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Abstract

A graph G of order n is pancyclic if it contains a cycle of length £ for
every £ such that 3 < £ < n. I the graph is bipartite, then it contains
no cycles of odd length. A balanced bipartite graph & of order 2n is
bipancyclic if it contains a cycle of length £ for every even £, such that
4 < €< 2n. Agraph G of order n is called k-semipancyclic, k > 0, if there
is no “gap” ol k+1 among the cycle lengths in G, i.e., for no £ <n—-kisit
the case that each of Cy, ..., Cer ) is missing from . Generalizing this to
bipartite graphs, a bipartite graph G of order n is called k-semibipancyclic,
k 2 0, il there is no “gap” of k + 1 among the even cycle lengths in G,
e, for no £ < n— 2k is it the case that each of Cay, ..., Caeyox is missing
from G,

in this paper we generalize a result of Hakimi and Schmiechel in sev-
cral ways. First to k-semipancyclic, then to bipartite graphs, giving a
condition for a hamiltonian bipartite graph to be bipancyclic or one of
two exceplional graphs.  [inally, we give a condition for a hamiltonian
bipartite graph Lo be k-semibipancyclic or a member of a very special ¢lass
of hamilionian bipartite graphs.
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1 Introduction

A graph G of order n is pancyelic il G contains a cycle of length £ for every
€ such that 3 < € < n. If the graph is bipartite, then it contains no cycles of
odd length. Generalizing the concept of a pancyclic graph, a balanced bipartite
graph G of order 2n is bipancyclic if it contains a cycle of length ¢ for cvery
even £, such that 4 < ¢ < 2n.

In this paper, we also consider another such property and its bipartite ana-
logue. A graph G of order n is called k-semipancyciic, k > 0, if there is no “gap”
ol k4 1 among the cycle lengths in G, i.e., for no £ < n — k is it the case that
each of Cy, ..., Cpy i is missing from G. In addition, a bipartite graph & of order
n is called k-semibipancyclic, k > 0, if there is no “gap” of k-1 among the cven
cycle lengthsin G| i.e., for no £ € n—2k is it the case that each of Copy ooy Capgar
is missing from G. Thus every pancyclic graph is k-semipancyclic and every bi-
pancyclic graph is k-semibipancyclic for all k > 0. Note, 0-semipancyclic and
0-semibipancyclic graphs are just pancyclic and bipancyclic graphs, respectively.

In Section 2 we give a gencralization of a result by Hakimi and Schrniechel [2]
to k-pancyclicity, In Section 3 we give several examples of hamiltonian bipartite
graphs which are not bipancyclic, and in certain’ cascs, not k-semibipancyclie,
These examples will be the limiting examples of the results presented in Sections
4 and 5. In Section 4 we [urther gencralize a result of Hakimi and Schmiechel
Lo bipartite graphs and give a condition for a hamiltonian bipartite graph to be
bipancyclic or one of two exceptional graphs. In Section 5 we will generalize
the result of Section 2 to bipartite graphs and give a condition for a hamiltonian
bipartite graph to be k-semibipancyclic or an element of a very specific class of
hamiltonian bipartite graphs.

2  k-Semipancyclic hamiltonian graphs
In {2] the lollowing result on pancyclic graphs was given.

Theorem 1 Let G be a graph of order n with V(G) = {v1, ..., vn} and hamilio-
nwan cycle vy, ..., v, vy, Suppose that deg v +dog v, > n. Then G is cither
pancyclic, bipartile or missing only an (n — 1)-cycle.

Here we establish the lollowing extension for k-semipancyclic graphs, k > 1.
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Theorem 2 Let G be a graph of order 7
hamiltonian cycle vy, ..., u,, vy, Suppose
integer k satisfying 1 < k < n/2. Then G

Proof. Suppose, to the contrary, that

‘some € satislying 3 < £ < n — k, G contai

Case 1. Suppose that ¢ < n/2 -k, {"
symmetric argument.) :

Since Cy,...,Copx € G, it follows the -
i <fé4+kandn -2 -k 42 <t <n-—
{v£+k+11 (L Un—fgk-f—l}s C= {Un7£+31 eV
{vaesk_2, .. ¥n-2} and C' = {va, ..., Vp_oy

in AU BUC with the exception of .

Let a,b, and ¢ be the number of adjac
Let iy, vy, .., w;, with 2 <4, < ty <<
A. It follows that UnUiy £-3, Unliy 1o, .oy
otherwise an ¢ - cycle would result. Furth
Unli, +¢-3+: 15 NOL an edge of G sirice a cych
that these a-+k nonadjacencies of v, are all
vy i’ 3 foree b+ k nonadjacencies of Uy in .
€+3 <4y <ip < ... < iy € n—1arcthe adji
Ung—(n—i,+1) 15 NOL an edge of C since vy, v
an £ - cycle. Similarly, VRVE (niy 1)y ey U
not edges of G for again.an £ - cycle would 1
we soe that v,v;, 10 34, is not an edge of
result. Note that these are c+k nonadjacen
b+c+1, and degv, < (n—1)—(a+k+b+k-
of the intersection of A’ and €', Since |A'

have that deguv, < (n—1)—{a+k+b+k+
50 that degwvy + degu, < n —~ 2k, which is

Case 2, Suppose n is even and £ = n/
kf2—1<t<k-1ishandled by a symm

Since Cy, ..., Corn Z @, it lollows that,
Unfopire LoLA={uy, v 0}, C =
. Un_2¢ﬁ4+k} and C' = {'U'z, o Unfag_g
of vy are in 4 U ¢ with the exception of v,
k-semipaneyclie, the a adjacencies of v, in
in A" Likewise, the c adjacencies of v; in
in C’. Note that il the adjacencics of vy 1
another previously uncounted nonadjacency
and v ywy € (G, then v, is adjacent Lo
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¢ il G contains a cycle of length £ {or every
iph is bipartite, then it contains no cycles of
ept of a pancyclic graph, a balanced bipartite
ic il it contains a cycle of length ¢ for every

another such property and its bipartite ana-
ied k-seripancyelic, k > 0, if there is no “gap”
in G, i.e, for no £ <n — k is it the case that
1. In addition, a bipartite graph & of order
0, if there is no “gap” of k+1 among the even
n—2k is it the case that each of Cy, ..., Cogy ok
1cyclic graph is k-semipancyclic and every bi-
clic for all & = 0. Note, O-semipancyclic and
sancyclic and bipancyclic graphs, respectively.

:ation of a result by Hakimi and Schmiechel [2]
give several examples of hamiltonian bipartite
, and in certain’cases, not k-semibipancyclic.
g examples of the results presented in Sections
generalize a result of Hakimi and Schmicchel
dition {or a2 hamiltonian bipartite graph to be
onal graphs. In Section 5 we will generalize
graphs and give a condition for a hamiltonian
icyclic or an element of a very specific class of

ramiltonian graphs
syclic graphs was given.

order n with V(G) = {vy, ..., v} and hamille-
that deg vy + deg v, > n. Then G is cither
ly an (n — 1)-cycle.

g extension for k-semipancyclic graphs, k > 1.
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hamiltonian eycle vy,...,v0,v,. Suppose deg vy +deg ve = n—k for some

wnleger k satisfying 1 < k < n/2. Then G is k-semipancyclic.

Theorem 2 Lel G be a graph of order n > 9 wnith V(G) = {v1,..,vn} and

Proof. Suppose, to the contrary, that G is not k-semipancyelic. Then for
some £ satisfying 3 < £ < n — k, G contains none of the cycles Cy, ..., Cpp,

Case 1. Suppose that ¢ < n/2 — k. (The case ¢ > n/2 + 1 is handled by a
symmetric argument.)

Since Cy, ..., Coyx € G, it follows that v is not adjacent to v; , for ¢ <
i <é+kandn—¥€—k+2 <i<n—¢+4+2 Let A= {'Uz,...,'l)ggl},B =
PWerksts o Unoeoki1)y C = {Unspa, o, 0nq}, A’ = {ve-1, . vae_gqi}, B' =
{vaey k-2, ..., on 2} and ¢’ = {v2, ..., ve—24x}. Note that all adjacencies of v, are
in AU B UC with the exception of v,,.

