LOCALLY SEMICOMPLETE DIGRAPHS WITH A FACTOR COMPOSED OF k CYCLES RONALD J. GOULD[†] AND YUBAO GUO[‡] ABSTRACT. A digraph is locally semicomplete if for every vertex x, the set of in-neighbors as well as the set of out-neighbors of x induce semicomplete digraphs. Let D be a k-connected locally semicomplete digraph with $k \geq 3$ and \overline{g} denote the length of a longest induced cycle of D. It is shown that if D has at least $7(k-1)\overline{g}$ vertices, then D has a factor composed of k cycles; furthermore, if D is semicomplete and with at least 5k+1 vertices, then D has a factor composed of k cycles and one of the cycles is of length at most 5. Our results generalize those of [3] for tournaments to locally semicomplete digraphs. #### 1. Introduction A subdigraph of a digraph D is called a factor if it contains all vertices of D. If a factor of D is composed of k vertex-disjoint cycles and each of the k cycles is of length at least 3, then we say that it is a k-cycles-factor or a factor composed of k cycles. Two cycles in a 2-cycles-factor of D are called factor complementary cycles in factor in factor complementary cycles in factor in factor complementary cycles in factor in factor is factor in factor complementary cycles in factor i Reid [8] proved that every 2-connected tournament on $n \ge 6$ vertices contains two complementary cycles of lengths 3 and n-3 respectively, unless it is isomorphic to a tournament on 7 vertices which contains no transitive subtournament on 4 vertices. With this statement as the basic Received July 8, 2003. ²⁰⁰⁰ Mathematics Subject Classification: 05C20, 05C38. Key words and phrases: cycle, factor, strong connectivity, locally semicomplete digraph. [†]Research partially supported under O.N.R. grant # N00014-97-1-0499. [‡]The author is supported by a grant from "Deutsche Forschungsgemeinschaft" as an associate member of "Graduiertenkolleg: Analyse und Konstruktion in der Mathematik" at RWTH Aachen. This work was done when the author visited Emory University in 1998. step, Song [9] proved by induction that with the same exception, every 2-connected tournament on $n \ge 6$ vertices contains complementary cycles of all lengths k and n - k for k = 3, 4, ..., n - 3. For the general case, Bollobás posed the following problem: PROBLEM 1.1. If k is a positive integer, what is the least integer f(k) so that all but a finite number of f(k)-connected tournaments have a k-cycles-factor? Recently, Chen, Gould and Li [3] proved that every k-connected tournament with at least 8k vertices has a k-cycles-factor. In 1990, Bang-Jensen [1] introduced a very interesting generalization of tournaments – the class of locally semicomplete digraphs. A digraph is *semicomplete* if for any two distinct vertices, there is at least one arc between them. A digraph is *locally semicomplete* if for every vertex x, the set of in-neighbors as well as the set of out-neighbors of x induce semicomplete digraphs. A locally semicomplete digraph without a cycle of length 2 is called a *local tournament*. It is clear that the class of locally semicomplete digraphs is a superclass of that of tournaments. The results about complementary cycles in 2-connected tournaments have been completely generalized to locally semicomplete digraphs in [5] and [6], respectively. In [4], a similar problem to Problem 1.1 was posted for locally semicomplete digraphs, and another problem, similar to that of Song [9] for tournaments, is the following: PROBLEM 1.2 ([4]). Let k be a positive integer. What is the least integer h(k) such that all but a finite number of h(k)-connected locally semicomplete digraphs D have a factor composed of k cycles of lengths n_1, n_2, \ldots, n_k respectively, where n_1, n_2, \ldots, n_k are any k integers each of which is not less than the length of a longest induced cycle of D? Problem 1.2 has been completely solved in [6] for k=2 and it was shown that h(2)=2. As yet we have not seen any results about the general case for Problem 1.2. In this paper, we solve Problem 1.2 completely for a special case, when a locally semicomplete digraph is round-decomposable (see Corollary 4.2), and confirm the existence of a k-cycles-factor in some k-connected locally semicomplete digraphs. In particular, we show that every k-connected ($k \geq 2$) semicomplete digraph with at least 5k+1 vertices has a factor composed of k cycles such that one of which is of length at most 5. Our results generalize and improve that of [3] for tournaments (see Corollary 4.8). ## 2. Terminology and preliminaries We denote by V(D) and E(D) the vertex set and the arc set of a digraph D, respectively. The subdigraph of D induced by a subset A of V(D) is denoted by D(A). In addition, D - A = D(V(D) - A). If xy is an arc of D, then we say that x dominates y. More generally, if A and B are two disjoint subdigraphs of D such that every vertex of A dominates every vertex of B, then we say that A dominates B, denoted by $A \to B$. In addition, if $A \to B$, but there is no arc from B to A, then we say that A strictly dominates B, denoted by $A \Rightarrow B$. The outset of a vertex $x \in V(D)$ is the set $N^+(x) = \{y \mid xy \in E(D)\}$. Similarly, $N^-(x) = \{y \mid yx \in E(D)\}$ is the inset of x. More generally, for a subdigraph A of D, we define its outset by $N^+(A) = \bigcup_{x \in V(A)} N^+(x) - A$ and its inset by $N^-(A) = \bigcup_{x \in V(A)} N^-(x) - A$. Every vertex of $N^+(A)$ is called an out-neighbor of A and every vertex of $N^-(A)$ is an in-neighbor of A. The numbers $d^+(x) = |N^+(x)|$ and $d^-(x) = |N^-(x)|$ are called outdegree and indegree of $x \in V(D)$, respectively. If $d^+(x) = d^-(x) = r$ holds for every vertex x of D, then we say that D is r-regular. Paths and cycles in a digraph are always assumed to be directed. A cycle of length ℓ is called an ℓ -cycle. A digraph is said to be *connected*, if its underlying graph is connected. A strong component H of D is a maximal subdigraph such that for any two vertices $x, y \in V(H)$, the subdigraph H contains a path from x to y and a path from y to x. The digraph D is strong or strongly connected, if it has only one strong component, and D is k-connected if $|V(D)| \ge k+1$ and for any set A of at most k-1 vertices, the subdigraph D-A is strong. If D is strong and S is a subset of V(D) such that D-S is not strong, then we say that S is a *separating set* of D. A separating set S of D is *minimal* if for any proper subset S' of S, the subdigraph D-S' is strong. Let R be a digraph on r vertices v_1, v_2, \ldots, v_r and let L_1, \ldots, L_r be a collection of digraphs. Then $R[L_1, \ldots, L_r]$ is the new digraph obtained from R by replacing each vertex v_i of R with L_i and adding an arc from every vertex of L_i to every vertex of L_j if and only if v_iv_j is an arc of R $(1 \le i \ne j \le r)$. Note that if we have $D = R[L_1, \ldots, L_r]$, then R, L_1, \ldots, L_r are subdigraphs of D. A digraph on n vertices is round if we can label its vertices $v_0, v_1, \ldots, v_{n-1}$ so that for each $i, N^+(v_i) = \{v_{i+1}, \ldots, v_{i+d^+(v_i)}\}$ and $N^-(v_i) = \{v_{i-d^-(v_i)}, \ldots, v_{i-1}\}$ (modulo n). A locally semicomplete digraph D is round-decomposable if there exists a round local tournament R on $r \geq 2$ vertices such that $D = R[S_1, \ldots, S_r]$, where each S_i is a strong semicomplete subdigraph or a single vertex of D. We call $R[S_1, \ldots, S_r]$ a round decomposition of D. ## 3. Structure of locally semicomplete digraphs We begin with the structure of non-strong locally semicomplete digraphs. THEOREM 3.1 ([1]). Let D be a connected locally semicomplete digraph that is not strong. Then the following holds: - (a) If A and B are two strong components of D, then either there is no arc between them or $A \Rightarrow B$ or $B \Rightarrow A$. - (b) If A and B are two strong components of D such that A dominates B, then A and B are both semicomplete digraphs. - (c) The strong components of D can be ordered in a unique way D_1, D_2, \ldots, D_p such that there are no arcs from D_j to D_i for j > i, and D_i dominates D_{i+1} for $i = 1, 2, \ldots, p-1$. The unique sequence D_1, D_2, \ldots, D_p of the strong components of D in Theorem 3.1 (c) is called the *strong decomposition* of D with *initial* component D_1 and *terminal* component D_p . THEOREM 3.2 ([5]). Let D be a connected locally semicomplete digraph that is not strong and let D_1, \ldots, D_p be the strong decomposition of D. Then D can be decomposed in $r \geq 2$ subdigraphs D'_1, D'_2, \ldots, D'_r as follows: $$D'_{1} = D_{p'}, \quad \lambda_{1} = p, \\ \lambda_{i+1} = \min\{ j \mid N^{+}(D_{j}) \cap V(D'_{i}) \neq \emptyset \},$$ and $$D'_{i+1} = D\langle V(D_{\lambda_{i+1}}) \cup V(D_{\lambda_{i+1}+1}) \cup \cdots \cup V(D_{\lambda_{i-1}}) \rangle.$$ Furthermore, the subdigraphs D'_1, D'_2, \ldots, D'_r satisfy the following: - (a) D'_i consists of some strong components of D and it is semicomplete for i = 1, 2, ..., r; - (b) D'_{i+1} dominates the initial component of D'_i and there exists no arc from D'_i to D'_{i+1} for i = 1, 2, ..., r-1; (c) if $r \geq 3$, then there is no arc between D'_i and D'_j for i, j satisfying $|j-i| \geq 2$. The unique sequence D'_1, D'_2, \ldots, D'_r defined in Theorem 3.2 is called the *semicomplete decomposition* of D. The following classification of locally semicomplete digraphs was given in [2]. THEOREM 3.3 ([2]). Let D be a connected locally semicomplete digraph. Then exactly one of the following possibilities holds. - (a) D is round-decomposable and it hat a unique round decomposition $R[D_1, D_2, \ldots, D_{\alpha}]$, where R is a round local tournament on $\alpha \geq 2$ vertices and D_i is a strong semicomplete digraph for $i = 1, 2, \ldots, \alpha$; - (b) D is not round-decomposable and not semicomplete. - (c) D is a semicomplete digraph which is not round-decomposable. PROPOSITION 3.4 ([2]). Let $R[H_1, H_2, \ldots, H_{\alpha}]$ be a round decomposition of a strong locally semicomplete digraph D. Then, for every minimal separating set S of D, there are two integers i and $k \geq 0$ such that $S = V(H_i) \cup \cdots \cup V(H_{i+k})$. The following lemma is a partial result of Lemma 3.5 from [2] for locally semicomplete digraphs that are not round-decomposable. LEMMA 3.5. If a strong locally semicomplete digraph D is not semicomplete and not round-decomposable, then there exists a minimal separating set $S \subset V(D)$ such that D-S is not semicomplete. Furthermore, if D_1, D_2, \ldots, D_p is the strong decomposition and D'_1, D'_2, \ldots, D'_r is the semicomplete decomposition of D-S, then r=3, $D\langle S \rangle$ is semicomplete and we have $D_p \Rightarrow S \Rightarrow D_1$. DEFINITION 3.6. Let D be a strongly connected locally semicomplete digraph. The quasi-girth g(D) (or g if no confusion can arise) of D is defined as follows: If D is round-decomposable and it has a round decomposition $D = R[D_1, D_2, \ldots, D_{\alpha}]$, then g(D) is the length of a shortest cycle in R; if D is not round-decomposable, then g(D) = 3. We denote the length of a longest