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LOCALLY SEMICOMPLETE DIGRAPHS
WITH A FACTOR COMPOSED OF k£ CYCLES

RoNALD J. GouLbp! AND YuBao Guot

ABSTRACT. A digraph is locally semicomplete if for every vertex
x, the set of in-neighbors as well as the set of out-neighbors of
z induce semicomplete digraphs. Let D be a k-connected locally
semicomplete digraph with k& > 3 and g denote the length of a
longest induced cycle of D. It is shown that if D has at least 7(k —
1)g vertices, then D has a factor composed of k cycles; furthermore,
if D is semicomplete and with at least 5k + 1 vertices, then D has
a factor composed of &k cycles and one of the cycles is of length
at most 5. Our results generalize those of [3] for tournaments to
locally semicomplete digraphs.

1. Introduction

A subdigraph of a digraph D is called a factorif it contains all vertices
of D. If a factor of D is composed of k vertex-disjoint cycles and each of
the k cycles is of length at least 3, then we say that it is a k-cycles-factor
or a factor composed of k cycles. Two cycles in a 2-cycles-factor of D
are called complementary cycles in D.

Reid [8] proved that every 2-connected tournament on n > 6 vertices
contains two complementary cycles of lengths 3 and n — 3 respectively,
unless it is isomorphic to a tournament on 7 vertices which contains no
transitive subtournament on 4 vertices. With this statement as the basic
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step, Song [9] proved by induction that with the same exception, every 2-
connected tournament on n > 6 vertices contains complementary cycles
of all lengths k and n —k for k =3,4,...,n— 3.

For the general case, Bollobas posed the following problem:

PrOBLEM 1.1. Ifk is a positive integer, what is the least integer f(k)
so that all but a finite number of f(k)-connected tournaments have a
k-cycles-factor ?

Recently, Chen, Gould and Li [3] proved that every k-connected tour-
nament with at least 8%k vertices has a k-cycles-factor.

In 1990, Bang-Jensen [1] introduced a very interesting generalization
of tournaments — the class of locally semicomplete digraphs. A digraph
is semicomplete if for any two distinct vertices, there is at least one arc
between them. A digraph is locally semicomplete if for every vertex z,
the set of in-neighbors as well as the set of out-neighbors of x induce
semicomplete digraphs. A locally semicomplete digraph without a cycle
of length 2 is called a local tournament.

It is clear that the class of locally semicomplete digraphs is a super-
class of that of tournaments. The results about complementary cycles
in 2-connected tournaments have been completely generalized to locally
semicomplete digraphs in [5] and [6], respectively.

In [4], a similar problem to Problem 1.1 was posted for locally semi-
complete digraphs, and another problem, similar to that of Song [9] for
tournaments, is the following:

ProBLEM 1.2 ([4]). Let k be a positive integer. What is the least
integer h(k) such that all but a finite number of h(k)-connected locally
semicomplete digraphs D have a factor composed of k cycles of lengths
ny, na, ..., Ny respectively, where nyi,na,...,n; are any k integers each
of which is not less than the length of a longest induced cycle of D 7

Problem 1.2 has been completely solved in [6] for k = 2 and it was
shown that h(2) = 2. As yet we have not seen any results about the
general case for Problem 1.2. In this paper, we solve Problem 1.2
completely for a special case, when a locally semicomplete digraph is
round-decomposable (see Corollary 4.2), and confirm the existence of a
k-cycles-factor in some k-connected locally semicomplete digraphs. In
particular, we show that every k-connected (k > 2) semicomplete di-
graph with at least 5k + 1 vertices has a factor composed of k cycles
such that one of which is of length at most 5. Our results generalize and
improve that of [3] for tournaments (see Corollary 4.8).
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2. Terminology and preliminaries

We denote by V(D) and E(D) the vertex set and the arc set of a
digraph D, respectively. The subdigraph of D induced by a subset A of
V(D) is denoted by D(A). In addition, D — A = D(V(D) — A).

If zy is an arc of D, then we say that © dominates y. More generally,
if A and B are two disjoint subdigraphs of D such that every vertex of A
dominates every vertex of B, then we say that A dominates B, denoted
by A — B. In addition, if A — B, but there is no arc from B to A,
then we say that A strictly dominates B, denoted by A = B.

The outset of a vertex z € V(D) is the set N*(z) = { y | zy €
E(D)}. Similarly, N~ (z) = { y | yz € E(D)} is the inset of x. More
generally, for a subdigraph A of D, we define its outset by Nt(A) =
Uzevia) NT(2) — A and its inset by N7(A) = U,eyay N7 (z) — A.
Every vertex of N1(A) is called an out-neighbor of A and every vertex
of N™(A) is an in-neighbor of A.

The numbers d*(z) = [N*(z)| and d~(z) = |N~(z)| are called out-
degree and indegree of & € V (D), respectively. If d¥(z) = d~(z) = r
holds for every vertex x of D, then we say that D is r-regular.

Paths and cycles in a digraph are always assumed to be directed. A
cycle of length £ is called an ¢-cycle. A digraph is said to be connected,
if its underlying graph is connected.

