# LOCALLY SEMICOMPLETE DIGRAPHS WITH A FACTOR COMPOSED OF k CYCLES

RONALD J. GOULD<sup>†</sup> AND YUBAO GUO<sup>‡</sup>

ABSTRACT. A digraph is locally semicomplete if for every vertex x, the set of in-neighbors as well as the set of out-neighbors of x induce semicomplete digraphs. Let D be a k-connected locally semicomplete digraph with  $k \geq 3$  and  $\overline{g}$  denote the length of a longest induced cycle of D. It is shown that if D has at least  $7(k-1)\overline{g}$  vertices, then D has a factor composed of k cycles; furthermore, if D is semicomplete and with at least 5k+1 vertices, then D has a factor composed of k cycles and one of the cycles is of length at most 5. Our results generalize those of [3] for tournaments to locally semicomplete digraphs.

#### 1. Introduction

A subdigraph of a digraph D is called a factor if it contains all vertices of D. If a factor of D is composed of k vertex-disjoint cycles and each of the k cycles is of length at least 3, then we say that it is a k-cycles-factor or a factor composed of k cycles. Two cycles in a 2-cycles-factor of D are called factor complementary cycles in factor in factor complementary cycles in factor in factor complementary cycles in factor in factor is factor in factor complementary cycles in factor i

Reid [8] proved that every 2-connected tournament on  $n \ge 6$  vertices contains two complementary cycles of lengths 3 and n-3 respectively, unless it is isomorphic to a tournament on 7 vertices which contains no transitive subtournament on 4 vertices. With this statement as the basic

Received July 8, 2003.

<sup>2000</sup> Mathematics Subject Classification: 05C20, 05C38.

Key words and phrases: cycle, factor, strong connectivity, locally semicomplete digraph.

<sup>&</sup>lt;sup>†</sup>Research partially supported under O.N.R. grant # N00014-97-1-0499.

<sup>&</sup>lt;sup>‡</sup>The author is supported by a grant from "Deutsche Forschungsgemeinschaft" as an associate member of "Graduiertenkolleg: Analyse und Konstruktion in der Mathematik" at RWTH Aachen. This work was done when the author visited Emory University in 1998.

step, Song [9] proved by induction that with the same exception, every 2-connected tournament on  $n \ge 6$  vertices contains complementary cycles of all lengths k and n - k for k = 3, 4, ..., n - 3.

For the general case, Bollobás posed the following problem:

PROBLEM 1.1. If k is a positive integer, what is the least integer f(k) so that all but a finite number of f(k)-connected tournaments have a k-cycles-factor?

Recently, Chen, Gould and Li [3] proved that every k-connected tournament with at least 8k vertices has a k-cycles-factor.

In 1990, Bang-Jensen [1] introduced a very interesting generalization of tournaments – the class of locally semicomplete digraphs. A digraph is *semicomplete* if for any two distinct vertices, there is at least one arc between them. A digraph is *locally semicomplete* if for every vertex x, the set of in-neighbors as well as the set of out-neighbors of x induce semicomplete digraphs. A locally semicomplete digraph without a cycle of length 2 is called a *local tournament*.

It is clear that the class of locally semicomplete digraphs is a superclass of that of tournaments. The results about complementary cycles in 2-connected tournaments have been completely generalized to locally semicomplete digraphs in [5] and [6], respectively.

In [4], a similar problem to Problem 1.1 was posted for locally semicomplete digraphs, and another problem, similar to that of Song [9] for tournaments, is the following:

PROBLEM 1.2 ([4]). Let k be a positive integer. What is the least integer h(k) such that all but a finite number of h(k)-connected locally semicomplete digraphs D have a factor composed of k cycles of lengths  $n_1, n_2, \ldots, n_k$  respectively, where  $n_1, n_2, \ldots, n_k$  are any k integers each of which is not less than the length of a longest induced cycle of D?

