}$. Thus we may assume that $a \ge 2$ and that $c \ge 1$. Let x_1 be adjacent to the vertices $y_1,...,y_a$ in A and $y_{n-1},...,y_{n-c}$ in C. If y_n is adjacent to x_2 then even cycles of length 4,6,...,2(a+c) as well as 2n-2(a+c+1)+4,...,2n occur in C. Thus, as above, the only even cycle lengths that are possibly not in G are n+1-k, n+1-k+2,..., and n+1+k. It follows that $2\ell=n-2t=n+1-k$, which implies that k-1=2t, but this contradicts the assumption that $t\leq k/2-1$. Consequently, y_n cannot be adjacent to x_2 , thus it must be the case that y_n is adjacent to $x_1, x_n, x_{n-1}, ... x_{n-d+1}$. Hence we have cycles of even lengths between 2n-(n+1-k)+4=n+k+3 and 2n and this case is complete if t< k/2-1 or if t=k/2-1 and $\deg x_1>(n+1-k)/2$. So we can assume that t=k/2-1 and $\deg x_1=\deg y_n=(n+1-k)/2$. Note this implies, that since n is even, that k must be odd. Thus it follows that G is missing precisely k+1 even cycle lengths. Now consider the adjacencies of y_n . Since $\deg y_n = \deg x_1$, it follows that either y_n is adjacent to x_{n-2} , which yields an n+k+1-cycle or y_n is adjacent to $x_2, x_3, ..., x_{(n-1-k)/2}$, which implies that G contains $I_{n;r,s}$, with r = (n-1-k)/2 and s = 1. If x_1 has adjacencies to both A and C then it is easy to see that the graph would necessarily contain cycles whose lengths are between n-k+1 and n+k+1. This completes the proof of this case. Case 3. Suppose n is odd and $\ell = \lfloor n/2 \rfloor - t$ for $0 \le t \le k/2 - 1$. (Again, the case $k/2 - 1 < t \le k - 1$ is handled by a symmetric argument.) Since $C_{2\ell}, ..., C_{2(\ell+k)} \not\subseteq G$, it follows that x_1 is not adjacent to $y_{\lfloor n/2 \rfloor - t_1, \dots, y_{\lfloor n/2 \rfloor + t + 1}}$ Let $A=\{y_1^-,...,y_{\lfloor n/2\rfloor-t-1}\}$, $C=\{y_{\lfloor n/2\rfloor+t+2},...,y_{n-1}\}$, $A'=\{x_{\lfloor n/2\rfloor-t},...,x_{n-2t-2+k}\}$ and $C'=\{x_2,...,x_{\lfloor n/2\rfloor-t-1+k}\}$. Note that all adjacencies of x_1 are in $A\cup C$ with the exception of y_n . Further if the adjacencies of x_1 in A are not consecutive, then, as before, this forces another previously uncounted nonadja- cency of y_n . Define $\Delta_A(\Delta_C)$ to be 1 if the adjacencies of v_1 in A (respectively in C) are not consecutive on the hamiltonian cycle, and 0 otherwise. Let a be the number of adjacencies of x_1 in A and let c be the number of adjacencies of x_1 in C. Then, as above, $\deg x_1 = a + c + 1$ and $\deg y_n \leq n - (a + k + c + k + \Delta_A + \Delta_C - m)$, where m is the cardinality of the intersection of A' and C'. Since $|A' \cap C'| = (\lfloor n/2 \rfloor - t - 1 + k) - (\lfloor n/2 \rfloor - t) + 1 = k$, we conclude $\deg y_n \leq n - (a + k + c + k - k + \Delta_A + \Delta_C) = n - (a + c + k + \Delta_A + \Delta_C) = n - (\deg x_1 - 1 + k + \Delta_A + \Delta_C)$. So $\deg x_1 + \deg y_n \leq (n + 1 - k) - (\Delta_A + \Delta_C)$, which is a contradiction unless $\Delta_A = 0 = \Delta_C$ and $\deg x_1 + \deg y_n = n + 1 - k$. The remainder of the proof of Case 3 is identical to that of Case 2. ### References - [1] Amar, G., Applying a condition for a hamiltonian bipartite graph to be bipancyclic. Graph theory and combinatorics (Marseille-Luminy, 1990). Discrete Math. 111 (1993), no. 1-3, 19-25. - [2] Schmeichel, E.F. and Hakimi, S.L., A cycle structure theorem for hamiltonian graphs. J. Combin. Theory B 45(1988), 99-107.