A strong component H of D is a maximal subdigraph such that for
any two vertices z,y € V(H), the subdigraph H contains a path from
z to y and a path from y to z. The digraph D is strong or strongly
connected, if it has only one strong component, and D is k-connected if
|V(D)| > k+1 and for any set A of at most k—1 vertices, the subdigraph
D — A is strong.

If D is strong and S is a subset of V(D) such that D —S is not strong,
then we say that S is a separating set of D. A separating set S of D
is minimal if for any proper subset S’ of S, the subdigraph D — §' is
strong.

Let R be a digraph on r vertices vy, va,...,v, and let Li,..., L. be a
collection of digraphs. Then R[L,,..., L,] is the new digraph obtained
from R by replacing each vertex v; of R with L; and adding an arc from
every vertex of L; to every vertex of L; if and only if v;u; is an arc
of R (1 <i# j <r). Note that if we have D = R|[Ly,...,L,], then
R,Lq,..., L, are subdigraphs of D.
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A digraph on n vertices is round if we can label its vertices vg, v1,. ..,
Un-1 so that for each i, N*(v;) = {vit1,...,Vqa+(u)} and N~ (v;) =
{vica-(w)s - - - »vi—1} (modulo 7).

A locally semicomplete digraph D is round-decomposable if there ex-
ists a round local tournament R on r > 2 vertices such that D =
R[S1,...,Sy], where each S; is a strong semicomplete subdigraph or
a single vertex of D. We call R[S1,...,Sy] a round decomposition of D.

3. Structure of locally semicomplete digraphs

We begin with the structure of non-strong locally semicomplete di-
graphs. '

THEOREM 3.1 ([1]). Let D be a connected locally semicomplete di-
graph that is not strong. Then the following holds:

(a) If A and B are two strong dcomponents of D, then either there is
no arc between them or A= B or B = A.

(b) If A and B are two strong components of D such that A dominates
B, then A and B are both semicomplete digraphs.

(¢) The strong components of D can be ordered in a unique way
Dy, D, ..., Dy such that there are no arcs from D; to D; for j > 1,
and D; dominates D;y fori=1,2,...,p— 1.

The unique sequence D1, Dy, ..., D, of the strong components of D
in Theorem 3.1 (c) is called the strong decomposition of D with initial
component D; and ferminal component Dy,

THEOREM 3.2 ([5]). Let D be a connected locally semicomplete di-
graph that is not strong and let Dy, ..., D, be the strong decomposition
of D. Then D can be decomposed in r > 2 subdigraphs D, D}, ..., D,
as follows:

D{l = DZ’I’ A1 = p,
Mi+1 =min{ j | N*(D;) nV(D}) # 0},
and
§+1 = D<V(D)\i+1) U V'(D/\i+1+1) U---uU V(D)\i-—l»'
Furthermore, the subdigraphs D}, D), ..., D, satisfy the following:

(a) D consists of some strong components of D and it is semicomplete

fori=1,2,...,r;.
(b) Dj,, dominates the initial component of D) and there exists no

arc from Dj to D}, fori=1,2,...,r —1;
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(c) if r > 3, then there is no arc between D; and D;; for i, j satisfying
lj—i > 2.

The unique sequence D7, Dj, ..., D, defined in Theorem 3.2 is called
the semicomplete decomposition of D.

The following classification of locally semicomplete digraphs was given
in [2].

THEOREM 3.3 ([2]). Let D be a connected locally semicomplete di-
graph. Then exactly one of the following possibilities holds.

(a) D is round-decomposable and it hat a unique round decomposition
R[Dy, Dy, ..., D,], where R is a round local tournament on o > 2
vertices and D; is a strong semicomplete digraph fori =1,2,...,«a;

(b) D is not round-decomposable and not semicomplete.

(c) D is a semicomplete digraph which is not round-decomposable.

ProrosiTION 3.4 ([2]). Let R[H1,Has,...,H,) be a round decom-
position of a strong locally semicomplete digraph D. Then, for every

minimal separating set S of D, there are two integers i and k > 0 such
that S = V(Hz) U---u V(Hl_{..k)

The following lemma is a partial result of Lemma 3.5 from [2] for
locally semicomplete digraphs that are not round-decomposable.

LeMMA 3.5. If a strong locally semicomplete digraph D is not semi-
complete and not round-decomposable, then there exists a minimal sep-
arating set S C V(D) such that D—S is not semicomplete. Furthermore,
if Dy, Do, ..., D, is the strong decomposition and D}, D}, ..., D, is the
semicomplete decomposition of D — S, then r = 3, D(S) is semicomplete
and we have D, = S = Dj.

DEFINITION 3.6. Let D be a strongly connected locally semicomplete
digraph. The quasi-girth g(D) (or g if no confusion can arise) of D
is defined as follows: If D is round-decomposable and it has a round
decomposition D = R[Di1,Dy,...,D,], then g(D) is the length of a
shortest cycle in R; if D is not round-decomposable, then g(D) = 3.

We denote the length of a longest induced cycle of D by g(D), or g
if no confusion can arise.

REMARK 3.7. Tt is not difficult to check that § < 2g 4+ 1 holds and
every shortest cycle through a given vertex is of length at most g+ 1 for
every strongly connected locally semicomplete digraph.
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LEMMA 3.8 ([4]). Let D be a strongly connected locally semicomplete
digraph that is not round-decomposable. Then every induced cycle of
D has a length at most 4, i.e., g(D) < 4.