induced cycle of D by $\overline{g}(D)$, or \overline{g} if no confusion can arise. REMARK 3.7. It is not difficult to check that $\overline{g} \leq 2g + 1$ holds and every shortest cycle through a given vertex is of length at most $\overline{g} + 1$ for every strongly connected locally semicomplete digraph. LEMMA 3.8 ([4]). Let D be a strongly connected locally semicomplete digraph that is not round-decomposable. Then every induced cycle of D has a length at most 4, i.e., $\overline{q}(D) < 4$. We end this section with the well-known theorem of Moon. THEOREM 3.9 ([7]). Every vertex of a strongly connected semicomplete digraph on $n \geq 3$ vertices is in a t-cycle for t = 3, 4, ..., n. ### 4. Main results We confirm at first the existence of a k-cycles-factor in locally semicomplete digraphs that are round-decomposable. THEOREM 4.1. Let D be a round-decomposable, k-connected locally semicomplete digraph with $n \geq 2(k-1)g$ vertices. Then D contains a g-cycle C such that D-V(C) is (k-1)-connected. *Proof.* Let $R[H_1, H_2, \ldots, H_{\alpha}]$ be a round decomposition of D. We denote by \mathcal{C} the set of all g-cycles in R and for every $C \in \mathcal{C}$, put $$f(C) := \left| \left\{ \begin{array}{l} S \ \ \text{is a minimum separating set} \\ \text{of } D \ \text{with} \ |S-V(C)| \leq k-2 \end{array} \right\} \right|.$$ We choose an element $C_1 = v_1v_2\cdots v_gv_1$ from \mathcal{C} such that $f(C_1) = \min\{f(C)|C\in\mathcal{C}\}$. If $f(C_1)=0$, then $D-V(C_1)$ is (k-1)-connected and we are done. So, we assume that $f(C_1)\geq 1$. Let S_1 be a minimum separating set of D such that $|S_1-V(C_1)|\leq k-2$. Since D is k-connected, S_1 contains at least 2 vertices of C_1 . By Proposition 3.4, we may assume without loss of generality that $S_1=V(H_1)\cup V(H_2)\cup\cdots\cup V(H_t)$. Of course, $H_\alpha\Rightarrow S_1\Rightarrow H_{t+1}$ and $D\langle S_1\rangle$ is semicomplete. Since C_1 is an induced cycle in R, S_1 contains exactly two vertices from C_1 which are adjacent in C_1 . This implies that D is not (k+1)-connected, and hence, every minimum separating set of D contains exactly k vertices. Let $v_i \in V(H_{\beta_i})$ for i = 1, 2, ..., g and assume without loss of generality that v_1 and v_2 are in S_1 , this means that $1 \leq \beta_1 < \beta_2 \leq t$. It is clear that there is an integer $\beta_2' > \beta_2$ such that $$\sum_{j=\beta_1+1}^{\beta_2'-1} |V(H_j)| \le k-1, \quad \text{ but } \quad \sum_{j=\beta_1+1}^{\beta_2'} |V(H_j)| \ge k.$$ Since D is k-connected, we have $v_1 \to H_{\beta'_2}$ and $\beta'_2 < \beta_3$. Let v'_2 be a vertex of $H_{\beta'_2}$. Clearly, $v'_2 \to v_3$. So, the new cycle $C_2 = v_1 v'_2 v_3 \cdots v_g v_1$ also belongs to \mathcal{C} . Since v_1 and v'_2 can not belong to a common minimum separating set of D, it is easy to see that if D has no minimum separating set containing the two vertices v'_2 and v_3 , then $f(C_2) < f(C_1)$, a contradiction to the choice of C_1 . Hence, there is a minimum separating set S_2 with $\{v'_2, v_3\} \subseteq S_2$. It follows that $|V(H_{\beta'_2})| \le k - 1$. In general, if we have a g-cycle $C_i = v_1 v_2' \cdots v_i' \tilde{v}_{i+1} \cdots v_g v_1$ from \mathcal{C} such that v_i' and v_{i+1} must belong to a common minimum separating set of D, then we can consider another g-cycle $C_{i+1} = v_1 v_2' \cdots v_i' v_{i+1}' v_{i+2} \cdots v_g v_1$ from \mathcal{C} with $v_{i+1}' \in H_{\beta_{i+1}'}$, where β_{i+1}' is an integer satisfying $$\sum_{j=\beta_i'+1}^{\beta_{i+1}'-1} |V(H_j)| \leq k-1, \quad |V(H_{\beta_{i+1}'})| \leq k-1 \quad \text{and} \quad \sum_{j=\beta_i'+1}^{\beta_{i+1}'} |V(H_j)| \geq k.$$ Finally, we consider C_g from \mathcal{C} . Let $\beta'_1 = \beta_1$. It is easy to see that $$\sum_{\ell=\beta_1'+1}^{\beta_g'} |V(H_\ell)| = \sum_{i=1}^{g-1} \left[\left(\sum_{j=\beta_i'+1}^{\beta_{i+1}'-1} |V(H_j)| \right) + |V(H_{\beta_{i+1}'})| \right] \\ \leq \sum_{i=1}^{g-1} [(k-1) + (k-1)] = 2(k-1)(g-1).$$ Since D has at least 2(k-1)g vertices, we have $$\sum_{j=\beta'_g+1}^{\alpha} |V(H_j)| + \sum_{i=1}^{\beta'_1} |V(H_i)| = |V(D)| - \sum_{\ell=\beta'_1+1}^{\beta'_g} |V(H_\ell)|$$ $$\geq 2(k-1)g - 2(k-1)(g-1)$$ $$= 2(k-1) \geq k$$ for $k \geq 2$. It follows that there is no minimum separating set of D which contains both v'_q and v_1 . Therefore, $f(C_q) = 0$, a contradiction. Note that a 2-regular, round local tournament with n = 2(m+1) - 1 vertices is 2-connected, but it has no cycle whose removal leaves a strongly connected digraph, since a shortest cycle in it is of length m+1. So, the condition in Theorem 4.1 is best possible in some sense. As an immediate consequence we have the following result: COROLLARY 4.2. Let D be a round-decomposable, k-connected locally semicomplete digraph on $n \geq 2(k-1)\overline{g}$ vertices. Then, for any k integers $n_1, n_2, \ldots, n_k \geq \overline{g}$ with $n_1 + n_2 + \cdots + n_k = n$, D has a factor composed of k cycles C_1, C_2, \ldots, C_k such that C_i is of length n_i for $i = 1, 2, \ldots, k$. *Proof.