Let o, b, and e be the number of adjacencies of v; in A, B,C, respectively.
Let vy, vg,, .00, With 2<4; <4 < .. < e < £ —1 be the adjacencies of v; in
A. It follows that v,o;, 4e_g, Un¥iy+£-3, -, 80d Unuy, 4o g5 ate not edges of G for
otherwise an £ - cycle would resull. Furthermore, for t = 1, 2,..., k, we see that
Un Ui, +£-3+¢ 18 N0l an edge of G since a cycle of length £+ would result. Observe
that these a+ k nonadjacencies of v,, are all in A’ Similarly, the & adjacencies of
v 083 force b+ k nonadjacencies of v, in 73" Finally, if vi,, viy, ..., v, With n—
€43 <4y Cig < . < i, € -1 arc the adjacencies of v; in € then it lollaws that
UnUg_{n i, +1) 8 NOL an edge of G since vy, va, ..., v, Un, Un—1, ..., Uiy, ¥1 Would form
an £ - cycle. Similarly, UnV2-(n—ig 1)1 e UnVh—(ni_y+1) AN Vng_(n_j 11y are
not edges of G for again an £- eycle would result., Additionally, fort = 1,2,..., k,
we see that vnvi, 14_34 is not an edge of G since a cycle of length £ + ¢ would
result. Note that these are c-+-k nonadjacencies of v,, in C’. Now the degv; = a+
b+c+41, and degw,, < {(n—1}—(a+k+b+k+c+k—m), where m is the cardinality
of the intersection of A’ and C'. Since [A' N C’l = (€+k—2)—(£-1)+1 =k, we
have that deg v, < (n—1)~(a+k+btktctk—k) = {(n—1)—(degvy+2k—1)
0 that degu; + degu, <n — 2k, which is a contradiction since k > 1.

2

Case 2. Supposc n is even and £ =n/2 —  for ¢ < ¢ < Ek/2—1. (The casc
k/2 -1 <t <k—1is handled by a symimetric argument. }

Since Cp, ..., Coqx € G, it follows that u; is not adjacent Lo v 2.4, ,... ,
Un/24i42. Let A = {U'z, '—-,’Un/'zuz—]}, C= {U'n/2+t+3= ey Unt }, Al = {'Unfz-t—l
- Un-2t—gak) 8nd O = {uy, e Unsa—i-24k ). Note that all of the adjacencics
of vy are in AU C with the exception of v,,. Arguing as before, since G is not
k-semipancyclic, the a adjacencios of v, in A foree a =+ k nonadjacencies of v,
in A" Likewise, the ¢ adjaccneies of v, in € foree ¢ + k nonadjacencies of v,
in C'. Note that il the adjacencics of vy in A are not consecutive, Lhis forces
another previously uncounted nonadjaceney of v,. For example, il v, ¢ EG)
and v, v € B{C), then v, is adjacent Lo neither vz nor Vb1

E
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Define Aa{Ag) to be 1if the adjacencies of vy in A (respectively C) are not
consecutive along the harmiltonian cycle and 0 otherwise. Now the degvy =
a+c+1, and as above, degv, < (n—1)—(a+k+c+k+As+Ac—m), where m is
the cardinality of the intersection of A" and €. Since |A'NC'| = (r/2—-t -2+
kY—(n/2—t—1}+1 = k, we have that degv, < (n—1)—(a+c+k+As+Ac) =
(n—1)~(degvs —1+k+ A4+ Ag). Sodegvy +degy, <n—k—(Aq+ Ag),
which is a contradiction unless Ay = Ag = 0 and degv) + degv, = n — k.
Hence, we may assume the adjacencies of vy in A and C are consecutive.

Thus v, is adjacent to the vertices vy, ..., Ua 1 in A and v, is adjacent to the
vertices vn_1, ..., ¥n_. in C. This gives us cycles of lengths n ~ (a4t c+ 1) + 2
up to n. Now, we can assume degwy > (n — k}/2 and, that deguv, < (n - k)/2.
Thus we have cycles of lengths n — (n —k)/2+ 2 =n/2+ k/2+2 and larger and
this case is complete if £ < k/2~1oriflt =k/2 -1 and degv; > (n —%)/2. So
we can assumne that 4 = k/2 — 1 and degvy = degw, = (n — k)/2. Note, since
n 2 9, it follows that (n — k)/2 > 3,

Suppose vy has alt of its adjucencics, exeept vy in A, As previously noted, v
is adjacent to v2, u3, ..., ¥{n..g)/2- This yields cyeles ol length 3 up to (n—Fk)/2 and
from {n+ k +4)/2 to n. Now consider the adjacencies of v,,. Since deg v, > 3,
it follows that vy, is adjacenl 1o ¢ither v, 3 or va, which implies that G contains
a cycle of length (n + k 4 2)/2 or a cycle of length {(n — k + 2)/2, either case
being a contradiction. Consequently, we can assume that cach of vy and v, have
adjacencies to both A and C. Now the cycle vy, vn_¢, ¥n_—ot1, - Un, ¥2; ..., U} has
tength (n — k + 2)/2 thus completing this case.

Case 3. Suppose nisodd and £ = |n/2] —t for 0 <t < k/2—1. {The case
k/2—1 <L <k —1is handled by a symmetric argument.)

Since Ce,...,Cerx € C, it llows that »; is not adjacent to the vertices
Yinf2j—tr oo Uln/2i+es - L8 A= {vg, o1}, C = {(Vns2)risa,
vty AT = Vg2 cic o Uneatosk}t And C7 = {va, o Vinga) e 24 k)
Note that all adjacencies of vy are in AU C with the exception ol »,. Further,
if the adjacencies of v, in A are not consecutive, then, as before, this forces
another previously uncounted nonadjacency of v,. Define A {Ag) to be 1
il the adjacencies of vy in A (respectively in € are not consceutive on the
hamiltonian cycle, and 0 otherwise.

Let a be the number of adjacencies of wv; in A and let ¢ be the number of
adjacencies of vy in €. Then, as above, deg vy = a+c+1 and degv, < (n—1)=
{at+k+et+k+Ap+Ag—~m), where m is the cardinality of the interseetion of A
and ¢, Since |A" N C = (|n/2] —L—2+k) —{|n/2] -t —1)+1 =k, we conclude
degv, < (n—1)~(a+ktecthb—k+A A+ Ag) = n—D—{atectk+ A s +AL) =
{n—1)~(degvi —1+k+A4+Ac) Sodegu +degv, < (n—k)—(As+4Ag),
which is a contradiclion unless &Aq =0= Ag and degv) + degv, =n — k.

The remainder of the prool of Case 3 is identical to thal of Case 2. =&
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The requirement that » > 9 in Thearer
can be seen to be a necessary condition fr
which [ails to be 4-semipancyclic.

Corollary 3 Let G be a hamitonian graph
for some k satisfying 1 < k < n/2. Then (

Let a2(G) = min{deg u 4 deg v}, where
u, v of nonadjacent vertices of G.

Corollary 4 Lei G be a hamitonian groph
some k salisfying 1 < k < n/2. Then & is

Proof., Let C @ wy,ue, .. v, vy be a
ol consceutive vertices of € has degree su
complete by Theorern 2. Fix the pair v, v
the | 252| disjoint consecutive pairs. If for
that v, and vv; are not edges of G (al
edges of G) then

2n—k} < (deg v, +deg Vipy) +
= (deg vn +deg ;) + (c

a contradiction. Thus, there are at least twe
deg v, + deg vy > L%J +2>n—1, and t

3 Hamiltonian bipartite
semibipancyclic

In this section we present severad classes of

cases for results presented in the next two :

the resulting graph is bipartite, with partite
and barmiltonian cyclo

. o
C= LWL T Y,

Examplc 1 Consider the family of qraph
(X, Y, E), with the hamiltonian eycle C, ad
for cachi=4,5,...,n 2, eractly one of th
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adjacencies of vy in A (respectively C) are not
n cycle and 0 otherwise. Now the degv, =
1—1)=~(a+k+ec+k+A s+ Ac—m), where mis
of A"and C'. Since [A'NC'| = (nf2—t-2+
that degv, < (n—1)—(a+ctk+ A+ Ag) =
\e). Sodeguy +degu, <n—k—{Ax+Ag),
Mg = Ac = 0and degv; +degv, =n — k.
encies of vy in A and C are consecutive,

tices vy, ..., Ugy1 in A and v; is adjacent to the
s gives us cycles of lengths n — (a4+ ¢+ 1)+ 2
1v; > (n— k)/2 and, that degw, < {n - k}/2.
—(n—k)/2+2=mn/2+k/2+2 and larger and
lorifi=k/2—1anddeguv; > {(n—£k)/2. So
and deg vy = degw, = (n — k)/2. Note, since
> 3.