Problem 1.2 has been completely solved in [6] for k=2 and it was shown that h(2)=2. As yet we have not seen any results about the general case for Problem 1.2. In this paper, we solve Problem 1.2 completely for a special case, when a locally semicomplete digraph is round-decomposable (see Corollary 4.2), and confirm the existence of a k-cycles-factor in some k-connected locally semicomplete digraphs. In particular, we show that every k-connected ( $k \geq 2$ ) semicomplete digraph with at least 5k+1 vertices has a factor composed of k cycles such that one of which is of length at most 5. Our results generalize and improve that of [3] for tournaments (see Corollary 4.8).

## 2. Terminology and preliminaries

We denote by V(D) and E(D) the vertex set and the arc set of a digraph D, respectively. The subdigraph of D induced by a subset A of V(D) is denoted by D(A). In addition, D - A = D(V(D) - A).

If xy is an arc of D, then we say that x dominates y. More generally, if A and B are two disjoint subdigraphs of D such that every vertex of A dominates every vertex of B, then we say that A dominates B, denoted by  $A \to B$ . In addition, if  $A \to B$ , but there is no arc from B to A, then we say that A strictly dominates B, denoted by  $A \Rightarrow B$ .

The outset of a vertex  $x \in V(D)$  is the set  $N^+(x) = \{y \mid xy \in E(D)\}$ . Similarly,  $N^-(x) = \{y \mid yx \in E(D)\}$  is the inset of x. More generally, for a subdigraph A of D, we define its outset by  $N^+(A) = \bigcup_{x \in V(A)} N^+(x) - A$  and its inset by  $N^-(A) = \bigcup_{x \in V(A)} N^-(x) - A$ . Every vertex of  $N^+(A)$  is called an out-neighbor of A and every vertex of  $N^-(A)$  is an in-neighbor of A.

The numbers  $d^+(x) = |N^+(x)|$  and  $d^-(x) = |N^-(x)|$  are called outdegree and indegree of  $x \in V(D)$ , respectively. If  $d^+(x) = d^-(x) = r$ holds for every vertex x of D, then we say that D is r-regular.

Paths and cycles in a digraph are always assumed to be directed. A cycle of length  $\ell$  is called an  $\ell$ -cycle. A digraph is said to be *connected*, if its underlying graph is connected.

A strong component H of D is a maximal subdigraph such that for any two vertices  $x, y \in V(H)$ , the subdigraph H contains a path from x to y and a path from y to x. The digraph D is strong or strongly connected, if it has only one strong component, and D is k-connected if  $|V(D)| \ge k+1$  and for any set A of at most k-1 vertices, the subdigraph D-A is strong.

If D is strong and S is a subset of V(D) such that D-S is not strong, then we say that S is a *separating set* of D. A separating set S of D is *minimal* if for any proper subset S' of S, the subdigraph D-S' is strong.

Let R be a digraph on r vertices  $v_1, v_2, \ldots, v_r$  and let  $L_1, \ldots, L_r$  be a collection of digraphs. Then  $R[L_1, \ldots, L_r]$  is the new digraph obtained from R by replacing each vertex  $v_i$  of R with  $L_i$  and adding an arc from every vertex of  $L_i$  to every vertex of  $L_j$  if and only if  $v_iv_j$  is an arc of R  $(1 \le i \ne j \le r)$ . Note that if we have  $D = R[L_1, \ldots, L_r]$ , then  $R, L_1, \ldots, L_r$  are subdigraphs of D.

A digraph on n vertices is round if we can label its vertices  $v_0, v_1, \ldots, v_{n-1}$  so that for each  $i, N^+(v_i) = \{v_{i+1}, \ldots, v_{i+d^+(v_i)}\}$  and  $N^-(v_i) = \{v_{i-d^-(v_i)}, \ldots, v_{i-1}\}$  (modulo n).

A locally semicomplete digraph D is round-decomposable if there exists a round local tournament R on  $r \geq 2$  vertices such that  $D = R[S_1, \ldots, S_r]$ , where each  $S_i$  is a strong semicomplete subdigraph or a single vertex of D. We call  $R[S_1, \ldots, S_r]$  a round decomposition of D.

## 3. Structure of locally semicomplete digraphs

We begin with the structure of non-strong locally semicomplete digraphs.