We end this section with the well-known theorem of Moon.

THEOREM 3.9 ([7]). Every vertex of a strongly connected semicom-
plete digraph on n > 3 vertices is in a t-cycle for t = 3,4,...,n.

4. Main results

We confirm at first the existence of a k-cycles-factor in locally semi-
complete digraphs that are round-decomposable.

THEOREM 4.1. Let D be a round-decomposable, k-connected locally
semicomplete digraph with n > 2(k — 1)g vertices. Then D contains a
g-cycle C such that D — V(C) is (k — 1)-connected.

Proof. Let R[Hy,Hsy,...,H,] be a round decomposition of D. We
denote by C the set of all g-cycles in R and for every C € C, put

{s

We choose an element C1; = wviva - -vgv1 from C such that f(Ch) =
min{f(C)|C € C}. If f(Cy) =0, then D — V(C4) is (k — 1)-connected
and we are done. So, we assume that f(C;) > 1. Let S; be a minimum
separating set of D such that |Sy — V(C1)| < k — 2. Since D is k-
connected, S; contains at least 2 vertices of C;. By Proposition 3.4,
we may assume without loss of generality that S; = V(H;) UV (Hz) U
< UV (Hy). Of course, Hy, = S1 = Hyy1 and D(S1) is semicomplete.
Since C} is an induced cycle in R, S; contains exactly two vertices
from C; which are adjacent in C;. This implies that D is not (k +
1)-connected, and hence, every minimum separating set of D contains
exactly k vertices.

Let v; € V(Hg,) for i =1,2,...,g and assume without loss of gener-
ality that v; and vy are in S7, this means that 1 < 81 < Gy < t.

It is clear that there is an integer 35 > (2 such that

By—1 B,

> V(H)|<k-1, but > |V(H))| >k
j=B1+1 J=f1+1

f(C) =

S is a minimum separating set
of D with |S—V(C)| <k -2
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Since D is k-connected, we have vi — H 8, and 35 < (3. Let v} be a
vertex of Hg . Clearly, vy — v3. So, the new cycle Cy = v1v5v3 - - vg1
also belongs to C. Since v; and v/, can not belong to a common minimum
separating set of D, it is easy to see that if D has no minimum sepa-
rating set containing the two vertices v4 and vs, then f(C2) < f(C1), a
contradiction to the choice of C;. Hence, there is a minimum separating
set Sy with {vy, v3} C Sa. It follows that [V(Hg,)| < k — 1.

In general, if we have a g-cycle C; = v1v} - - - V}vj41 - - - vgu1 from C such
that v} and v;41 must belong to a common minimum separating set of D,
then we can consider another g-cycle Ciy1 = v1vy -« - Vjv] Vg2 - VU1
from C with vj , € H g.,,» where B, is an integer satisfying

1

[ /
i+1 it+1

V(H)| <k-1, [V(Hg )| <k-1 and V(Hj)| > k.
J Bit1 J
i=B+1 J=pi+1

Finally, we consider Cy from C. Let 8] = (1. It is easy to see that

By g-1 Biy—1
Yo WVMEH) = DO D IVME) | +IV(H, )
=p]+1 i=1 | \j=g+1
g—1
< D k-1D)+ k-] =2k—-1)(g—1).
i=1
Since D has at least 2(k — 1)g vertices, we have
o B By
D VH)I+ Y IVHE) = VD)~ ) [V(H)
j=p,+1 i=1 =81+1
> 2k - 1)g—2(k— 1)(g— 1)
2(k-1)>k
for k > 2. It follows that there is no minimum separating set of D which
contains both fu; and v;. Therefore, f(Cy) = 0, a contradiction. O

Note that a 2-regular, round local tournament with n = 2(m + 1) —
1 vertices is 2-connected, but it has no cycle whose removal leaves a
strongly connected digraph, since a shortest cycle in it is of length m+1.
So, the condition in Theorem 4.1 is best possible in some sense. As an
immediate consequence we have the following result:

COROLLARY 4.2. Let D be a round-decomposable, k-connected lo-
cally semicomplete digraph on n > 2(k — 1)g vertices. Then, for any k
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integers ni,ng,...,ng > g with ny +ng + -+- +ng = n, D has a fac-
tor composed of k cycles Cy,Cs,...,Cy such that C; is of length n; for
1=1,2,...,k.

Proof. Let Ri[H}, H},. .., Hél] be a round decomposition of D = D.
By Theorem 4.1, R; contains a g(Dj)-cycle C] such that Dy = Dy —
V(C1) is (k — 1)-connected. Clearly, D is round-decomposable.

Let Ry[HZ,H3,...,HZ2 | be a round decomposition of Ds. It is easy
to see that g(D2) < (D). By Theorem 4.1 again, we get a g(Dz)-cycle
C!, such that Dy — V(C}) is (k — 2)-connected. Note that C} is a cycle
in Rl.