encies, exeepl vy, in A. As previously noted, vy
This yields cycles of length 3 up to (n—k)/2 and
nsider the adjacencies of v,. Since deg v, = 3,
ither v, _» or vy, which implies that G contains
or a cycle of length (n — k+ 2)/2, either case
itly, we can assume that cach of vy and v, have
W the eyele vy, Un o, Un i1y ee Uny U2, vy U1 DAS
sting this case.

dé=|n/2| -tfor 0<t<k/2-1 (Thecase
y a symmetric argument.}

sllows that vy is not adjacent to the vertices
A={v2, -, ¥ms21-11), € = {Vnp2)4t4e
Un-2-54k) and C' = {Uzgu-,vlnﬁjupwk}-
rein AUC with the exception of v,. Further,
e not consecutive, then, as before, this forces
wnadjacency of v,. Define As(Ag) to be 1
espectively in ) are not consecutive on the
isc.

seneies of wp in A and let € be the number of
above, deg vy = a+4-c+ 1 and degv, < (n—1)—
cre m s the cardinality of the interscetion of A’
=24 k)= (/2] -t -1)+1 = k, we conclude
i+Ba+Ae) = (n-1)—(atetk+ A+ Dg) =
Ae). Sodegur+dege, <{n—k)~(Aa+Ac),
Ay =0=Ag and deguy +degv, =n — k.

of Case 3 is identical 1o that of Case 2. =
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The requirement that n > 9'in Theorem 2 and the following two corollaries
can be seen to be a necessary condition from the graph Cy, with k =4 = n/2
which [ails to be 4-semipancyclic.

Corollary 3 Let G be a hamitonian graph of ordern > 9 with §(G) = (n—k)/2
Jor some k satisfying 1 <k <n/2. Then G is k-sernipancyclic.

Let 02(G) = min{deg v + deg v}, where the minimum is taken over all pairs
%, v of nonadjacent vertices ol &

Corollary 4 Let G be a hamitonian graph of order n > 9 with 09 > n—k for
some k satisfying 1 < k < n/2 Then G is k-semipancyclic. :

Proof. Let C : wy,ve,...,v., vy be a hamiltonian cycle of G. I any pair
of comsecutive vertices of C has degree sum al least n — k, then the proofl is
complete by Theorem 2. Fix the pair v,.,v; and beginning with vy, vy consider
the [ﬂzléj disjoint consecutive pairs. If for one such pair i, Y41 it is the case
that v, v; .y and vyv; are not edges of G (allernately, if v,v; and V141 are not
edges of ) then

2n—k) < (deg v + deg vi1) + (deg v + deg w)
= (deg vy +deg vy) + (deg v; + deg vi4) < 2(n — k),

a contradiction. Thus, there are at least two edges from vy, v; Lo vi, Vit 1. Hence,
deg vy, + deg vy, > L%J +2 2 n 1, and the result follows by Theorem 1, m

3 Hamiltonian bipartite graphs that are not k-
semibipancyclic

In this section we present several classes of graphs that will be the exceptional
cases for results presented in the next two sections. In each of these examples,
the resulting graph is bipartite, with partite sets X and Y having | X| = {Y]| = =,
and hamiltonian cycle

C= LW T Yy o Tny Yny Ty

Example 1 Consider the fomily of graphs Fo contoining the graphs [, =

(X, Y, E), with the hamiltonian eycle €, additional edges Ty and YnTnon and
for each i =4,5,...,n— 2, exactly one of the cdges VY O YpTi_j.
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Each member I, of F, is a hamiltonian bipartite graph with deg =, +
deg yn = n+ 1 containing all possible even cyele lenglhs, with the exception of
2n—2. Tosee that [, docsn't contain a eyele of tength 2n.—2, note that if a cycle
ol length 2n — 2 was contained in any such graph, then the edges =y, YT, Ty
and yozrs as well as the cdges YnTny Tnln— 1, Yn—1Fn—1 and 3, . yn_a would
necessarily be contained on the cycle. But then the only way to leave off exactly
two vertices would require that both edges z1y; and y.x; ., were included for
some i =4,5,...,n — 2. To see that F, contains all other even cycle lengths, let
2 £¢ < n—2be an integer and we want to exhibit the cycle of length 2¢. If
Z1y 18 an edge, then the 2i-cycle results immediately, hence y,z,_; must be
an edge. Similarly, if y,z, is an edge, the 2t-cycle results immediately, hence
T1Y:41 Must be an edge. But now looking at, the Pair z 1y, 9 and y,x,.; we
Bl Uny Ty W2 Ty Wi 10 Ty 1 Un forming a 2i-cyele when YnT(y) 18 an cdge
and T, ¥y, Toga... T, ¥3, T1 forming a 2t-cycle when 1Yy I8 an edgo.

Example 2 Let H., = (X, Y, E), be the bipartile graph with the hamillonian
- eycle C and additional edges ’

Ty T1yas oy T,

YnT2, YnZ3, oor, Yni_1
and
Yrnlin—1, nTn_2,..., YnZor .1,

where L is an integer such that (n + 3)/3 < | < n/2,

The graph f,, is a hamiltonian bipartite graph with deg =, = £ and
deg yn = n —t+ 1. Consequently, deg r;+deg 3, = m+ 1 and it is casy
to see that A, contains all possible even eycles lengths, with the exception of
2t.

Example 3 Let I, = (X, Y, ), be the graph with the hamiltonian cyele C
and the edditional edges

TrY2, T1Y3, -, Ty Yry
Tiln-1:Tiln-2; .oy zl?}n—s#-l;l
YnTr—1y YnTn- 9, ..., 3)nzra— 41
and
I;rLfsz, UnTdy s YnPr ), YuLr,

with v and & posilive inlegers and k o non-negalive inleger, such thal r + 3 =

(n 1= k)2,

38

Example 4 Let J,., , = (X,Y, I2), with
construcled as follows: starl with a Ky
Ty Ty Tneiy o, Trogia) ond {y1,us, ..., 4,
YnTn—st1 and the edges of the puth Urs Ty 1

The graphs lirs and Jrirs are hamili
cyeles of length, 4, 6, ..., 2(r+s-1) and “lg
2n—=2(r + £)+6,2n—2, 2n. In Lthe caso v
we note that these graphs contajn cycles o
ofln+1. Whenr4s = (n+1)/2 -k t
consecutive even cycle lengths n — & +1n
that I, is a subgraph of Jnir e and for ;
G must afso have cycles of fongths as descr

These exampics will be exoeptions for
presented in Sections 4 and 5 and will oceur
or k—senibipaneyclic.

4 Hamiltonian graphs th;
[n [2] the following result on pancyclic grar

Theorem 5 Lel & be o graph of order n
nan cycle vy, ..., v,, vy, Suppose thal dog
pancyclic, bipartile or missing only an (n —

In [1], Amar gives the foliowing generali

Theorem 6 Let G be o bipartile hamilonia;
vy and uy which bie ¢ dislance lwo apart

deg vi+deg vo >n 1. Then (' is cither
qraphs.

Here we establish Lhe following versior
which considers the degree sum of conseenti
did Hakimi and Schmeichel.

Theorem 7 fei ¢ = (XY, 1) be a bipas
Y = {1, ..nun) and hamillonian eyele zy, 1
deg yn > n+ 1 then either
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wmmiitonian- bipartite graph with deg =y +
tble even cycle lengths, with the exception of
un a cycle of length 2n—2, note that if a cycle
1y such graph, then the edges 91,9122, Z2in
\Lny Tnln—1, Yn—1Tn—1 and In—-1Y¥n-2 would
Je. Bul then the only way to leave off exactly
sth edges xyy; and y,z;_1 were included for
. Fy, contains all other even cycle lengths, let
we want to exhibit the cycle of length 2¢. If
results immediately, hence y;,z,-7 must be
wdge, the 2t-cycle results immediately, hence

w looking at the pair x,y,40 and ypz; we -

yn forming a 24-cycle when 4,751 15 an edge
ing a 2i-cycle when zyye4 2 18 an edge.