* Let $R_1[H_1^1, H_2^1, \ldots, H_{\alpha_1}^1]$ be a round decomposition of $D_1 = D$. By Theorem 4.1, R_1 contains a $g(D_1)$ -cycle C'_1 such that $D_2 = D_1 - V(C'_1)$ is (k-1)-connected. Clearly, D_2 is round-decomposable. Let $R_2[H_1^2, H_2^2, \ldots, H_{\alpha_2}^2]$ be a round decomposition of D_2 . It is easy to see that $g(D_2) \leq \overline{g}(D_1)$. By Theorem 4.1 again, we get a $g(D_2)$ -cycle C_2' such that $D_2 - V(C_2')$ is (k-2)-connected. Note that C_2' is a cycle in R_1 . Successively, we obtain k cycles C'_1, C'_2, \ldots, C'_k , each of which is a cycle in R_1 and of length at most $\overline{g}(D)$. Since every vertex in D has at least one positive and one negative neighbor in C'_i for all $i=1,2,\ldots,k$, any $n_i-|V(C'_i)|$ vertices in $D-(V(C'_1)\cup\cdots\cup V(C'_k))$ can be inserted into C'_i to form an n_i -cycle C_i for all $i\in\{1,2,\ldots,k\}$. Thus, D contains a required factor. In the following, we confirm the existence of a k-cycles-factor in locally semicomplete digraphs that are not round-decomposable. THEOREM 4.3. Let D be a k-connected locally semicomplete digraph with $n \geq 20(k-1)$ vertices that is not round-decomposable. If D is not semicomplete, then it has a factor composed of k cycles, and at least (k-2) of them are of length at most 4. *Proof.* Since D is not semicomplete, it has the properties as described in Lemma 3.5. Let S be a minimal separating set of D such that D-S is not semicomplete, and let D_1, D_2, \ldots, D_p be the strong decomposition and D'_1, D'_2, D'_3 be the semicomplete decomposition of D-S, respectively. We denote the initial component of D'_2 by D_{λ} . Since D_2' also contains a minimal separating set S' such that D-S' is not semicomplete, we may assume that S has been chosen such that $|S| \leq |V(D_2')|$. In addition, we assume that $|V(D_1)| \geq |V(D_p)|$ (otherwise, we consider the converse digraph of D, which is obtained by replacing every arc xy of D with yx). **Claim** (*) D contains k vertex-disjoint cycles C_1, C_2, \ldots, C_k , each of which is of length at least 3, and C_1, C_2 satisfy one of the following conditions: - 1) $V(C_1) \cap V(D_i') \neq \emptyset$ for i = 1, 2, 3; - 2) $V(C_1) \cap V(D_i') \neq \emptyset$ for $i = 2, 3, V(C_1) \cap V(D_1') = \emptyset$, and $V(C_2) \cap V(D_i') \neq \emptyset$ for $i = 1, 2, V(C_2) \cap V(D_3') = \emptyset$. *Proof.* At first, we consider the case when $|V(D_1)| \geq k$. Since D is k-connected, there are k vertex-disjoint paths from D_1 to S. Because of $S \Rightarrow D_1$, such k paths and the arcs from S to D_1 constitute k vertex-disjoint cycles C'_1, C'_2, \ldots, C'_k , each of which is of length at least 3. If none of them contains a vertex from D'_1 , then it is easy to see that we can insert a vertex of D'_1 into C'_1 . So, we may assume without loss of generality that C'_1 contains a vertex from D'_1 . Clearly, C'_1, C'_2, \ldots, C'_k are k required cycles with respect to 1). Now we consider the case when $|V(D_1)| < k$. Since $D_1 \Rightarrow D_{\lambda} \Rightarrow D_p \Rightarrow S \Rightarrow D_1$, D contains a cycle $C'_1 = d_3d_2d_1sd_3$ with $s \in S$ and $d_i \in V(D'_i)$ for i = 1, 2, 3. Let $C'_2, \ldots, C'_{\alpha}$ be a maximal selection of cycles of length at least 3 such that $C'_1, C'_2, \ldots, C'_{\alpha}$ are vertex-disjoint. If $\alpha \geq k$, then C'_1, C'_2, \ldots, C'_k are the required cycles with respect to 1). Suppose now that $\alpha < k$. Since D_2' and D_3' both are semicomplete, the two subdigraphs $$D_3'' = D_3' - (V(C_1') \cup V(C_2') \cup V(C_3') \cup \dots \cup V(C_{\alpha}'))$$ and $$D_2'' = D_2' - (V(C_1') \cup V(C_2') \cup V(C_3') \cup \dots \cup V(C_{\alpha}'))$$ are semicomplete and do not contain any cycle of length more than 2. Since $n \geq 20(k-1)$, $|V(D_1)| < k$, $|V(D_p)| < k$, $|S| \leq |V(D_2')|$ and by Lemma 3.8, $|V(C_i')| \leq 4$ for $i=1,2,\ldots,\alpha$, we have $|V(D_\ell'')| \geq 2k+2$ for $\ell=2$ or $\ell=3$. It is easy to see that D_ℓ'' contains 2k vertices x_1,x_2,\ldots,x_k and y_1,y_2,\ldots,y_k such that $\{x_1,x_2,\ldots,x_k\} \Rightarrow \{y_1,y_2,\ldots,y_k\}$. Since D is k-connected, there are k vertex-disjoint paths from $\{y_1,y_2,\ldots,y_k\}$ to the set $\{x_1,x_2,\ldots,x_k\}$, say P_i from y_i to x_{m_i} for $i=1,2,\ldots,k$, where m_1,m_2,\ldots,m_k is a permutation of $1,2,\ldots,k$. Thus, every path P_i together with the arc $x_{m_i}y_i$ forms a cycle, denoted by C_i'' , which is of length at least 3, for $i=1,2,\ldots,k$. If there is a cycle, say C_1'' , that contains vertices not only from D_1' , but also from D_3' , then we see that $C_1'', C_2'', \ldots, C_k''$ are the required cycles with respect to 1). If at most one of $\{P_1, P_2, \ldots, P_k\}$, say P_1 if there is one, contains some vertices of C'_1 , then $C'_1, C''_2, C''_3, \ldots, C''_k$ are k required cycles with respect to 1). So, we assume without loss of generality that $V(P_i) \cap V(C_1') \neq \emptyset$ for $i = 1, 2, ..., \gamma$, but $V(P_j) \cap V(C_1') = \emptyset$ for $j > \gamma$, where $\gamma \geq 2$, and furthermore, $V(P_i) \cap V(D_1') = \emptyset$ or $V(P_i) \cap V(D_3') = \emptyset$ for every $i \in \{1, 2, ..., k\}$. Since C_1' is of length 4, we have $\gamma \leq 4$. If $\ell = 3$, then, by the assumption above, we have $V(P_i) \cap V(D'_1) = \emptyset$ for all $i \in \{1, 2, ..., k\}$. Since P_1 must contain some vertices from D'_2 and S, every vertex of D'_1 can be inserted into C''_1 to form a cycle that satisfies Condition 1). Let $\ell=2$. Suppose that there is a path, say P_1 , containing d_3 . Then P_1 contains at least one vertex from S. If there is another path, say P_2 , containing d_1 , then C''_1 and C''_2 satisfy Condition 2); if d_1 does not belong to any paths P_i for $i=1,2,\ldots,k$, then d_1 can be inserted into C''_1 and we get a cycle satisfying Condition 1). Suppose now that none of $\{P_1,\ldots,P_\gamma\}$ contains d_3 , but there is one, say P_1 , containing s, then it is easy to see that d_3 can be inserted into P_1 , and we are done as above. In