Successively, we obtain k cycles C1,C%,...,C}, each of which is a
cycle in R; and of length at most §(D). Since every vertex in D has at
least one positive and one negative neighbor in C; for all ¢t =1,2,...,k,
any n; — |V(Cj)| vertices in D — (V(C1) U---UV(C})) can be inserted
into C; to form an n;-cycle C; for all i € {1,2,...,k}. Thus, D contains
a required factor. a

In the following, we confirm the existence of a k-cycles-factor in lo-
cally semicomplete digraphs that are not round-decomposable.

THEOREM 4.3. Let D be a k-connected locally semicomplete digraph
with n > 20(k — 1) vertices that is not round-decomposable. If D is not
semicomplete, then it has a factor composed of k cycles, and at least
(k — 2) of them are of length at most 4.

Proof. Since D is not semicomplete, it has the properties as described
in Lemma 3.5. Let S be a minimal separating set of D such that D— S is
not semicomplete, and let Dy, Ds,..., D, be the strong decomposition
and D!, D}, D be the semicomplete decomposition of D — S, respec-
tively. We denote the initial component of D} by D,.

Since Dj also contains a minimal separating set S’ such that D —
S’ is not semicomplete, we may assume that S has been chosen such
that |S| < |[V(D4)|. In addition, we assume that [V(D1)| > |V(Dy)|
(otherwise, we consider the converse digraph of D, which is obtained by
replacing every arc zy of D with yz).

Claim (x) D contains k vertex-disjoint cycles C1,C3,...,Cy, each
of which is of length at least 3, and Cy, 5 satisfy one of the following
conditions:

1) V(C)NV(Dy) #0 for i =1,2,3;

2) V(C1)NV(DL) # 0 for i =2,3, V(C) N V(D)) =0, and V(Cs) N

V(D;-) # 0 fori=1,2, V(Cy)NV(Dj5) =0.
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Proof. At first, we consider the case when |V (D;)| > k. Since D is
k-connected, there are k vertex-disjoint paths from Dy to S. Because of
S = D, such k paths and the arcs from S to D; constitute k vertex-
disjoint cycles C1,CY, ..., C}, each of which is of length at least 3. If
none of them contains a vertex from D/, then it is easy to see that we
can insert a vertex of D] into C]. So, we may assume without loss of
generality that C] contains a vertex from Dj. Clearly, C1,C3,...,C;
are k required cycles with respect to 1).

Now we consider the case when |V(D;)| < k. Since Dy = D) =
D, = S = D, D contains a cycle C] = dzdadysds with s € S and
d; € V(Dj) for i = 1,2,3. Let C4,...,C!, be a maximal selection of
cycles of length at least 3 such that C1,C5,. .., C) are vertex-disjoint.

If o > k, then Cf,C%, ..., C}, are the required cycles with respect to
1).

Suppose now that a < k. Since D} and Dj both are semicomplete,
the two subdigraphs

Dy = D3—(V(CH)UV(C)UV(CyU---UV(Cy))
and Dy = Dj—(V(CYHUV(CHUV(CHU---UV(CL))

are semicomplete and do not contain any cycle of length more than 2.
Since n > 20(k — 1), [V(D1)| <k, [V(Dp)| < k, |S| < |V(D3)| and by
Lemma 3.8, |V(C})| <4fori=1,2,...,a, we have [V(D})| > 2k+2 for
£=2or{=3. It is easy to see that D} contains 2k vertices z1, za, ..., Z
and y1, ¥y, - .., Yk such that {z1,22,..., 25} = {y1,y2,...,yx} Since D
is k-connected, there are k vertex-disjoint paths from {y1,v2,...,yk}
to the set {z1,z2,...,2%}, say P; from y; to z,, for i = 1,2,...,k,
where my, ma, ..., my is a permutation of 1,2,..., k. Thus, every path
P; together with the arc ,,y; forms a cycle, denoted by C/, which is
of length at least 3, for i =1,2,... k.

If there is a cycle, say C7, that contains vertices not only from D],

but also from Dj, then we see that C7,Cy, ..., C} are the required cycles
with respect to 1).

If at most one of {Py, Ps,..., P}, say Py if there is one, contains
some vertices of C}, then C{,Cy,Cy,...,Cy} are k required cycles with

respect to 1).

So, we assume without loss of generality that V() N V(C]) # 0
for i = 1,2,...,7, but V(P;)) N V(C]) = 0 for j > v, where v > 2,
and furthermore, V(P;) N V(D]) = 0 or V(P;) N V(D) = @ for every
i €{1,2,...,k}. Since C1 is of length 4, we have v < 4.
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If £ = 3, then, by the assumption above, we have V(P,)NV(D}) =
for all i € {1,2,...,k}. Since P, must contain some vertices from D}
and S, every vertex of D} can be inserted into C{ to form a cycle that
satisfies Condition 1).

Let £ = 2. Suppose that there is a path, say P, containing d3. Then
P contains at least one vertex from S. If there is another path, say
P», containing dj, then C} and CY satisfy Condition 2); if d; does not
belong to any paths P; for ¢ = 1,2,...,k, then d; can be inserted into
C" and we get a cycle satisfying Condition 1). Suppose now that none of
{P1,..., Py} contains d3, but there is one, say P;, containing s, then it
is easy to see that d3 can be inserted into P;, and we are done as above.
In the remaining case, we see that there is a path, say P», containing d;.
Since P» contains at least one vertex from S, it is easy to check that d3
can be inserted into CY and we get a cycle satisfying Condition 1). O

Let Cy,Co, ..., Cy be k vertex-disjoint cycles, which have the proper-
ties as described in Claim (*) above and whose total length is minimal.
By Lemma 3.8, we have 3 < [V(C;)| < 4 for ¢ = 2,3,...,k with respect
to 1) and for ¢ = 3,4,..., k with respect to 2).