, be the bipartite graph with the hamillonian

TIY3, T Y,

 Yn 3y e YLt

T2 ni2—1,

+3)/3 < t<n/2,

nian bipartite graph with deg =y = { and

Ay, deg 7+ deg yn = n+ 1 and it is casy
ble even cycles lengths, with the exception of

N, be the graph with the harnillorian cycle C

2, T1Y3s o T1lr,y
¥Yn-2y s T1Wn—5+41,

nTn--2: o UnTn- 541,

W3y e YnEr a1y Y,

il ko non-negative inleger, such thalr + 8 =
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Example 4 Lel Jnrs = (X, Y, F), with X = {z1,.., 2.}, Y = {11, ..., n} be
consiructed as follows: starl wilh o Krps—1ris belween the sets {zy, x9 ,..,
Try Ty Ty oy Tnest2) 004 {1,920 s Ury Yy Yno 1y oonr Yr—sa1). Add the edge
Yn&n—siy and the edges of the polh Y-, o, Yri1, Trgt ooy Unesr Tresi 1, Ynost].

The graphs In.. and J,.,, arc hamiltonian hipartite graphs with “short”
cycles of length, 4, §, ..., 2(r+s—1) and “long” cycles of length 2n—2(r + s)+4,
2n—2(r +s)+6,2n -2, 2n. In the case whenr + 5 = (n+ 1)/2, and n is odd,
we note that these graphs contain cycies of all even iengths, with the exception
ofn+1. Whenr+s=(n+1)/2 -k, the graphs do not contain the k + 1
consecutive even cycle lengths n —k+1,n—k+3,...,n+ k 4+ 1. We also note
that I, is a subgraph of J,.,, and for any G thh Inizs € G C Jury, then
G must also have cycles of longths as described above.

These oxamples will be exceplions for the conditions given in the resuits
presented in Seetions 4 and 8 and will oceur il the graph is in fact not bipdmycht
or. k—semibipancyciic.

4 Hamiltonian graphs that are bipancyclic
In [2] the following result on pancyclic graphs was given.

Theorem 5 Lel G be o graph of order n wnith V(G) = {v1, ..., n} and hamillo-
nian cycle vy, ..., v, v1. Suppose that deg vy + deg vn 2 n. Then G is cither
paneyclic, bipartite or missing only an (n — 1)-cyele.

In (1], Amar gives the Tollowing generalization for bipartite graphs,

Theorem 6 Let G be a bipariite hamitonian groph of order 2n with two nerlices
vy end vy which lie o distance two apart on a hamillonsan eyele of €, with
deg vy 4 deg vy > n+1. Then G is cither bipancyclic or one of several special
graphs. :

Here we establish the fo]lowmg version for hamiltonian bipartite graphs
which considers the degroe sum of conseontive vertices of 2 hamiltonin cycle, as
did Hakimi and Schmeichel.

Theorem 7 Let G = (XY, ) be o bipartite graph with X = {z,..., 2.},
Y = {in, .. un} and hamilionien cycle 21, 11, 22, 45 , ..., Tn, UYn, T1. If deg o1+
dog yn = nd 1 then either
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z G is bipancyclic,
i1. Fn C G for some [ & Fn, thus G is missing al most Lhe 2n — 2 cycle,
dii. Hpy © G, thus G s missing ab most the 20 cycle or,

w. Ines © G with2(r +s)=n+1 and . odd, thus G is missing at most an
{n+ 1)-eyele.

- Proof. We proceed by induction on n. It is clear that if n = 2 then &
is bipancyclic. When n = 3, then G is either 2 Cg, and thus G = J3, 1 ot G
is bipancyclic. When n = 4 it is again clear that (3 is bipancyclic, while when
n =5, it follows that G is bipancyclic, G = Hsza, G = Ig21 or G = I512. Let
€ be a bipartite graph, with partite sets X and Y having |X|=1Y]|=mn, and
hamiltonian cycle

Can = T1, Y1, 52, H2s o By Y T

Furthermore, assume shat deg 21 +deg yn 2 n+ 1. We define Lhe & — pairing
of possible edges [rom x; and ¥, a8 TN Yoo} 18 paired with ynzi i1 <4< Z,
and E1yogo1) 18 paired with yez; if€+1<i<n—1L Observe thal a cycle
of length 2¢ resuits il for some i both cdges ol Lhe & — pairing are cdges of
. Suppose thal G is nol bipancyclic. 1t follows that [or some £ satislying
4 <28 < 2(n — 1}, the graph & does not contain a cycle of iength 2¢ and thus
not, both pairs from the £ — pairing can be cdges.

Claim ! /fdeg z; +deg y > n+2 then G is bipancyclic.

Proof. Suppose that deg = +deg yn = n+ 2. By the £ — pairing, it must

be the case that for cach i, al least onc of those pairs are not an edge of G. But
this implies that

degzy < n—{(degyn —1}
<

deg 1 + deg yn n+ 1,

which contradicts the assumption, ™

Hence we may assume that the deg =1 + deg yn = n + 1. This also implies
ghat il G is not bipancyclic and does nob contain a cycle of length 2£ then, for
each 1 €1 < n—1, cxactly onc of the edges in the £ — pairing must be an edge
in G.

The prool of Theorem 7 will be completed by considering the possible cases
for the inclusion of the edges £y, and ynxy 0 G

CClaim 2 If G is nol bipencyclic and holh z1yn—y and yaxy are edges of G, then
Tnirs © G with 2(r +5) =7n+ L. . '
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Proof. Suppose G is not bipancyelic
contain a cycle of length 2¢, for some £ t
cdges in the £ — pairing must be an edge
having y,zz in G implies that a {2n —2)

Casc 1. Suppose £ < 3.

Since G contains no cycles of length !
edge of G. By the € — pairing, this implie
£< 5. Now if yozn ¢ were an cdge of G

UnyEn—t, Yn—€—~1 1y Tn—£—1, -

would be a cycle of length 2¢. Thus =1
this argument, it must be the case that
hence it must be thal ziyn 26, ..., T1Yyz ar
that x 3 is an edge, since £ < &, which in
2¢, a contradiction. Thus we may assumc

Case 2. Suppose § < £ < 7.

Again sinee ¢ contains no eyclos of
nol an edge of ¢ By the £ — pairing,
of G since £ £ 5. Arguing as in the g
net an edge in G while zi9 2441 18 an
adjacent Lo ¥y, ¥2, .-y Yn—2es. Since £ <
YnTn g+ 18 NOL an edge of G for otherw !

Yny Trn— 849 Yn - 242, Tn—£4

would form a cycle of lenglh 26, Bul
Ziyn—ge4s 18 an edge of ¢ Continuing
Y 18 nOL adjacent L0 Ty, (. 1y, En2-2)s
Adiacent L0 Yrn—204.2, Yr- 2843y v Yru £, [0
n— £ > ¢ it lollows thal zys is an ¢
contradiction. Thus we may assume tha

“Case 3. Suppose il =g

In this case clearly yn is not adjacent
an edge then ynr(nya)/2, 18 Not an edge
This non-edge implies that zyp is an cd
an edge for 1 = 1,2, ...7 and z3y,4, is nol
¢ — pairing we get, that v, is nol, adjac
and is adjacent L6 Ty (ni1)/e. Now il o

T, Yr b e i M I
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thus G is missing al most the 2n — 2 eycle,
al most the 2t cycle or,

+1 and n odd, thus G is missing al most an

stion on n. It is clear that if n = 2 then &G
1 G is either a Cg, and thus G = I35 or &
apain clear that G is bipancyclic, while when
yclic, G = H5;3, G = 15;2‘1 or G = 15;1,2. Let
Jue sets X and Y having | X[ = |¥] = n, and

Vi, ¥, oy Ty iy 1

+deg yn 2 n+ 1. Wedehne the £ — pairing
A8 T Y. 1) 15 paited with grx; 1 <4< £,
il €41 <i<n—1 Obsorve that a cycle
i both edges of the € — pairing are cdges of
wyelie, 1 follows that for some £ satisfying
does not contain a eycie of length 2€ and thus

ng can be cdges.
v+ 2 then G is bipaneyclic.

+deg y,, = n+ 2. By the £ — pairing, it must
51 one of those pairs are not an edge of G, But

n—{degyn — 1)
n+1,

Ty

IA A

Yn

S ]

he deg zq + deg yn = n+ 1. This alse implics
does nol contain a cycle of length 2€ then, for
o the edges in the € — pairing must be an edge

be complated by considering the possible cases
-1 and gz in G

and bolh 2y 1 and ypzy are edges of G, then
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Proof. Supposc G is not bipancyclic. As noted above, since &G does not
contain a cycle of length 2¢, for some £ then it follows that exactly one ol the
edges in the £ — pairing must be an edge in G. Also note that £ < n — 1 since
having ynzs in G implies that a (2n — 2) — cycle is contained in G-

Case 1. Suppose £ < %.