THEOREM 3.1 ([1]). Let D be a connected locally semicomplete digraph that is not strong. Then the following holds:

- (a) If A and B are two strong components of D, then either there is no arc between them or  $A \Rightarrow B$  or  $B \Rightarrow A$ .
- (b) If A and B are two strong components of D such that A dominates B, then A and B are both semicomplete digraphs.
- (c) The strong components of D can be ordered in a unique way  $D_1, D_2, \ldots, D_p$  such that there are no arcs from  $D_j$  to  $D_i$  for j > i, and  $D_i$  dominates  $D_{i+1}$  for  $i = 1, 2, \ldots, p-1$ .

The unique sequence  $D_1, D_2, \ldots, D_p$  of the strong components of D in Theorem 3.1 (c) is called the *strong decomposition* of D with *initial* component  $D_1$  and *terminal* component  $D_p$ .

THEOREM 3.2 ([5]). Let D be a connected locally semicomplete digraph that is not strong and let  $D_1, \ldots, D_p$  be the strong decomposition of D. Then D can be decomposed in  $r \geq 2$  subdigraphs  $D'_1, D'_2, \ldots, D'_r$  as follows:

$$D'_{1} = D_{p'}, \quad \lambda_{1} = p, \\ \lambda_{i+1} = \min\{ j \mid N^{+}(D_{j}) \cap V(D'_{i}) \neq \emptyset \},$$

and

$$D'_{i+1} = D\langle V(D_{\lambda_{i+1}}) \cup V(D_{\lambda_{i+1}+1}) \cup \cdots \cup V(D_{\lambda_{i-1}}) \rangle.$$

Furthermore, the subdigraphs  $D'_1, D'_2, \ldots, D'_r$  satisfy the following:

- (a)  $D'_i$  consists of some strong components of D and it is semicomplete for i = 1, 2, ..., r;
- (b)  $D'_{i+1}$  dominates the initial component of  $D'_i$  and there exists no arc from  $D'_i$  to  $D'_{i+1}$  for i = 1, 2, ..., r-1;

(c) if  $r \geq 3$ , then there is no arc between  $D'_i$  and  $D'_j$  for i, j satisfying  $|j-i| \geq 2$ .

The unique sequence  $D'_1, D'_2, \ldots, D'_r$  defined in Theorem 3.2 is called the *semicomplete decomposition* of D.

The following classification of locally semicomplete digraphs was given in [2].

THEOREM 3.3 ([2]). Let D be a connected locally semicomplete digraph. Then exactly one of the following possibilities holds.

- (a) D is round-decomposable and it hat a unique round decomposition  $R[D_1, D_2, \ldots, D_{\alpha}]$ , where R is a round local tournament on  $\alpha \geq 2$  vertices and  $D_i$  is a strong semicomplete digraph for  $i = 1, 2, \ldots, \alpha$ ;
- (b) D is not round-decomposable and not semicomplete.
- (c) D is a semicomplete digraph which is not round-decomposable.

PROPOSITION 3.4 ([2]). Let  $R[H_1, H_2, \ldots, H_{\alpha}]$  be a round decomposition of a strong locally semicomplete digraph D. Then, for every minimal separating set S of D, there are two integers i and  $k \geq 0$  such that  $S = V(H_i) \cup \cdots \cup V(H_{i+k})$ .

The following lemma is a partial result of Lemma 3.5 from [2] for locally semicomplete digraphs that are not round-decomposable.

LEMMA 3.5. If a strong locally semicomplete digraph D is not semicomplete and not round-decomposable, then there exists a minimal separating set  $S \subset V(D)$  such that D-S is not semicomplete. Furthermore, if  $D_1, D_2, \ldots, D_p$  is the strong decomposition and  $D'_1, D'_2, \ldots, D'_r$  is the semicomplete decomposition of D-S, then r=3,  $D\langle S \rangle$  is semicomplete and we have  $D_p \Rightarrow S \Rightarrow D_1$ .

DEFINITION 3.6. Let D be a strongly connected locally semicomplete digraph. The quasi-girth g(D) (or g if no confusion can arise) of D is defined as follows: If D is round-decomposable and it has a round decomposition  $D = R[D_1, D_2, \ldots, D_{\alpha}]$ , then g(D) is the length of a shortest cycle in R; if D is not round-decomposable, then g(D) = 3.