Let Q =D — (V(C1)UV(C) U---UV(C)) and Q; = Q N D, for
1=1,2,3 and Q4 = @ N D(S). Note that if Q; is not empty, then it is
semicomplete, and hence, has a hamiltonian path for i = 1,2, 3, 4.

If C; satisfies Condition 1) in Claim (%), i.e. it contains vertices
from D and from Dj, then it is easy to see that every vertex of @ has a
positive and a negative neighbor in Cj. It follows that D(V(C1)UV (Q))
is strong, and hence, it has a hamiltonian cycle, say C’, by Theorem 3.9.
Obviously, C’, Cs, Cs, ..., Cy constitute the required factor of D.

Suppose now that C; and Cj satisfy Condition 2) in Claim (*). As-
sume that Cy7 and C5 have been chosen such that no vertex of ¢ can be
inserted into Cy or into Cs.

Denote C1 = aiaz---aua; and Co = biby---b,by and assume that
a1 € V(Dj) and ag,...,a; € V(D) and a;41 € S; by € V(D)) and
ba,...,bj € S and bj;1 € V(Dj3). Then it is easy to check that {as,...,
ai} — b1 — Q41 and bj — a1 — bj+1.

It is a simple matter to check that Q1 = ) and Q3 = 0. We next show
that if Q # @, then D(V(C;) UV (C3) UV (Q)) has two complementary
cycles.

Assume that V(Q2) # 0 and V(Q4) # 0. It is easy to check that
Q4 = C; = Q2 = CQ = Q4. Hence, albj+1 v b,,blaH_l R/ 7Y 5]
and ag -+ - a;Q2ba - - - b;Q4az are two complementary cycles of D(V(C1)U
V(C) LU V(Q)).
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Assume now that @ = Q4 (the proof for @ = Q2 is analogous). It is
clear that Cs = @ = C1, and hence, D(V(C1)) and D(V(C3)) are both
semicomplete.

Ifi > 3, then a; — a3, and hence ayazas - - - ayay and aghy by -+ - b,Qaas
are two required cycles. So, we assume that 7 = 2.

If 4 > 4, then in the case when as — a4, we have Cs — a3, and hence,
aibjy1---byaz---aya; and agb; - - - bjQQ4az are two required cycles; in the
other case when a4 — ag, the 3-cycle agaszasas and a;C2Quas . . . au0q
are two required cycles.

Therefore, y = 3. Similarly, it can be shown that v = 3.

Since () contains more than two vertices, we see that aibsgasza; and
a2b1b2(Q — q)ay are two required cycles, where ¢ is a vertex of Q.

The proof of the theorem is complete. |

Now we consider semicomplete digraphs.

LEMMA 4.4. Every k-connected semicomplete digraph D with n >
5k — 2 vertices contains at least k vertex-disjoint 3-cycles.

Proof. We prove the statement by induction on k. By Theorem 3.9,
every strongly connected semicomplete digraph on at least 3 vertices
contains a 3-cycle. Assume that k > 2. Since D is (k — 1)-connected,
it contains k — 1 vertex-disjoint 3-cycles C1,Cs,...,Cr—1. Let H be the
subdigraph induced by the vertices not in the 3-cycles. If H contains a
3-cycle, then we are done. So, we may assume that if H contains some
cycles, then they are 2-cycles. Note that |V(H)| >n—3(k—1) > 2k+1
because n > 5k — 2. Let P = 2129 - - x;, be a hamiltonian path of H,
A ={z1,29,...,21} and B = {Ti—k+1, Tm_k+2,---,Tm}. Clearly, we
have A = B. Since D is k-connected, there exist k vertex-disjoint paths
from B to A, and each is of length at least 3. Obviously, these paths
plus the arcs from A to B form k vertex-disjoint cycles, and hence, D
contains k vertex-disjoint 3-cycles. O

THEOREM 4.5. Let D be a k-connected semicomplete digraph. If D
contains k + 1 vertex-disjoint 3-cycles, then D has a factor composed of
k cycles, and at least k — 2 of them are 3-cycles.

Proof. Let Cy,Cs,...,Ck,C be k + 1 vertex-disjoint 3-cycles in D,
F={C|1<i<k}and H=D-UE V(C;). Note that C is a 3-
cycle in H. Let Hy,...,Hy be the strong decomposition of H. Assume
without loss of generality that N*(H,) NV (C;) # 0 for i = 1,2,...,q,
and C; = H, for j > o If there is an arc from C; to H; for some j < o,
then we see that D(V(C;)UV (H)) is strong and we are done by Theorem
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3.9. So, we may assume that H; = C; for all i < a. Let F; = UL, C;.
It is clear that for every ¢ > «, either Hy = C; or C; has at least one
positive neighbor in H;. Without loss of generality let Fy = Ufza +1Ci
and F3 = U;?:ﬁ_HCj such that H; = C; for each i € {a + 1,...,0} (if
B> a+1) and N~ (H;)NV(C;) # 0 for all j > . From the connectivity
assumption, we conclude that

1) V(F)| 2 k and |V(F3)[ > k.