the remaining case, we see that there is a path, say P_2 , containing d_1 . Since P_2 contains at least one vertex from S, it is easy to check that d_3 can be inserted into C''_2 and we get a cycle satisfying Condition 1). \square Let C_1, C_2, \ldots, C_k be k vertex-disjoint cycles, which have the properties as described in Claim (*) above and whose total length is minimal. By Lemma 3.8, we have $3 \leq |V(C_i)| \leq 4$ for $i = 2, 3, \ldots, k$ with respect to 1) and for $i = 3, 4, \ldots, k$ with respect to 2). Let $Q = D - (V(C_1) \cup V(C_2) \cup \cdots \cup V(C_k))$ and $Q_i = Q \cap D'_i$ for i = 1, 2, 3 and $Q_4 = Q \cap D(S)$. Note that if Q_i is not empty, then it is semicomplete, and hence, has a hamiltonian path for i = 1, 2, 3, 4. If C_1 satisfies Condition 1) in Claim (*), i.e. it contains vertices from D_1' and from D_3' , then it is easy to see that every vertex of Q has a positive and a negative neighbor in C_1 . It follows that $D\langle V(C_1) \cup V(Q) \rangle$ is strong, and hence, it has a hamiltonian cycle, say C', by Theorem 3.9. Obviously, $C', C_2, C_3, \ldots, C_k$ constitute the required factor of D. Suppose now that C_1 and C_2 satisfy Condition 2) in Claim (*). Assume that C_1 and C_2 have been chosen such that no vertex of Q can be inserted into C_1 or into C_2 . Denote $C_1 = a_1 a_2 \cdots a_{\mu} a_1$ and $C_2 = b_1 b_2 \cdots b_{\nu} b_1$ and assume that $a_1 \in V(D_3')$ and $a_2, \ldots, a_i \in V(D_2')$ and $a_{i+1} \in S$; $b_1 \in V(D_1')$ and $b_2, \ldots, b_j \in S$ and $b_{j+1} \in V(D_2')$. Then it is easy to check that $\{a_2, \ldots, a_i\} \to b_1 \to a_{i+1}$ and $b_j \to a_1 \to b_{j+1}$. It is a simple matter to check that $Q_1 = \emptyset$ and $Q_3 = \emptyset$. We next show that if $Q \neq \emptyset$, then $D\langle V(C_1) \cup V(C_2) \cup V(Q) \rangle$ has two complementary cycles. Assume that $V(Q_2) \neq \emptyset$ and $V(Q_4) \neq \emptyset$. It is easy to check that $Q_4 \Rightarrow C_1 \Rightarrow Q_2 \Rightarrow C_2 \Rightarrow Q_4$. Hence, $a_1b_{j+1} \cdots b_{\nu}b_1a_{i+1} \cdots a_{\mu}a_1$ and $a_2 \cdots a_iQ_2b_2 \cdots b_jQ_4a_2$ are two complementary cycles of $D\langle V(C_1) \cup V(C_2) \cup V(Q) \rangle$. Assume now that $Q = Q_4$ (the proof for $Q = Q_2$ is analogous). It is clear that $C_2 \Rightarrow Q \Rightarrow C_1$, and hence, $D\langle V(C_1)\rangle$ and $D\langle V(C_2)\rangle$ are both semicomplete. If $i \geq 3$, then $a_1 \to a_3$, and hence $a_1 a_3 a_4 \cdots a_{\mu} a_1$ and $a_2 b_1 b_2 \cdots b_{\nu} Q_4 a_2$ are two required cycles. So, we assume that i = 2. If $\mu \geq 4$, then in the case when $a_2 \to a_4$, we have $C_2 \to a_3$, and hence, $a_1b_{j+1}\cdots b_{\nu}a_3\cdots a_{\mu}a_1$ and $a_2b_1\cdots b_jQ_4a_2$ are two required cycles; in the other case when $a_4 \to a_2$, the 3-cycle $a_2a_3a_4a_2$ and $a_1C_2Q_4a_5\ldots a_{\mu}a_1$ are two required cycles. Therefore, $\mu = 3$. Similarly, it can be shown that $\nu = 3$. Since Q contains more than two vertices, we see that $a_1b_3qa_3a_1$ and $a_2b_1b_2(Q-q)a_2$ are two required cycles, where q is a vertex of Q. The proof of the theorem is complete. Now we consider semicomplete digraphs. LEMMA 4.4. Every k-connected semicomplete digraph D with $n \ge 5k-2$ vertices contains at least k vertex-disjoint 3-cycles. Proof. We prove the statement by induction on k. By Theorem 3.9, every strongly connected semicomplete digraph on at least 3 vertices contains a 3-cycle. Assume that $k \geq 2$. Since D is (k-1)-connected, it contains k-1 vertex-disjoint 3-cycles $C_1, C_2, \ldots, C_{k-1}$. Let H be the subdigraph induced by the vertices not in the 3-cycles. If H contains a 3-cycle, then we are done. So, we may assume that if H contains some cycles, then they are 2-cycles. Note that $|V(H)| \geq n - 3(k-1) \geq 2k + 1$ because $n \geq 5k - 2$. Let $P = x_1x_2 \cdots x_m$ be a hamiltonian path of H, $A = \{x_1, x_2, \ldots, x_k\}$ and $B = \{x_{m-k+1}, x_{m-k+2}, \ldots, x_m\}$. Clearly, we have $A \Rightarrow B$. Since D is k-connected, there exist k vertex-disjoint paths from k to k0 form k1 vertex-disjoint cycles, and hence, k2 contains k3 vertex-disjoint 3-cycles. THEOREM 4.5. Let D be a k-connected semicomplete digraph. If D contains k+1 vertex-disjoint 3-cycles, then D has a factor composed of k cycles, and at least k-2 of them are 3-cycles. *Proof.* Let C_1, C_2, \ldots, C_k, C be k+1 vertex-disjoint 3-cycles in D, $F = \{ C_i \mid 1 \leq i \leq k \}$ and $H = D - \bigcup_{i=1}^k V(C_i)$. Note that C is a 3-cycle in H. Let H_1, \ldots, H_q be the strong decomposition of H. Assume without loss of generality that $N^+(H_q) \cap V(C_i) \neq \emptyset$ for $i = 1, 2, \ldots, \alpha$, and $C_j \Rightarrow H_q$ for $j > \alpha$. If there is an arc from C_j to H_1 for some $j \leq \alpha$, then we see that $D\langle V(C_j) \cup V(H) \rangle$ is strong and we are done by Theorem 3.9. So, we may assume that $H_1 \Rightarrow C_i$ for all $i \leq \alpha$. Let $F_1 = \bigcup_{i=1}^{\alpha} C_i$. It is clear that for every $i > \alpha$, either $H_1 \Rightarrow C_i$ or C_i has at least one positive neighbor in H_1 . Without loss of generality let $F_2 = \bigcup_{i=\alpha+1}^{\beta} C_i$ and $F_3 = \bigcup_{j=\beta+1}^{k} C_j$ such that $H_1 \Rightarrow C_i$ for each $i \in \{\alpha+1,\ldots,\beta\}$ (if $\beta \geq \alpha+1$) and $N^-(H_1) \cap V(C_j) \neq \emptyset$ for all $j > \beta$. From the connectivity assumption, we conclude that (1) $$|V(F_1)| \ge k \text{ and } |V(F_3)| \ge k$$. Since D is k-connected, there are k