We denote the length of a longest induced cycle of D by  $\overline{g}(D)$ , or  $\overline{g}$  if no confusion can arise.

REMARK 3.7. It is not difficult to check that  $\overline{g} \leq 2g + 1$  holds and every shortest cycle through a given vertex is of length at most  $\overline{g} + 1$  for every strongly connected locally semicomplete digraph.

LEMMA 3.8 ([4]). Let D be a strongly connected locally semicomplete digraph that is not round-decomposable. Then every induced cycle of D has a length at most 4, i.e.,  $\overline{q}(D) < 4$ .

We end this section with the well-known theorem of Moon.

THEOREM 3.9 ([7]). Every vertex of a strongly connected semicomplete digraph on  $n \geq 3$  vertices is in a t-cycle for t = 3, 4, ..., n.

### 4. Main results

We confirm at first the existence of a k-cycles-factor in locally semicomplete digraphs that are round-decomposable.

THEOREM 4.1. Let D be a round-decomposable, k-connected locally semicomplete digraph with  $n \geq 2(k-1)g$  vertices. Then D contains a g-cycle C such that D-V(C) is (k-1)-connected.

*Proof.* Let  $R[H_1, H_2, \ldots, H_{\alpha}]$  be a round decomposition of D. We denote by  $\mathcal{C}$  the set of all g-cycles in R and for every  $C \in \mathcal{C}$ , put

$$f(C) := \left| \left\{ \begin{array}{l} S \ \ \text{is a minimum separating set} \\ \text{of } D \ \text{with} \ |S-V(C)| \leq k-2 \end{array} \right\} \right|.$$

We choose an element  $C_1 = v_1v_2\cdots v_gv_1$  from  $\mathcal{C}$  such that  $f(C_1) = \min\{f(C)|C\in\mathcal{C}\}$ . If  $f(C_1)=0$ , then  $D-V(C_1)$  is (k-1)-connected and we are done. So, we assume that  $f(C_1)\geq 1$ . Let  $S_1$  be a minimum separating set of D such that  $|S_1-V(C_1)|\leq k-2$ . Since D is k-connected,  $S_1$  contains at least 2 vertices of  $C_1$ . By Proposition 3.4, we may assume without loss of generality that  $S_1=V(H_1)\cup V(H_2)\cup\cdots\cup V(H_t)$ . Of course,  $H_\alpha\Rightarrow S_1\Rightarrow H_{t+1}$  and  $D\langle S_1\rangle$  is semicomplete. Since  $C_1$  is an induced cycle in R,  $S_1$  contains exactly two vertices from  $C_1$  which are adjacent in  $C_1$ . This implies that D is not (k+1)-connected, and hence, every minimum separating set of D contains exactly k vertices.

Let  $v_i \in V(H_{\beta_i})$  for i = 1, 2, ..., g and assume without loss of generality that  $v_1$  and  $v_2$  are in  $S_1$ , this means that  $1 \leq \beta_1 < \beta_2 \leq t$ .

It is clear that there is an integer  $\beta_2' > \beta_2$  such that

$$\sum_{j=\beta_1+1}^{\beta_2'-1} |V(H_j)| \le k-1, \quad \text{ but } \quad \sum_{j=\beta_1+1}^{\beta_2'} |V(H_j)| \ge k.$$

Since D is k-connected, we have  $v_1 \to H_{\beta'_2}$  and  $\beta'_2 < \beta_3$ . Let  $v'_2$  be a vertex of  $H_{\beta'_2}$ . Clearly,  $v'_2 \to v_3$ . So, the new cycle  $C_2 = v_1 v'_2 v_3 \cdots v_g v_1$  also belongs to  $\mathcal{C}$ . Since  $v_1$  and  $v'_2$  can not belong to a common minimum separating set of D, it is easy to see that if D has no minimum separating set containing the two vertices  $v'_2$  and  $v_3$ , then  $f(C_2) < f(C_1)$ , a contradiction to the choice of  $C_1$ . Hence, there is a minimum separating set  $S_2$  with  $\{v'_2, v_3\} \subseteq S_2$ . It follows that  $|V(H_{\beta'_2})| \le k - 1$ .