Since D is k-connected, there are k vertex-disjoint paths from Fj to F3.
We denote k such shortest paths by P, P, ..., P, and denote the start
vertex (end vertex, respectively) of P; by z; (by v, respectively) for
i=1,2,...,k.

In the following, we assume, to the contrary, that D does not contain
k cycles which have the properties as described in the theorem. We
consider the following cases:

Case 1. Suppose ¢ = 1.

It is clear that F3 = H = Fj, and moreover, either C; = C; or C; =
C; when i # j. Note that F, = () and P; is of length 1 for i = 1,2,... k.
Assume without loss of generality that P, is an arc from C to Cy, i.e.,
z1 € V(C1) and y1 € V(Cy). It follows that C; = Cj. So, we have H =
C1 = Cy = H. Let z be a vertex of H. Then C' = z1y12z1 is a 3-cycle.
Since H — z has a hamiltonian path, D(V(H)UV(C1)UV(Cy)) —V(C")
is strong, and hence, it has a hamiltonian cycle, say C”. Now we see
that C’,C5,C3,Cy,...,Cr_1,C" are k cycles, which have the properties
as described in the theorem, a contradiction.

Case 2. Suppose q = 2.

Assume without loss of generality that C is contained in Hj. If there
is an arc from F} to F3, for example, from Cy to Cy, then we see that
D{(V(Cy1) UV (Ck) UV (Hy)) is strong. Thus, a hamiltonian cycle of Hy
and a hamiltonian cycle of D(V(Ci) U V(Cy) U V(Hz)) together with
C5,Cs,...,Ck-1 yield a contradiction.

Thus, we only need consider the situation that F3 = Fj. It follows
that P; contains at least one vertex of F; for each ¢ € {1,2,...,k}. This
and (1) imply that |V (F1)| = |V (F2)| = |V (F3)| = k, and therefore, P; is
of length exactly 2 and P; plus the arc from y; to z; forms a 3-cycle, say
Cl, for i = 1,2,...,k. Since V(F1) = N*(H) and V(F3) = N~ (Hi),
the subdigraph D(V(P;) U H) is strong, and hence, C3,Cj3, ..., C}, and
a hamiltonian cycle of D(V(P;) U H) yield a contradiction.



Locally semicomplete digraphs with a factor composed of k cycles 907

Case 3. Suppose ¢ > 3 and |V (Hy)| > 3 for some £ with 1 < £ < gq.

Assume without loss of generality that C is contained in Hy.

If there is a path (for example, P; from C) to C) that contains
neither a vertex from Fy nor a vertex from C, then Cs,Cs,...,Cr_1,C
and a hamiltonian cycle of D(V(C1) UV (Cy) UV (H — V(C))) yield a
contradiction.

Therefore, P, contains at least one vertex from Fy U C for every ¢ €
{1,2,...,k}. This implies that F3 = Fy and |V (F,)| € {k, k — 3}. Let
C;] denote the cycle formed by P; and the arc y;z; for i = 1,2,...,k,
and assume without loss of generality that |[V(C7)| < |[V(C)] < -+ <
[V (C})|. Obviously, |V(C7)| > 3 holds. Let t = max{ i | C is a 3-cycle}
if |V(C})| = 3, otherwise, t = 0.

Subcase 3.1. Suppose |V (F2)| = k.

It is clear that [V (F1)| = V()| = |V(F5)| = k, V(F1) = NT(Hy)
and V(F3) = N~ (Hy).

Suppose that ¢ > k — 2. Then, all vertices in F» U H, which do
not belong to any cycle C} for i = 1,2,...,n, can be inserted into Cj,
to form a new cycle, and this new cycle with C1,C5,...,C}_5,Cr_4
together yield a contradiction.

Suppose now that t < k— 3. Since the subdigraph D ({11, Yt+2,-- -,
Yk }) is semicomplete, it has a hamiltonian path. Assume without loss of
generality that P’ = y;41yt+2 - - - Yk 18 such a path. Let C be the unique
3-cycle containing z; in C} for i =t +2,¢+3,...,k. Since D(V(Pi+1)U
V(P YUV (H1)UV (H,)) is strong, it has a hamiltonian cycle, denoted by
C". Tt is not difficult to see that every vertex in HoUH3U---UH,_1UF,

that does not belong to any cycles of {C1,...,C;,C",Cl,,,...,CL} can
be inserted into the cycle C” to form a new cycle. This cycle with
Ci,...,CLClLy, ..., CY yield a contradiction.

Subcase 8.2. Suppose |V (Fp)| =k — 3.

Assume without loss of generality that o = k/3 + 1, ie., |V(F1)| =
k + 3 and |V (F3)| = k. Note that

(2) V(F3) = N~(Hy) and |[N*(H,)NV(F)| > k.

Because of |V(Fy)| + |V(C)| = k, every path P; contains exactly one
vertex of L, UC fori=1,2,...,k.

Claim. There is an integer j such that D' = D — (U, V(F)) is
strong.
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Proof. Let x,z', 2" be the three vertices in Fj, which do not belong
to any path P, for i =1,2,...,k.