Sinee G contains no cycles of length 2¢, it follows that ynTn-gpy is nOt an
edge of G. By the £ — pairing, this implies that z;9, -2¢+2 is an edge of G since
£<%. Nowif ynZn_¢ were an cdge of G then

YnsTn—£,Yn—£-1,Tn—8-1, - ¥n—-244+2, L1, Y1, T2, Yn

would be a cycle of length 26. Thus x1y,.9¢41 is an edge of . Continuing
this argument, it must be the case thal ynZy—z— 3, .., YnZes s are not edges of G,
hence it must be that oy g4, ..., 712 are edges of G. Consequently, it foliows
that zy9, is an edge, since ¢ < 4§, which implics that 7 contains a cycle of length
2¢, » comradiction. Thus we may assume that £ < £,

Case 2. Suppose 7 < £< 5.

Again sinee ¢ containg no cyeles of length 22, it follows that yaz,.. epq is
nol an cdge of & By the £ — pairing, Lhis implies that @y, 202 is an cdge
of G since € < 5. Arguing as in the provious case, it follows that y,zq. g is
not an edge in G while yy,-.9¢01 18 an edge in G. Henee it follows that z; is
adjacent Lo ¥y, 2, ., Yn—neqn. Since £ < ’—5 implics that 2 < n - 24 2, the edge
YnTn—e42 18 NOL an edge of ¢ [or otherwise

U Lo — 842 Yn—842: Tn—843, - Un—1, 1, 42, T2, Un

would form a cycle of length 2. But ypTp—_prz not an cdge implics that
I1Yn_neqs is an edge of & Conlinuing Lo argue in this fashion, it follow that
¥n i85 NOL adjacent to Loy (8- 13> Tri--(=2)s Ty (£-8)1 -0y Tz, iMPying that zy is
adjacent tO Y9742, Yn- 2243, .. Yn -2, 10T otherwise a 24 — cycle results. Since
n— £ = £ il [ollows thal oy is an edge and thus a 26 — cycle Tesults, a
contradiction. Thus we may assume that £ > 2.

“Casc 3. Suppose il =g

In this case clearly y, is not adjacent to z(n41y/2 8N4 T(n_1y/2. Since ynzy is
an edge then ynT(n3)/2, i5 not an edge, for otherwisc a 2é-cycle would resull.,
This non-edge implics that x5 is an cdge. Hence we may assume that x,y; is
anedge for j = 1,2, .r and zyy,4 is nol an edge for some r < (n—1)/2. By the
£ — pairing we get that g, 15 not adjacent, to Tn41)/20 Tna8)/2s oo Trb(no1}/2
and is adjacent 10 Ty ¢ (ny )72, Now il @iy, g were an odge, the cycle

L VYra- 20 Ze i B Wri s o Loy (nai)/2 My T2, W1, T
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would be a 2¢ — cycte. Now using ¢é-pairings and the edge ynza it lollows
that z, is not adjacent 0 Yrp1, Yri2, - Y(ne2)/2 and consequently y,, would be
adjacent 0 Tyiy4n 2> Tri2in/2r - Tne If either x; or y, had an adjacency
among the collection of vertices yrit, Trez, Yr+2) Tri2 s s Trin/2r Yrdn/2 then
a 26 — cycle results.  Sinec deg xy +deg yn = n+ 1, it must be the case
that = is also adjacent L0 Yrat4n/2 Yri2en/2 =0 lin and y, is also adjacent to
Iy, Tg, s Tr. Thus Iyr g © G with 2(r 4 5) =n+ 1 and n odd.

Case 4. Suppose € = 5_%;2

In this case it follows thal v, is nol adjacent 0 Tin 42372, Tn/z: &N T(npa)/2,
the later non-edge implying shat z,y; is an edge. Hence we may assume that
£1y; is an edge for 3 = 1,2, .7 and xiyr41 iSOt AN edge for some 7 < {(n—2}/2.
By the £ — pairing we get thal y, is not adjacent $0 Einpa)/2: Tin16)/2) o0 Tring2
and is adjacent 16 T, 14n/2. Now if z1yr42 were an edge, the cycele

) Ty Wr 2 Er3s Ur il o g:f'#*l'l‘ﬂfgl Yn, T2, H1, T

would be a 2¢ — cycle, thus xy is not adjacent Lo ¥rpi, ¥r 12,0 Yna2)/2 and
yn would be adjacenl to 2ry 1 pn/2 Fragy nf2s -0 Fu Il cither 2y or ¥y, had an
adjacency among the collection of verlices ¥rp1, Trady Yrp2y Tra2 o Trpn/2s
Yreng2 then a 2¢ — gycle rosulls. But Lhis ‘mplics that deg ) + deg yn <1y
contradiction,

Case 5. Suppose ™32 < g < 22,

Since G contains no cycles of length 2¢, it follows that zy, is not an cdge
of G. By the £ — pairing, this implics thal ynTos-n is an cdge of . Asin the
previous cases, if ziye_y were an cdge 4 2¢ — cyele would result.  Henee, yn is
adjacent O Tor—n, Togn—14: T2 and z;. But since it is Lhe ¢ase that %3 < €,
it follows that g, is adiacenl (o =3, but this implies that zyy,— 1 is not an edgre,
and thus ynTe-n 1 18 an edge. Consequently, YnZr—g+1 1$ a0 edge, resulting in
a 2¢ — cycle, again a contradietion.

Casc 6. Suppose 222 < £ <n—2.

Since ¢ contains no eyeles ol length 24, it [ollows that xyz is nol an odge
ol G. By the £ — pairing, this implics thal ynToe—n 15 an edge of G As in the
previous cases, if Tiye—, wore an edge a 2¢ — cycle would resull. Henee, gy, s
adjacent L0 Zos_n, Toz no1y o0 T2 and ;. B3ut since it is the case that zﬂs—‘ <&,
it, follows that ynTn_es1 is an edge of ¢, which results in & containing a cycle
of length 2¢, a contradiction. -

With all cases considered the claim follows. -

Claim 3 If G is nol bipancyclic and eraclly one of T1yn—1 and ynxo 15 an edge
of G then G contains Hoy fornf3 < €< nj2, thus (G is missing al most the 24
cycle. ' ‘
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Proof. Without loss of generality 1
is not. If G is not bipancyclic, then wer
length 2¢. Arguing as in the previous ¢l
Case 2 and Case 3, the edge zi1yn .-y I8
[ollow as above. When € = "—2’11— a contre
edges to =, as in Case 3. Thus we only
Observe that x,y, .; not an edge of G i
the € — pairing. [ ynzeyr; € F then y,
of length 2¢, thus y,ze1 & E and hence
Il zyyn-2 € I then the 2¢ - cycle;

L1y Un—0Tn--1sWn-1:Tn: Yn,?

results, Consequently, we may assume L
L, Continuing i this [ashion, we gel
o Yrt 80 Yn gy and thatl yy, is adja
Yool ey ooy Y223, T1, ¥n wWould forrm a ¢y
. Arpuing in a similar fashion, we get
o, ye and by the & — pairing thal y, 1o
observe Lhat yamge & I lor b =1,..,¢ :
Lpoyet, Ya would form a cycie of length
adjacent Lo ye.1, Ve 2, .-, 1. With all pe
and the deg y, =n+ 1 — £ and thus /f,

So we may assumi thal neither oy,

Claim 4 If G is no!l bipancyclic and v
then for same " € Fo, FF C G, thus G

Proof. By the £ — pairing, since ne
[ollows that ypze—; and @1y _py g atc ¢

Cuase 1. Suppose £ < l‘{i

By the £ — pairing exactly onc of
former case,

Tyt 2 2Fn- 25 5 ln -

would form a cycle of length 2€, while
YnTe.1Ye 1T

would form a eycle of length 2£, & cont

Case 2. Suppose 242 < ¢ < 28



sing £-pairings and the edge ynzo il [ollows
42y o1 W(ne2)/2 and consequently y, wouid be