In general, if we have a g-cycle  $C_i = v_1 v_2' \cdots v_i' \tilde{v}_{i+1} \cdots v_g v_1$  from  $\mathcal{C}$  such that  $v_i'$  and  $v_{i+1}$  must belong to a common minimum separating set of D, then we can consider another g-cycle  $C_{i+1} = v_1 v_2' \cdots v_i' v_{i+1}' v_{i+2} \cdots v_g v_1$  from  $\mathcal{C}$  with  $v_{i+1}' \in H_{\beta_{i+1}'}$ , where  $\beta_{i+1}'$  is an integer satisfying

$$\sum_{j=\beta_i'+1}^{\beta_{i+1}'-1} |V(H_j)| \leq k-1, \quad |V(H_{\beta_{i+1}'})| \leq k-1 \quad \text{and} \quad \sum_{j=\beta_i'+1}^{\beta_{i+1}'} |V(H_j)| \geq k.$$

Finally, we consider  $C_g$  from  $\mathcal{C}$ . Let  $\beta'_1 = \beta_1$ . It is easy to see that

$$\sum_{\ell=\beta_1'+1}^{\beta_g'} |V(H_\ell)| = \sum_{i=1}^{g-1} \left[ \left( \sum_{j=\beta_i'+1}^{\beta_{i+1}'-1} |V(H_j)| \right) + |V(H_{\beta_{i+1}'})| \right] \\ \leq \sum_{i=1}^{g-1} [(k-1) + (k-1)] = 2(k-1)(g-1).$$

Since D has at least 2(k-1)g vertices, we have

$$\sum_{j=\beta'_g+1}^{\alpha} |V(H_j)| + \sum_{i=1}^{\beta'_1} |V(H_i)| = |V(D)| - \sum_{\ell=\beta'_1+1}^{\beta'_g} |V(H_\ell)|$$

$$\geq 2(k-1)g - 2(k-1)(g-1)$$

$$= 2(k-1) \geq k$$

for  $k \geq 2$ . It follows that there is no minimum separating set of D which contains both  $v'_q$  and  $v_1$ . Therefore,  $f(C_q) = 0$ , a contradiction.

Note that a 2-regular, round local tournament with n = 2(m+1) - 1 vertices is 2-connected, but it has no cycle whose removal leaves a strongly connected digraph, since a shortest cycle in it is of length m+1. So, the condition in Theorem 4.1 is best possible in some sense. As an immediate consequence we have the following result:

COROLLARY 4.2. Let D be a round-decomposable, k-connected locally semicomplete digraph on  $n \geq 2(k-1)\overline{g}$  vertices. Then, for any k integers  $n_1, n_2, \ldots, n_k \geq \overline{g}$  with  $n_1 + n_2 + \cdots + n_k = n$ , D has a factor composed of k cycles  $C_1, C_2, \ldots, C_k$  such that  $C_i$  is of length  $n_i$  for  $i = 1, 2, \ldots, k$ .

*Proof.* Let  $R_1[H_1^1, H_2^1, \ldots, H_{\alpha_1}^1]$  be a round decomposition of  $D_1 = D$ . By Theorem 4.1,  $R_1$  contains a  $g(D_1)$ -cycle  $C'_1$  such that  $D_2 = D_1 - V(C'_1)$  is (k-1)-connected. Clearly,  $D_2$  is round-decomposable.

Let  $R_2[H_1^2, H_2^2, \ldots, H_{\alpha_2}^2]$  be a round decomposition of  $D_2$ . It is easy to see that  $g(D_2) \leq \overline{g}(D_1)$ . By Theorem 4.1 again, we get a  $g(D_2)$ -cycle  $C_2'$  such that  $D_2 - V(C_2')$  is (k-2)-connected. Note that  $C_2'$  is a cycle in  $R_1$ .