vertex-disjoint paths from F_1 to F_3 . We denote k such shortest paths by P_1, P_2, \ldots, P_k , and denote the start vertex (end vertex, respectively) of P_i by x_i (by y_i , respectively) for $i = 1, 2, \ldots, k$. In the following, we assume, to the contrary, that D does not contain k cycles which have the properties as described in the theorem. We consider the following cases: ## Case 1. Suppose q=1. It is clear that $F_3 \Rightarrow H \Rightarrow F_1$, and moreover, either $C_i \Rightarrow C_j$ or $C_j \Rightarrow C_i$ when $i \neq j$. Note that $F_2 = \emptyset$ and P_i is of length 1 for i = 1, 2, ..., k. Assume without loss of generality that P_1 is an arc from C_1 to C_k , i.e., $x_1 \in V(C_1)$ and $y_1 \in V(C_k)$. It follows that $C_1 \Rightarrow C_k$. So, we have $H \Rightarrow C_1 \Rightarrow C_k \Rightarrow H$. Let z be a vertex of H. Then $C' = x_1y_1zx_1$ is a 3-cycle. Since H - z has a hamiltonian path, $D\langle V(H) \cup V(C_1) \cup V(C_k) \rangle - V(C')$ is strong, and hence, it has a hamiltonian cycle, say C''. Now we see that $C', C_2, C_3, C_4, \ldots, C_{k-1}, C''$ are k cycles, which have the properties as described in the theorem, a contradiction. ## Case 2. Suppose q=2. Assume without loss of generality that C is contained in H_1 . If there is an arc from F_1 to F_3 , for example, from C_1 to C_k , then we see that $D\langle V(C_1) \cup V(C_k) \cup V(H_2) \rangle$ is strong. Thus, a hamiltonian cycle of H_1 and a hamiltonian cycle of $D\langle V(C_1) \cup V(C_k) \cup V(H_2) \rangle$ together with $C_2, C_3, \ldots, C_{k-1}$ yield a contradiction. Thus, we only need consider the situation that $F_3 \Rightarrow F_1$. It follows that P_i contains at least one vertex of F_2 for each $i \in \{1, 2, ..., k\}$. This and (1) imply that $|V(F_1)| = |V(F_2)| = |V(F_3)| = k$, and therefore, P_i is of length exactly 2 and P_i plus the arc from y_i to x_i forms a 3-cycle, say C_i' , for i = 1, 2, ..., k. Since $V(F_1) = N^+(H_2)$ and $V(F_3) = N^-(H_1)$, the subdigraph $D\langle V(P_1) \cup H \rangle$ is strong, and hence, $C_2', C_3', ..., C_k'$ and a hamiltonian cycle of $D\langle V(P_1) \cup H \rangle$ yield a contradiction. Case 3. Suppose $q \geq 3$ and $|V(H_{\ell})| \geq 3$ for some ℓ with $1 < \ell < q$. Assume without loss of generality that C is contained in H_{ℓ} . If there is a path (for example, P_1 from C_1 to C_k) that contains neither a vertex from F_2 nor a vertex from C, then $C_2, C_3, \ldots, C_{k-1}, C$ and a hamiltonian cycle of $D\langle V(C_1) \cup V(C_k) \cup V(H-V(C)) \rangle$ yield a contradiction. Therefore, P_i contains at least one vertex from $F_2 \cup C$ for every $i \in \{1, 2, ..., k\}$. This implies that $F_3 \Rightarrow F_1$ and $|V(F_2)| \in \{k, k-3\}$. Let C_i' denote the cycle formed by P_i and the arc $y_i x_i$ for i = 1, 2, ..., k, and assume without loss of generality that $|V(C_1')| \leq |V(C_2')| \leq \cdots \leq |V(C_k')|$. Obviously, $|V(C_1')| \geq 3$ holds. Let $t = \max\{i \mid C_i' \text{ is a 3-cycle}\}$ if $|V(C_1')| = 3$, otherwise, t = 0. Subcase 3.1. Suppose $|V(F_2)| = k$. It is clear that $|V(F_1)| = |V(F_2)| = |V(F_3)| = k$, $V(F_1) = N^+(H_q)$ and $V(F_3) = N^-(H_1)$. Suppose that $t \geq k-2$. Then, all vertices in $F_2 \cup H$, which do not belong to any cycle C_i' for $i=1,2,\ldots,n$, can be inserted into C_k' to form a new cycle, and this new cycle with $C_1', C_2', \ldots, C_{k-2}', C_{k-1}'$ together yield a contradiction. Suppose now that $t \leq k-3$. Since the subdigraph $D\langle\{y_{t+1},y_{t+2},\ldots,y_k\}\rangle$ is semicomplete, it has a hamiltonian path. Assume without loss of generality that $P'=y_{t+1}y_{t+2}\cdots y_k$ is such a path. Let C_i'' be the unique 3-cycle containing x_i in C_i' for $i=t+2,t+3,\ldots,k$. Since $D\langle V(P_{t+1})\cup V(P')\cup V(H_1)\cup V(H_q)\rangle$ is strong, it has a hamiltonian cycle, denoted by C''. It is not difficult to see that every vertex in $H_2\cup H_3\cup\cdots\cup H_{q-1}\cup F_2$ that does not belong to any cycles of $\{C_1',\ldots,C_t',C_{t+2}'',\ldots,C_k''\}$ can be inserted into the cycle C'' to form a new cycle. This cycle with $C_1',\ldots,C_t',C_{t+2}'',\ldots,C_k''$ yield a contradiction. Subcase 3.2. Suppose $|V(F_2)| = k - 3$. Assume without loss of generality that $\alpha = k/3 + 1$, i.e., $|V(F_1)| = k + 3$ and $|V(F_3)| = k$. Note that (2) $$V(F_3) = N^-(H_1)$$ and $|N^+(H_q) \cap V(F_1)| \ge k$. Because of $|V(F_2)| + |V(C)| = k$, every path P_i contains exactly one vertex of $F_2 \cup C$ for i = 1, 2, ..., k. **Claim.** There is an integer j such that $D' = D - (\bigcup_{i \neq j} V(P_i))$ is strong. *Proof.* Let x, x', x'' be the three vertices in F_1 , which do not belong to any path P_i for i = 1, 2, ..., k. Suppose that the subdigraph $D(\{x,x',x''\})$ contains a hamiltonian path, say $x \to x' \to x''$, such that x'' has a positive neighbor in P_j for some j. Clearly, $D(\{x,x',x''\} \cup V(P_j))$ is strong. By (2), we have that $N^+(H_q) \cap \{x,x',x'',x_j\} \neq \emptyset$ and $y_j \in N^-(H_1)$, hence, the subdigraph D' is strong. Suppose now that $D\langle\{x,x',x''\}\rangle$ does not contain any hamiltonian path whose end-vertex has a positive neighbor in P_i for some $i\in\{1,2,\ldots,k\}$. Then, it is easy to check that the three vertices x,x',x'' must belong to a common 3-cycle in F_1 . Assume without loss of generality that this 3-cycle is C_1 . Note that $\{x_1,x_2,\ldots,x_k\}=V(C_2)\cup\cdots\cup V(C_\alpha)$. By the definition of F_1 , we may assume that $x_1\in N^+(H_q)$. Clearly, $D\langle