, &n. Il either x; or y, had an adjacency
rily Tr42s Wrd 2 Tra2 5o Trin/2 Yrin/2 then
“xy+ deg yn = n - 1, it must be the case
n/2s Yr42+n/2: - Un 8Nd yn is also adjacent to
h2(r +5) =n+1 and n odd. :

is not adjacent 10 ©(n 232, Tnj2s A0 T(niay/2,
z1ys is an edge. Hence we may assume that
d T1yr41 isnol an edge for some r < (n—2)/2.
is not adjacent 1o T(nq4)/2) T(nt-6)/2: o Frin/2
v if T1yryo were an edge, the eycle

riy e Trglin/2 Uns T2 41 T

is notl adjacent Lo Yy 1, ey, o Ynaa)s2 and
20 Fra2ans2 oo Ene 11 cither ypor g, had an
of vertices Yrad, Tra2, Wra2: Trrl oo Trgn/ds
But this ‘mplies that deg x; + deg gy S 1, 2

v

3

[ length 24, it Tollows that 1y is nolL an edge
nplics that ynTor—n is an edge of G. Asin the
1 edge a 26 — cycle would result.  Hence, yn 18
5 and z,. But since it is the case that 3’-%3 < ¥,
T3, but this implics that zyy._1 is not an edge,
Consequenidy, YnTn-rp 15 an cdge, Tesulling in
on.

n—2.

if length 24, b [Bllows that, zq¢ is nol an cdge
mplies thal ypzos—n is an odge of G. Asin the
n edge a 2¢ — cycle would result. Hence, y,. is
5 and z,. But since it is the case that 25 < ¢,
dge of G, which results in G containing a cycle

¢ claim follows. »

¢ and exactly one of 1y .1 and Yooy is an edge
1/ < £ < nf2, thus G is missing ol mosl lhe 2t
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Proof. Without loss of generality let y,z» be an edge of G, while xyyn_3
is not, I{ &' is not bipancyclic, then we may assume that & contains no cycle of
length 2. Arguing as in the previous claim, for all cases with the cxception of
Case 2 and Case 3, the edge xy,,.., is unused, thus the proofs for those cases
[ollow as above. When £ = l‘gi a contradiction arises with the inclusion of the
edges to zy as in Case 3. Thus we only need to consider the case § < € < 2.
Observe that z,y,..1 not an edge of G implies that y,z,_; is an edge of G, by
the £ — pairing. I ynzey) € E then yo,ess, ye, .o, 32, yn would form a cycle
of length 2¢, thus y,x,. 1 ¢ £ and hence by the £- pairing have that zyy; € E.
If £yyn.-o» € E then the 2¢ — cycle;

TH¥n—-2,Tn-11¥n—1Tn, Yo Te—1,We—2, Tp~2y ..oy T, Y2, T

resulls. Consequently, we may assume Uhal zya_ o & 2 and Lhus that g,y €
£, Continuing in this fashion, we get that z, is nol adjacent to Yr1s Y- 24
co¥n-e and Yy goy and that yy, is adjacent W @y, 29, ., Te . SINCE Yr, Tpo g,
Ve 11 Tey oo W2e—3, £1, e world form a cycle of length 224t follows that T1Y2e--3 &
E. Arguing in a similar lashion, we get that 2, is not adjacent, 1o yop -4, ¥2e-5,
o e and by vhe £ — patring that yozgs o € ot = 0,1, .., n—26+1. Also
observe thal gz, & 15 for | = 1,.., £ =1 lor otherwise y,, Tos_ (, Wos 1 1,

ey

Tty Y Would form a cycle of longth 26, By the Epairing it Tollows Lhat z is .

adjacent Lo w1, 22, ..., 1. With all pairs exhausted, it Toflows Lhat deg o, = £
and the deg yn =n+ 1 — £ and thus }H,..; € ¢ and the claim [ollows. [ |

So we may assume that neilther z;y,. ; nor yux9 are odges of €.

Claim 4 [/ G is nol bipancyclic and neither Tyyn.1 nor ypxy are cdges of G
then for some F € Fr, I C G, thus G is missing al most the 2n — 2 eycle.

Proof. By.the £ — pairing, since neither 21y, 1 nor y,xp are edges of G, it
follows that yoze_q and zy9,. 0,0 are edges of O,

Cuse 1. Suppose f < %

By the £ — pairing exaclly one of zyye 1 0F yuae is an edge of G. In the
former case,

TiYn 2120n £ 0 £y 0EnlnTo- 1 171
would form a cycie of length 24, while in the later case,
YnLg-3Ye 1T Yar 3T2p..2Wn
would form a cycle of length 24, a contradiclion.

Case 2. Suppose 244 < ¢ < 2
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By the £ — pairing, the cdge ynTasn is in & since the edge x,y¢ is clearly
not in G. Also, by the £ — pairing and the range ol £ for this case, exactly one
of z(y22—n and YnTaz_n—1 is an edge of G. In the former case,

m1yn—l—l-ﬁzn.~E+3yn—£+3---xnynx?.fwnylf—nz1
would form a cycle of length 2£, while in the later case,
an'zl—ny?.Z—n:ﬂ‘lf—n-f—lvi-y:}ﬂ#n—?ISt—nflyn

would form a cycle of length 2€, a contradiction.
Case 3. Suppose 2L <2< n -2

Suppose for some 1 <4 <n— 1 — ¢, that ynTore € E. Since
T1ln—e+2Fn—0+43. YnT2+1Y2+1T1

would form a cycle of length 2¢, it follows that yai.x ¢ 2. By the £— pairing,
it follows that ynzes 4z is an cdge of G, but this gives the 2¢ cycle

W2 (2 1oL g e 20

Sonsequently, for cach 1 <L <n —1 ¢ it musl be the case that ynTog. € F,
and by the £— pairing, it follows that = yn-_er2+1 € [2. A symmetri¢ argument
shows that for 2< (< n— € Tyynt € 2 while yuTe_y € ION

Suppase ynTn_1 € . Since y, is adjacent to the vertices g1, Te—2, ..-T2—n
and 1y, is not adjacent to Tn_g41, there is a first place in this range, say r, sich

that ynz, € F and ynz,—y & L. By the £- pairing we get that T1yn—g1r-1 € E.
But now )

YnTrlr—1Tr—t - Tiln—ttr-1Tn-ttr-Tn-1ln

forms a cycle of length 2¢. Thus we may conclude that ynz, ) & f7 and that
ZiYn—s € . Note since £ < n — 2 and y, is not adjacent to T,_¢ there is a ﬁrst
place say r, such thal yoz, € I¢ and ynZr.y, Yn®r-2 & I5. Arguing in a similar
fashion, it foliows that ynon—g € 2.

For each neighbor of y,, say z,, withn —€+2 <t <n— 3, it follows that
x, is not a neighbor of ¥4, since

Tiln--Ln-g4 1 EYnTn Wit Tt

would form a cycle of length 2. Also note that x; is not adjacent 10 yn-1
and yn_er1, both not excluded by the previous argument and that all of the
neighbors ol g lie in the range of # above, with the exception of z, and z,,.
Hence we get

deg x, <n—2 - (deg yu ~ 2)
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which implies that
deg xy + ¢
a contradiction, thus leaving only the |

Case 4. Suppose £ =n — 1,

Since £ =n — 1, it follows thal botl
the ¢ — pairing exactly one of zy; or
the desired conclusion, that for some F
the 2n — 2 cycle. =

Consequently, with all cases exhaus

5 Hamiltonian graphs t

{n this section we establish the follov
graphs:

Theorem 8 Let G=(X,Y, ) be a b
{y1,-ntm}, n = 7, wunth harnillonio
deg = +deg yn = n+1 —k for som
eilher G ig k-semibipancyclic or 1y,

Proof. Let G be & bipartite gr
|X| = |¥| =n, and hamiltonian cycle

.
Con =1, 11,52

[furthermore, assume that deg =, +de
k-semibipancyclic. [t ollows that for
graph G does not contain any cycles o

Case 1. Suppose that € < n/2 — &
symmetric argument. }

Since G does not contain any cycles
that x; is not adjacent to g, for £ <4 <
Let A=y, veal, B = {yenin .
{ze, ..zoerk-1}, B = {Zogiksny oz
that all adjacencies ol zy arc in AU B3

Let a,b, and cbe the number ol adje
Lot wiy, tigy oo 3, With 2 < 4y < dg <

zy in A. It lollows that ynzi, o1, yna -

[or otherwise a cycle of length 2¢ wou
we see that ynzi 1z-14. is not an ed




YnZae_y is in G since the edge z1y is clearly
g and the range ol £ [or this case, exactly one
«dge of G. In the former case,

3Yn—£43- - TnlnT2e—nl2i-nT1

while in the later case,
L2f—m+1---Y38-n—2T38—n—1n

a contradiction,

n—2.