Suppose that the subdigraph D{{z,z’,z"}) contains a hamiltonian
path, say x — 2’ — z”, such that 2 has a positive neighbor in P; for
some j. Clearly, D{({z,z’,z"} UV (P;)) is strong. By (2), we have that
N*t(Hy) Nn{z,s',2",z;} # 0 and y; € N~ (H1), hence, the subdigraph
D’ is strong.

Suppose now that D{{z,2’,z"}) does not contain any hamiltonian
path whose end-vertex has a positive neighbor in P; for some 7 € {1,2,
...,k}. Then, it is easy to check that the three vertices z,z’, 2" must
belong to a common 3-cycle in F. Assume without loss of generality
that this 3-cycle is Cy. Note that {z1,z3,...,2x} = V(Co)U --- U
V(C,). By the definition of Fj, we may assume that z1 € NT(H,).
Clearly, D(V(D—UF_,V(P)))—{z, 2, 2"} is strong, but now, D(V (D —
UE_,V(P;))) must be strong, since C; has at least k positive neighbors.

O

In the following proof, one can see that we may assume without loss
of generality that j = 1, i.e. D(V(D — UL,V (P))) is strong. Since
D(V(D'YUW) is strong for every subset W of V(F3)U (Uf;le(Hi)), we
only need find k — 1 vertex-disjoint cycles in D —V(D') = D{UE_,V(P,))
such that they contain all vertices of {z2,x3,...,2k} U{ya,...,yx} and
at least k& — 2 of them are 3-cycles.

Ift > kK — 1, then we are done. So, suppose now that t < k — 2. Let
t'" = max{1, t}. Since D{{yy+1,Yr+2,-.,Yk}) is semicomplete, it has
a hamiltonian path, say P’ and assume without loss of generality that
P’ starts at yy 41 and ends at yx. So, Cpf,; = Ty41Pyy1yr 1 P ype 11
is a cycle. Let C!' be the 3-cycle in C] which contains z; for ¢ > t' 4 2.
Now we see that C/ for ¢ satisfying 2 < ¢ < ¢’ (if ' > 2) and C/ for
i=t +1,'+2,...,k are k — 1 required cycles.

Case 4. Suppose ¢ > 3 and |V (H;)| < 2 for all ¢ satisfying 1 < i < g.
Since the 3-cycle C is in H, one of H; and H, contains a 3-cycle.

Assume without loss of generality that |V(H,)| > |V(H1)| and C is
contained in Hj.

Subcase 4.1. Suppose |V (Hy)| > 4.

If F5 # 0, then we can change C and Cj and we are done by Case 3.
Suppose now that Fo = (. Let @ be the terminal component of
H,—V(C). Assume without loss of generality that z; € V(C) and y1 €
V(Cyk). If Q has at least one positive neighbor in C;, then D(V(C;) U
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V(Cr)UV(H))—V(C) is strong and C, Cy,Cs,...,Ci_1 are k—1 cycles
of length 3, and hence, we are done. If C; = @, then, by changing C
and C7, we are done by Case 3 again.

Subcase 4.2. Suppose |V (Hy)| = 3.

Suppose that there is an arc from C; to H; for some ¢ < # and some
j < g—1. Because H; = C;j, the subdigraph D(V(H)UV(C;)) -V (C) is
not strong, and furthermore, either its terminal component has at least
four vertices or one of its internal components contains C;. But, in both
these cases we are done by Subcase 4.1 or Case 3, respectively.

Suppose now that H; = C; for every i < g—1and every j < 8. If D
has an arc zy from Fi to F3 (without loss of generality that z € V(Cy)
and y € V(C%)), then D(V(C1) UV (Cy) UV(H)) — V(C) is strong
and C,Cs,C3,...,Cr_1 are k — 1 cycles of length 3, a contradiction. If
F3 = Fj, then it is not difficult to check that V(P;)) N V(F,) # 0 for
i = 1,2,...,k. This and (1) imply that |V(F;)| = k for ¢ = 1,2,3.
Therefore, C; = x;Pjy;x; is a 3-cycle for each j € {1,2,...,k}. Note
that N*(C) = V(F;) and N~ (H;) = V(F3). Since D{(V(C])UV (H)) is
strong and C3, Cj, ..., C), are 3-cycles, we get a contradiction.

The proof of the theorem is complete. |

THEOREM 4.6. Let D be a k-connected semicomplete digraph on
n > 5k+1 vertices. Then D has a factor composed of k cycles such that
one of them is of length at most 5.

Proof. Since D is k-connected, it contains k vertex-disjoint 3-cycles,
say C1,Cs,...,Ck, by Lemma 4.4. Let F = UleCi and H = D —V(F).
If H contains a 3-cycle, then we are done by Theorem 4.5. So, we
assume that every strongly connected component of H contains at most
two vertices. Let hiho--- A, be a hamiltonian path of H. Because
of n > 5k + 1, we have m > 2k + 1. Let A = {hy,hg,...,h} and
B = {hm—k+1, Pm—k+2,- - -, Bm}. Then, we have A = B.