V(D-\bigcup_{i=2}^k V(P_i))\rangle - \{x,x',x''\}$ is strong, but now, $D\langle V(D-\bigcup_{i=2}^k V(P_i))\rangle$ must be strong, since C_1 has at least k positive neighbors. In the following proof, one can see that we may assume without loss of generality that j=1, i.e. $D\langle V(D-\cup_{i=2}^k V(P_i))\rangle$ is strong. Since $D\langle V(D')\cup W\rangle$ is strong for every subset W of $V(F_2)\cup (\cup_{i=2}^{q-1} V(H_i))$, we only need find k-1 vertex-disjoint cycles in $D-V(D')=D\langle \cup_{i=2}^k V(P_i)\rangle$ such that they contain all vertices of $\{x_2,x_3,\ldots,x_k\}\cup \{y_2,\ldots,y_k\}$ and at least k-2 of them are 3-cycles. If $t \geq k-1$, then we are done. So, suppose now that $t \leq k-2$. Let $t' = \max\{1, t\}$. Since $D(\{y_{t'+1}, y_{t'+2}, \dots, y_k\})$ is semicomplete, it has a hamiltonian path, say P' and assume without loss of generality that P' starts at $y_{t'+1}$ and ends at y_k . So, $C''_{t'+1} = x_{t'+1}P_{t'+1}y_{t'+1}P'y_kx_{t'+1}$ is a cycle. Let C''_i be the 3-cycle in C'_i which contains x_i for $i \geq t'+2$. Now we see that C'_i for i satisfying $1 \leq i \leq t'$ (if $1 \leq i \leq t'$) and $1 \leq i \leq t'+1$, \leq$ Case 4. Suppose $q \geq 3$ and $|V(H_i)| \leq 2$ for all i satisfying 1 < i < q. Since the 3-cycle C is in H, one of H_1 and H_q contains a 3-cycle. Assume without loss of generality that $|V(H_q)| \geq |V(H_1)|$ and C is contained in H_q . Subcase 4.1. Suppose $|V(H_q)| \ge 4$. If $F_2 \neq \emptyset$, then we can change C and C_{β} and we are done by Case 3. Suppose now that $F_2 = \emptyset$. Let Q be the terminal component of $H_q - V(C)$. Assume without loss of generality that $x_1 \in V(C_1)$ and $y_1 \in V(C_k)$. If Q has at least one positive neighbor in C_1 , then $D \setminus V(C_1) \cup C_2$ $V(C_k) \cup V(H) \rangle - V(C)$ is strong and $C, C_2, C_3, \ldots, C_{k-1}$ are k-1 cycles of length 3, and hence, we are done. If $C_1 \Rightarrow Q$, then, by changing C and C_1 , we are done by Case 3 again. Subcase 4.2. Suppose $|V(H_q)| = 3$. Suppose that there is an arc from C_i to H_j for some $i \leq \beta$ and some $j \leq q-1$. Because $H_1 \Rightarrow C_i$, the subdigraph $D\langle V(H) \cup V(C_i) \rangle - V(C)$ is not strong, and furthermore, either its terminal component has at least four vertices or one of its internal components contains C_i . But, in both these cases we are done by Subcase 4.1 or Case 3, respectively. Suppose now that $H_i\Rightarrow C_j$ for every $i\leq q-1$ and every $j\leq \beta$. If D has an arc xy from F_1 to F_3 (without loss of generality that $x\in V(C_1)$ and $y\in V(C_k)$), then $D\langle V(C_1)\cup V(C_k)\cup V(H)\rangle-V(C)$ is strong and C,C_2,C_3,\ldots,C_{k-1} are k-1 cycles of length 3, a contradiction. If $F_3\Rightarrow F_1$, then it is not difficult to check that $V(P_i)\cap V(F_2)\neq\emptyset$ for $i=1,2,\ldots,k$. This and (1) imply that $|V(F_i)|=k$ for i=1,2,3. Therefore, $C_j'=x_jP_jy_jx_j$ is a 3-cycle for each $j\in\{1,2,\ldots,k\}$. Note that $N^+(C)=V(F_1)$ and $N^-(H_1)=V(F_3)$. Since $D\langle V(C_1')\cup V(H)\rangle$ is strong and C_2',C_3',\ldots,C_k' are 3-cycles, we get a contradiction. The proof of the theorem is complete. THEOREM 4.6. Let D be a k-connected semicomplete digraph on $n \geq 5k+1$ vertices. Then D has a factor composed of k cycles such that one of them is of length at most 5. *Proof.* Since D is k-connected, it contains k vertex-disjoint 3-cycles, say C_1, C_2, \ldots, C_k , by Lemma 4.4. Let $F = \bigcup_{i=1}^k C_i$ and H = D - V(F). If H contains a 3-cycle, then we are done by Theorem 4.5. So, we assume that every strongly connected component of H contains at most two vertices. Let $h_1h_2\cdots h_m$ be a hamiltonian path of H. Because of $n \geq 5k+1$, we have $m \geq 2k+1$. Let $A = \{h_1, h_2, \ldots, h_k\}$ and $B = \{h_{m-k+1}, h_{m-k+2}, \ldots, h_m\}$. Then, we have $A \Rightarrow B$. By the connectivity assumption for D, there are k vertex-disjoint paths from B to A. Let $P_i = v_1^i v_2^i \cdots v_{m_i}^i$, i = 1, 2, ..., k, be k such shortest paths and assume without loss of generality that $v_2^i, v_{m_i-1}^i \not\in V(H)$ for i = 1, 2, ..., k. Clearly, $m_i \geq 3$ and $C'_i = v_1^i v_2^i v_3^i v_1^i$ and $C''_i = v_{m_i}^i v_{m_i-2}^i v_{m_i-1}^i v_{m_i}^i$ are 3-cycles in $D\langle V(P_i)\rangle$ for $i=1,2,\ldots,k$. If there is a P_i with $m_i \geq 6$, then C'_i and C''_i are vertex-disjoint. It follows that D contains at least k+1 vertex-disjoint 3-cycles, and hence, we are done by Theorem 4.5. Therefore, we only need consider the case when $3 \leq m_i \leq 5$ for i=1 $1, 2, \ldots, k$. By the same argument, we may assume that P_1, P_2, \ldots, P_k go through all 3-cycles in F. Denote $P = \{P_1, P_2, \ldots, P_k\}$. Suppose that there is a path P_i with $|V(P_i) \cap V(H)| \geq 3$. Then it is easy to check that $v_2^i \in V(C_\mu)$, $v_3^i = h_j$, $v_4^i \in V(C_\nu)$ for some $\mu, \nu \in \{1, 2, ..., k\}$ and some j satisfying $k + 1 \leq j \leq m - k$. We call such P_i a W-path. Assume that $\mu = \nu$. We show that $D\langle V(C_{\mu}) \cup V(H) \rangle$ contains two vertex-disjoint 3-cycles, i.e., D contains k+1 vertex-disjoint 3-cycles, and hence, we are done by Theorem 4.5. Let v be another vertex of C_{μ} . Obviously, $C_{\mu} = v_2^i v v_4^i v_2^i$. If $v \to v_1^i$, then $v_1^i v_2^i v v_1^i$ and C_i'' are two 3-cycles in $D\langle V(C_{\mu}) \cup V(H) \rangle$; if $v_5^i \to v$, then $v_5^i v v_4^i v_5^i$ and C_i' are two 3-cycles in $D\langle V(C_{\mu}) \cup V(H) \rangle$; in