-1 — ¢, that ynzo4+ € E. Since

WLy f4 3. YnT2+ Y241 T -

it follows that yo, .1 € . By the é— pairing,
ge of G, bul this gives the 2£ cycle

b a2y e g 1y 2

L — 1 — £, it must be the case thal yazay, € F,
thal 2y e € ££0 A symmelric argument,
Ypoy & 15 while ypxe . € L2,

,, is adjacent to the vertices T¢_ ), Z¢ 2, ..-T2p—n
, there is a first place in this range, say r, such
By the €~ pairing we get that o1y, _g4r 1 € E.

E1Yn—tpr—1Tn—f4r e Tn—1Yn

s we may conclude that y,z,_; € F and that
2 and y» is not adjacent to Tn_g there is a first
and YnTr-1, YnTr—2 € 15, Arguing in a similar
7[5

R

R 1o Tt Yndn. Y4171

3. Also note that zp is not adjacent 1o yno1

by the previous argument and that all of the
1 of 1 above, with the exception of z; and z,.

Sn—2—(deg yn —2)
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xq, withn— €42 < ¢ < n—3, il follows that

which implies that
deg =) + deg yn < n,

a contradiction, thus leaving only the possibi]i‘ty‘of £=n-—-1.
Case 4, Suppose £=n - 1.

Since £ = n — 1, it follows that both z,y3 and y,z,—2 € £. In addition, by
the £ — pairing exactly one of zy1; o yu&i 1 is an edge of G. This results in
the desired conclusion, that for some F € F,,, F C @, thus G is missing at most
the 2n — 2 cycle. m

Consequently, with all cases exhausted, the theorem follows. [

5 Hamiltonian graphs that are k-semibipancyclic

In this section we establish the following version ol Theorem 2 [or bipartite
graphs:

Theorem 8 Let G = (X,Y, ) be « bipartite graph with X = {z1,...,2,}, Y =
{v3,vntn}, n = 7, with hamilionian cycle z1,y1,%2, ..., Tn, Yn, T1.  Suppose
deg 1+ deg yn = n+ 1 —k for some inleger k salisfying | < k < n/2. Then
cither G is k-semibipancyclic or I, C G C Jpy s with2{(r+s)=n+1—k,

Proof. Let G be a bipartite graph, with pariite sets X and Y having
|X[=[¥]=mn, and hamiltonian cycle

C'Z'n = ELYLEL WL o Tas Yny T

Furthermore, assume that deg =, +deg yn > n+1— k. Suppose that ' is not
k-semibipancyclic. 1L [ollows that for some € satisfying 4 < 2¢ < 2(n—k), the
graph &' does not contain any cycles of length 2¢,2¢ + 2, ..., 2{6 + k).

Case 1. Suppose that 71?75 n/2 — k. {The case £ > n/2 + 1 is handled by a
symmetric argument.}

Since G does not. contain any cycles of length 26,26+ 2, ..., 2(€ + k), it follows
thal zy is not adjacent Lo y;, for £ < i < d+kandforn—F—k+2 < i <n—£{+2.
Lot A = {?]l. ...,yg_.1}, B = {':i/gﬁ.k.g.h ...,y,.,g,k}, ¢ = {‘yﬂ_g.i.g, ...,yn_.l}, Al =
{JJ{,...,JJQ[.*.]C_]}, B = {Ing*AHAl,...,:JZn._ﬂ and ¢’ = {1'2,...,3:3.‘,,,;_1}. Note
that all adjacencies ol z; arc in AU 30 ¢ with the exceplion of y,.

Let ¢,b, and ¢ be the number of adjacencies of 27 in A, 53, and C, respectively.
Let gy, gy o 3, With 2 < 45 < iy < .. < 1, < £—1 be the adjaconcies of i
zy in A, It follows that ynZi, 1r— i, YnTigsem1s -y YnZis4e—1 are not cdges of G i
for otherwise a cycle of length 2¢ would result. Furthermore, for t = 1,2, ..., k,
we see that yni, 114 is not an edge of G since a cycle of-length 2(¢ + ¢t)
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would result. Observe that thesc a -+ k nonadjacencies of y, are all in A"
Similarly, the b adjacencies of z; in B force b + k nonadjacencies of y, in B’
Finally, suppose that i, ¥iy, .., ¥, With n — F43<i << . <1l €n—1
are the adjacencies of z1 in C. It follows thal ynZg-(n—q,) is MOt an edge
of G since Ty, Y1, T2, Y2.s Tefr—i))s ¥ry Ty Yn—Ts o Hir: T wotlld form a cycle
of length 2. Similarly, ynTe (n—is)r - ¥nTe—(n—iu1) and ynZTe_(n-i,) are not
edges of G for again a 2¢ - cycle would result.  Additionally, for ¢ = 1,2,...,k,
we see thal YnTe_(n—i,)+e 18 NOL an edge of G since a cycle of length 2(€ +¢)
would result. Note that these are ¢ + k nonadjacencies of yn in C'. Now the
degz, =a+b+c+1, and degyn < n—-{a+k+b+k+c+k—m) where
m is the cardinality of the intersection of A’ and C'. Note that B’ does not
intersect either A’ or ¢’. Since (A NC'| = ((+k -2~ ({ -1} + 1=k, we

have that degyn <n—(a+k+b+k+ctk—k)=n— (degx; — 1 + 2k}, so
that degz, + degyn < (n+ 1) — 2k, which is a contradiction since & > 1.

Case 2. Suppose n is even and € = n/2 ~Llor0 <l < k/2 — 1. (The case
k/2—1<t<k—1ishandied by a symmelric argument.)

Since G does not contain any cyeles of length 2¢,2¢ + 2, o 284 K), it fol-
lows that 1 is not adjacent 1O Yns2. 0 Un/2+t+1- Lot A = {Y1, 1 Ynsa-1—1h
C = {Unjarerzreoyn-th A = {wnsa, v Un—2erk2) and G = {y2 .
Yn/2-tvk—2} Note that all of ‘the adjacencics of z;, are in AU C with the
exception of y,. Arguing as before, since & is not k-semibipancyclic, contain-
ing no cycles of length 2¢,2¢ + 2, .. 2(8 4 k), the a adjacencies of 1 in A force
a + k nonadjacencies of y in A'. Likewise, the ¢ adjacencies of z; in € force
¢+ k nonadjacencies of ¥ in ¢’. Note that il the adjacencies of z; in A are not
consecutive, this [orces another previously uncounted nonadjacency of y,. TFor
example, if z1yip) € £ and my: € 2, and ¥; is not the last adjacency of z; in
A then it is clear Lthal yy, is adjacont Lo neither e N L6400,

Define Aa(Ag) to be 1l the adjacencics of @y in A (respectively C) are
ot consecutive on the hamiltonian eyele and 0 otherwise.  Now the degx, =
a+c+ 1, and as above, degy, <n—{(a+k+ct k+ Ap+ Bp —m), where m
is the cardinality of the interscction of A" and C'. Since IANCY = (n/2~t+
k—1)—{n/2 =)+ 1 =k, we have thal degyy <n—(at+ct+k+As+Ac)=
(n+1) —(degxi+k+Aa+Dc) Sodegx +degyn Sn+l—k— (Aa+ Do)
which is a contradiction unless A4 = Ag =0 and degwy +degu, =1+ 1 —k.