By the connectivity assumption for D, there are k vertex-disjoint
paths from B to A. Let P; = vivi---vl,, i = 1,2,...,k, be k such
shortest paths and assume without loss of generality that vé,vfni_l &Z
V(H) fori=1,2,...,k.

Clearly, m; > 3 and C] = vivivivl and Cf = v, vf, _ovf 0%, are
3-cycles in D(V(PB;)) for ¢ = 1,2,...,k. If there is a P; with m; > 6,
then C/ and C! are vertex-disjoint. It follows that D contains at least
k + 1 vertex-disjoint 3-cycles, and hence, we are done by Theorem 4.5.
Therefore, we only need consider the case when 3 < m; < 5 for i =
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1,2,...,k. By the same argument, we may assume that P, P,,..., Ps
go through all 3-cycles in F. Denote P = {Py, Ps,..., P;}.

Suppose that there is a path P; with |[V(F) N V( )| > 3. Then
it is easy to check that v} € V(C,), v§ = hy, v € V(C,) for some
v € {1,2,...,k} and some j satisfying k +1 < j < m — k. We call
such P a W-path.

Assume that u = v. We show that D(V(C,)U V(H)) contains two
vertex-disjoint 3-cycles, i.e., D contains k + 1 vertex-disjoint 3-cycles,
and hence, we are done by Theorem 4.5. Let v be another vertex of
Cy. Obviously, C,, = vhvvjvy. If v — v}, then vjvhov} and Cf are two
3-cycles in D(V(C),) UV (H)); if v — v, then vivvivt and C’ are two
3-cycles in D(V(C,) UV (H)); in the remaining case when v{ — v — v,
we see that vivvivi and vivivivd are two 3-cycles in D(V(C,) UV (H)).

Assume now that every W-path goes through two different 3-cycles in
F. If there are two W-paths P,, Pg € P such that v, vf are in a common

cycle Cy, for i,j € {2,4}, then v vfvd v ; and vf_wfvﬁwf_l are
two vertex-disjoint cycles in D(V(C,) U V(H)), and we are done by
Theorem 4.5 again. Therefore, there exist at most |k/2] W-paths in P.
It follows that 3% |V(P)| < 5k + (k/2].

In the following we show that if U¥_, V(P;) does not contain all ver-
tices of F, then we can find k vertex-disjoint cycles Q1,Qo, ..., QJ, sat-
isfying the following conditions:

a) |[V(Qi)NAl=1and |V(Q)NB|=1fori=1,2,...,k;

b) UL, V(Qi) = ? \V(P) UV(F).

Suppose that C; contains a vertex v that is not in U L V(F;) for
some £ € {1,2,...,k}, and there are two paths (say P, and Pg) going

through Cy (assume without loss of generality that Cyp = o vf vvf*) such

that vﬁ 1 = v = v, (we call Cg an X-cycle of P). Then v{v§---

a,,B ﬂ B B B @ o s
ViU Vi4q  Umg and vy - 050U, - U are two paths containing

all vertlces of P, UPgUC,. So, it is not difficult to check that there are &
vertex-disjoint paths P], Py, ..., P, which have the following properties:
(1) each of them starts at a vertex of B and ends at a vertex of A;
(2) they do not have any X-cycles;
(3) Uk, V(P)) C UL, V(P)) CUL V(P) UV (F).

Let Q) be the cycle formed by the path P/ and the corresponding arc
from A to B for ¢ = 1,2,...,k. We show that every vertex in F, but
not in UE_ 1V(Q’) can be 1nserted into @} for some j € {1,2,...,k} if

UF V(P # Ug: V(P) UV (F).
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Let v be a vertex of C; for some t € {1,2,...,k} with v ¢ UF_, V(P)).
If only one path P} goes through C;, then D(V(C;) UV(QY,)) is strong,
and hence, it has a hamiltonian cycle. Assume now that there are two
paths, say P, and Pg, going through C;. Since Cy is not an X-path, it is
easy to see that one of D({v} UV(Q.)) and D{({v} UV (Q.,)) is strong.
Therefore, all vertices in V(F), but not in U, V(P!) can be inserted
into some of Q},Q5,...,Q). This means that we can find k vertex-
disjoint cycles Q1, @2, . . ., Qk satisfying the conditions a) and b) above.
Because of IUle V(Qi)| < 5k+ |k/2], at least one of Q1,Q2, . .., Qk,
say Qp, is of length at most 5. Since D(V(Q1) UV (H —UE_,V(Q,))) is
strong, a hamiltonian cycle of it and @2, Qs, ..., Qk form a factor of D.
The proof of the theorem is complete. 0

The next corollary states our main result.

COROLLARY 4.7. Let D be a k-connected locally semicomplete di-
graph with k > 3 and § denote the length of a longest induced cycle in
D. If D has at least 7(k — 1)g vertices, then it has a factor composed of
k cycles, and at least one of them is of length g or 5.

Proof. We only need to consider the three cases (a), (b) and (c)
as described in Theorem 3.3. So, this corollary can be confirmed by
Corollary 4.2, Theorem 4.3 and 4.6, respectively. O

Another immediate consequence of Theorem 4.6 is the result of [3]:

COROLLARY 4.8 ([3]). Every k-connected tournament T with at least
8k vertices contains k vertex-disjoint cycles that span V(T').
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