the remaining case when $v_1^i \to v \to v_5^i$, we see that $v_1^i v v_5^i v_1^i$ and $v_2^i v_3^i v_4^i v_2^i$ are two 3-cycles in $D\langle V(C_{\mu}) \cup V(H) \rangle$. Assume now that every W-path goes through two different 3-cycles in F. If there are two W-paths $P_{\alpha}, P_{\beta} \in P$ such that $v_i^{\alpha}, v_j^{\beta}$ are in a common cycle C_{μ} for $i, j \in \{2, 4\}$, then $v_{i-1}^{\alpha}v_i^{\alpha}v_{i+1}^{\alpha}v_{i-1}^{\alpha}$ and $v_{j-1}^{\beta}v_j^{\beta}v_{j+1}^{\beta}v_{j-1}^{\beta}$ are two vertex-disjoint cycles in $D\langle V(C_{\mu}) \cup V(H) \rangle$, and we are done by Theorem 4.5 again. Therefore, there exist at most $\lfloor k/2 \rfloor$ W-paths in P. It follows that $\sum_{i=1}^k |V(P_i)| \leq 5k + \lfloor k/2 \rfloor$. In the following we show that if $\bigcup_{i=1}^k V(P_i)$ does not contain all vertices of F, then we can find k vertex-disjoint cycles Q_1, Q_2, \ldots, Q_k satisfying the following conditions: - a) $|V(Q_i) \cap A| = 1$ and $|V(Q_i) \cap B| = 1$ for i = 1, 2, ..., k; - b) $\bigcup_{i=1}^{k} V(Q_i) = \bigcup_{j=1}^{k} V(P_j) \cup V(F)$. Suppose that C_{ℓ} contains a vertex v that is not in $\bigcup_{i=1}^{k} V(P_i)$ for some $\ell \in \{1, 2, \dots, k\}$, and there are two paths (say P_{α} and P_{β}) going through C_{ℓ} (assume without loss of generality that $C_{\ell} = v_{i}^{\alpha}v_{j}^{\beta}vv_{i}^{\alpha}$) such that $v_{j-1}^{\beta} \Rightarrow v \Rightarrow v_{i+1}^{\alpha}$ (we call C_{ℓ} an X-cycle of P). Then $v_{1}^{\alpha}v_{2}^{\alpha} \cdots v_{i}^{\alpha}v_{j}^{\beta}v_{j+1}^{\beta} \cdots v_{m_{\beta}}^{\beta}$ and $v_{1}^{\beta} \cdots v_{j-1}^{\beta}vv_{i+1}^{\alpha} \cdots v_{m_{\alpha}}^{\alpha}$ are two paths containing all vertices of $P_{\alpha} \cup P_{\beta} \cup C_{\ell}$. So, it is not difficult to check that there are k vertex-disjoint paths $P'_{1}, P'_{2}, \dots, P'_{k}$ which have the following properties: - (1) each of them starts at a vertex of B and ends at a vertex of A; - (2) they do not have any X-cycles; - $(3) \cup_{j=1}^k V(P_j) \subseteq \cup_{i=1}^k V(P_i') \subseteq \cup_{j=1}^k V(P_j) \cup V(F).$ Let Q_i' be the cycle formed by the path P_i' and the corresponding arc from A to B for $i=1,2,\ldots,k$. We show that every vertex in F, but not in $\bigcup_{i=1}^k V(Q_i')$ can be inserted into Q_j' for some $j \in \{1,2,\ldots,k\}$ if $\bigcup_{i=1}^k V(P_i') \neq \bigcup_{j=1}^k V(P_j) \cup V(F)$. Let v be a vertex of C_t for some $t \in \{1, 2, ..., k\}$ with $v \notin \bigcup_{i=1}^k V(P_i')$. If only one path P_{γ}' goes through C_t , then $D\langle V(C_t) \cup V(Q_{\gamma}') \rangle$ is strong, and hence, it has a hamiltonian cycle. Assume now that there are two paths, say P_{α} and P_{β} , going through C_t . Since C_t is not an X-path, it is easy to see that one of $D\langle \{v\} \cup V(Q_{\alpha}') \rangle$ and $D\langle \{v\} \cup V(Q_{\alpha}') \rangle$ is strong. Therefore, all vertices in V(F), but not in $\bigcup_{i=1}^k V(P_i')$ can be inserted into some of Q_1', Q_2', \ldots, Q_k' . This means that we can find k vertex-disjoint cycles Q_1, Q_2, \ldots, Q_k satisfying the conditions a) and b) above. Because of $|\bigcup_{i=1}^k V(Q_i)| \leq 5k + \lfloor k/2 \rfloor$, at least one of Q_1, Q_2, \ldots, Q_k , say Q_k , is of length at most 5. Since $D\langle V(Q_1) \cup V(H - \bigcup_{i=1}^k V(Q_i)) \rangle$ is strong, a hamiltonian cycle of it and Q_2, Q_3, \ldots, Q_k form a factor of D. The proof of the theorem is complete. The next corollary states our main result. COROLLARY 4.7. Let D be a k-connected locally semicomplete digraph with $k \geq 3$ and \overline{g} denote the length of a longest induced cycle in D. If D has at least $7(k-1)\overline{g}$ vertices, then it has a factor composed of k cycles, and at least one of them is of length \overline{g} or 5. *Proof.* We only need to consider the three cases (a), (b) and (c) as described in Theorem 3.3. So, this corollary can be confirmed by Corollary 4.2, Theorem 4.3 and 4.6, respectively. \Box Another immediate consequence of Theorem 4.6 is the result of [3]: COROLLARY 4.8 ([3]). Every k-connected tournament T with at least 8k vertices contains k vertex-disjoint cycles that span V(T). #### References - [1] J. Bang-Jensen, Locally semicomplete digraphs: A generalization of tournaments, J. Graph Theory 14 (1990), 371–390. - [2] J. Bang-Jensen, Y. Guo, G. Gutin and L. Volkmann, A classification of locally semicomplete digraphs, Discrete Math. 167/168 (1997), 101-114. - [3] G.-T. Chen, R. J. Gould and H. Li, Partitioning Vertices of a Tournament into Independent Cycles, J. Combin. Theory Ser. B 83 (2001), 213–220. - [4] Y. Guo, Locally Semicomplete Digraphs. PhD thesis, RWTH Aachen, Germany. Aachener Beiträge zur Mathematik, Band 13, Augustinus-Buchhandlung Aachen, 1995. - [5] Y. Guo and L. Volkmann, On complementary cycles in locally semicomplete digraphs, Discrete Math. 135 (1994), 121-127. - [6] ______, Locally semicomplete digraphs that are complementary m-pancyclic, J. Graph Theory 21 (1996), 121–136. - [7] J. W. Moon, On subtournaments of a tournament, Canad. Math. Bull. 9 (1996), 297–301. - [8] K. B. Reid, Two complementary circuits in two-connected tournaments, Ann. Discrete Math. 27 (1985), 321–334. - [9] Z.-M. Song, Complementary cycles of all lengths in tournaments, J. Combin. Theory Ser. B 57 (1993), 18–25. Ronald J. Gould Dept. of Math. and CS Emory University Atlanta, GA 30322, USA Yubao Guo Lehrstuhl C für Mathematik RWTH Aachen, 52056 Aachen Germany E-mail: guo@mathc.rwth-aachen.de