Hence, we may assumc the adjacencies of = in A and  arc consccutive
vertices of ¥ on the hamiltonian eycle and further that the adjacencies ol y, arc
consceutive vertices of X on the hamiltonian cycle. Without loss of generality
we can assumne that degz, 2 {(n 4+t —k}/2 and, that degyn < (n+1—k)/2
Suppose z; has no adjacenies in €, that is that ¢ = 0. Also assumc that = is
adjacent to the vertices y1,.., ¥ in A. Thus, ¢ contains cven cycles of length

4,6, ..., 2a as well as 9 — 20 + 2, ...,2n. I the degzy > (n+1 - k)/2, then
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it follows that G is missing at most & :

it would follow that & is k — semit

degz = (n+ 1 — k)/2 and, conseq:

¢ is missing at most even cycles of |
n > 7, it follows that degy, > 3.1
length n 4+ 1+ k tesuits, and G wou

be the case that y,, is adjacent to z,

then that Ing 1 G G C Jnar since an o

hetween a verteX in 4y, 1, Y1, -1 La,

would give a cycle in the range n + 1

A simnilar argument results if the
adjacent to x4 then a cycle of length
(7 is k — semibipancyclic. Again, il

Thus we may assume that a > 2 and
Let z; be adjacent Lo the vertic |
If y, is adjacent to z9 then cven ¢ ‘

on—2{a+c+13+4, ..., 2n oceur in .

that are possibly nol in G aren+1 -
thitl 28 = n — 2 = n+ 1 —k, which i |
the assumption that ¢ < k/2 — 1. C

thus it must be the case that yy is ad

have cyeles of even longths belween !

this case is complete il ¢ < k/2-10o
So we can assume that [ = k/2 -1
this implies, that since n is even, th:

Thus it follows that G is missin
consider the adjacencies of y,. Sin

¥y, is adjacent to z,_2, which yicld '
T9, T3y ooy T(n—1—k) /2 which impliest
and s = 1. If x; has adjacencics to b -
graph would necessarily contain cycl
n -+ k + 1. This completes the proof |

Case 3. Suppose 7 is odd and ¢

Lhe case k/2 —1 <t <k —1is hanc ;

Since Cag, ooy Cogeqry E G iL Toll
Ylnf2y b

tot A = {31, ¥y ek =
Epng-nek) and ' = {z4, —es Tng|
in AUC with she exception of y,.
consecutive, then, as before, this [o



se a -+ k nonadjacencies ol y, are all in A’
in B [orce b+ k nonadjacencies of y, in B’,
withn—¢04+43<i; <tz <...<t,<n~—1
It Iollows thal ynTe¢-(n—s,) is not an edge
A1) Yo Ty Yre s o Yin s B would form a cycle
g} s ¥nTh (neigoy) AN YnZp_(n-i ) ATE NOL
would result, Additionally, for t = 1,2,...,k,
an edge of G since a cycle of length 2(£ 4 t)
e ¢ + k nonadjacencies of y, in ¢’. Now the
yp <m—(a+k+bdb+k+ec+k—m), where
section of A’ and C’. Note that B’ does not
‘A' nc'l (k2= (—1)4+ 1=k, we

bt+k+c+k—k)=n-(degz, —1+2k), so
2k, which is a contradiction since k > 1.

ndé=n/2—tfr0<t<k/2-1. (The casc
y a symmelric argument.)

die

y cycles of lenglh 2¢, 264 2, ..., 2(€+ k), it fol-
2ty ey Wnf24 41 Let A= {3, -'-:?}nIQ--L—vI}u
= {'U.n/g,,h ...,vn_21+k__g} and €' = {y')_ PR
thoe adjacencies of x4 are in A U C with the
ore, since (G is not k-semibipancyclic, contain-
+2{€ 4 k), the a adjacencies of zy in A lorce
Likewise, the ¢ adjacencies of zy in C force
Note that il the adjacencies of £, in A4 are not
oreviously uncounted nonadjaceney ofl y,,. Tor
€ E, and y; is not the last adjacency of 23y in
cent 16 neither zy,p NOT Ei 600,
10 adjacencies of @y in A (respectively €) are
ian cycle and 0 otherwise. Now the degz; =
in—(at+k+ect+k+As+Ac—m), where m
don ol A" and €. Sinee JA'NC| = (nf2 -t +
we that degyn Sn—(atec+k+Ap+Ac) =
5. Sodegz +degyn Sn+1—k—(Ag+As),
Aa=Ac=0and degv +degu, =n+1-—k.
adjacencics of 3 in A and € are consccutive
cyele and further that the adjacencies of i, are
» hamiltonian eycle, Without loss of generality
v+ 1 — kK)/2 and, that degy, < {(n+1 — k)/2.
1€, that is that ¢ = 0. Also assume that z, is
,in A. Thus, ¢ contains even cycles of length
2, ..2n. I the degzy > (n+1—k}/2, then
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it follows that G is missing at most & consecutive even cycle lengths, and thus
it would follow that & is k — semibipancyclic. Hence, we may. assume that
degz; = (n+ 1~ k}/2 and, consequently, degyn = (n+ 1 — k)/2, and that
(' is missing at most even cycles of length n + 1 - k through n + 1 + k. Since
n > 7, it [ollows that degy, > 3. Il y,, is adjacent to x,._1, then a cycle of
length n 4+ 1 + k results, and ¢ would be k— semibipancyelic.  Thus it must
be the case that y,, is adjacent to z,,zy, zy, T3, ..., and z,. Clearly it follows
then that In., 1 € G C Juq ) since any additional edge in the bipartite graph G
between a vertex in yn,j,y1,...,Ta, Yo and & Verlex in Zoq1,%as1s .0 Yn-1,Tn
would give a cycle in therangen+ 1 -k to n+ 1 + £,

A similar argument results il the only adjacency of z; in A is y;. If y, is
adjacent to x5 then a cycle of length =4+ 1 — k results and it would follow that,
G is k — semibipancyclie. Again, it would be the case that, T 1 € G C Jna-
Thus we may assume that o > 2 and that ¢ > 1.

Let x; be adiacent to the vertices y1, .., % in A and yn_1, ..., yn_c in C.
If yn is adjacent to x3 then cven eycles of length 4,6,...,2{(a + ¢) as well as
2n—2(a+c+1)+4, ..., 2n oceurin G, Thus, as above, the only even cycle lengths
Lthat are possibly not in G aren-+ 1 —k nd1—k+2, .., and n+14k. 1t follows
that 26 = n — 2L = n+ 1 — k, which implics that k —1 = 24, but this contradiets
the assumption that [ < k/2 — 1. Conscquently, yn cannol be adjacent to zg,
thus it must be the case thal y, is adjacent Lo =4, 2, Ty 1, v Tp_gy1- Henee we
have cycies of even lengths between 2n—{(n+1—k)+4 =n+k+ 3 and 2n and
Lhis case is complete il L < k/2—-Toril{=k/2—1 and degz; > (n+1—k)/2
So we can assume that { = k/2 — 1 and degz; = degym = (R+ 1 — k)/2. Note
this implies, that since n is even, that k must be odd.

Thus it follows that G is missing precisely k 4+ 1 even cycle lengths. Now
consider the adjacencies of yn. Since deg v, = deg z,, it follows that either
¥n I8 adjacent to z, 5, which yields an n+ k + I—cycle or 3, is adjat‘cnt to
£2, 3 vy T(n—1-k)/2, Which implies that G contains I, ,, withr = (n—1-k)/2

and s = 1. If  has adjacencies to both A and C then it is easy lo sec that the -

graph would necessarily contain eyeles whose lengths are bcl,wocn n—k+1 and
n - k- 1. This completes the prool of this case.

Case 3. Suppose nis odd and £ = |n/2] — ¢t for 0 < (< k/2— 1. (Again,
the case k/2 — 1 < ¢ <k —1is handled by a symmetric argument..)

Since Cae, ..., Copepiy € G, iL Tollows Lhal 2 is not adjacent. Lo
Yinsey ‘oo ¥ ng2)+ 041 .
Lot A = {y1 ' Yimyaj cion ), € = {?)[nfz prazs a1ty A= {Zpgego

ook} and C' = {Zg, L npa) - o105 Note that all adjacencies of z are
in AuC with the exception of 4, I urlhc:r il the adjacencios of 3 in A are not

conseeutive, then, as before, this forees anolher previously uncounted nonadja-
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cency of y,. Define A4{A¢) to be 1 il the adjacencies of v; in A (respectively
.in C) are not consecutive on the hamiltonian cycle, and 0 otherwise.

- Let a be the number of adjacencies of x; in 4 and let ¢ be the number
of adjacencies of x; in €. Then, as above, degz; = a+ ¢+ I and degy, <
n—{a+k+c+k+A4+Ac~m), where m is the cardinality of the intersection
of A”and C’. Since |A'NC"| = ({n/2] —t —14+k)—(|n/2] -t)+ 1=k, we
conclude degyn, < n—(a+k+ct+k—k+Ax+Ac) =n—{atc+k+ A +A¢) =

n—{degz) —1+k+Ax+Ac). Sodegzy +degyn < (n+1-k)—(As+Ag), %,
which is a contradiction unless Ay = 0= Ag anddegz, +degy, =n+1—k,
The remainder of the proof of Case 3 is identical to that of Case 2. = : E
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