Successively, we obtain k cycles  $C'_1, C'_2, \ldots, C'_k$ , each of which is a cycle in  $R_1$  and of length at most  $\overline{g}(D)$ . Since every vertex in D has at least one positive and one negative neighbor in  $C'_i$  for all  $i=1,2,\ldots,k$ , any  $n_i-|V(C'_i)|$  vertices in  $D-(V(C'_1)\cup\cdots\cup V(C'_k))$  can be inserted into  $C'_i$  to form an  $n_i$ -cycle  $C_i$  for all  $i\in\{1,2,\ldots,k\}$ . Thus, D contains a required factor.

In the following, we confirm the existence of a k-cycles-factor in locally semicomplete digraphs that are not round-decomposable.

THEOREM 4.3. Let D be a k-connected locally semicomplete digraph with  $n \geq 20(k-1)$  vertices that is not round-decomposable. If D is not semicomplete, then it has a factor composed of k cycles, and at least (k-2) of them are of length at most 4.

*Proof.* Since D is not semicomplete, it has the properties as described in Lemma 3.5. Let S be a minimal separating set of D such that D-S is not semicomplete, and let  $D_1, D_2, \ldots, D_p$  be the strong decomposition and  $D'_1, D'_2, D'_3$  be the semicomplete decomposition of D-S, respectively. We denote the initial component of  $D'_2$  by  $D_{\lambda}$ .

Since  $D_2'$  also contains a minimal separating set S' such that D-S' is not semicomplete, we may assume that S has been chosen such that  $|S| \leq |V(D_2')|$ . In addition, we assume that  $|V(D_1)| \geq |V(D_p)|$  (otherwise, we consider the converse digraph of D, which is obtained by replacing every arc xy of D with yx).

**Claim** (\*) D contains k vertex-disjoint cycles  $C_1, C_2, \ldots, C_k$ , each of which is of length at least 3, and  $C_1, C_2$  satisfy one of the following conditions:

- 1)  $V(C_1) \cap V(D_i') \neq \emptyset$  for i = 1, 2, 3;
- 2)  $V(C_1) \cap V(D_i') \neq \emptyset$  for  $i = 2, 3, V(C_1) \cap V(D_1') = \emptyset$ , and  $V(C_2) \cap V(D_i') \neq \emptyset$  for  $i = 1, 2, V(C_2) \cap V(D_3') = \emptyset$ .

*Proof.* At first, we consider the case when  $|V(D_1)| \geq k$ . Since D is k-connected, there are k vertex-disjoint paths from  $D_1$  to S. Because of  $S \Rightarrow D_1$ , such k paths and the arcs from S to  $D_1$  constitute k vertex-disjoint cycles  $C'_1, C'_2, \ldots, C'_k$ , each of which is of length at least 3. If none of them contains a vertex from  $D'_1$ , then it is easy to see that we can insert a vertex of  $D'_1$  into  $C'_1$ . So, we may assume without loss of generality that  $C'_1$  contains a vertex from  $D'_1$ . Clearly,  $C'_1, C'_2, \ldots, C'_k$  are k required cycles with respect to 1).

Now we consider the case when  $|V(D_1)| < k$ . Since  $D_1 \Rightarrow D_{\lambda} \Rightarrow D_p \Rightarrow S \Rightarrow D_1$ , D contains a cycle  $C'_1 = d_3d_2d_1sd_3$  with  $s \in S$  and  $d_i \in V(D'_i)$  for i = 1, 2, 3. Let  $C'_2, \ldots, C'_{\alpha}$  be a maximal selection of cycles of length at least 3 such that  $C'_1, C'_2, \ldots, C'_{\alpha}$  are vertex-disjoint.

If  $\alpha \geq k$ , then  $C'_1, C'_2, \ldots, C'_k$  are the required cycles with respect to 1).

Suppose now that  $\alpha < k$ . Since  $D_2'$  and  $D_3'$  both are semicomplete, the two subdigraphs

$$D_3'' = D_3' - (V(C_1') \cup V(C_2') \cup V(C_3') \cup \dots \cup V(C_{\alpha}'))$$
 and 
$$D_2'' = D_2' - (V(C_1') \cup V(C_2') \cup V(C_3') \cup \dots \cup V(C_{\alpha}'))$$

are semicomplete and do not contain any cycle of length more than 2. Since  $n \geq 20(k-1)$ ,  $|V(D_1)| < k$ ,  $|V(D_p)| < k$ ,  $|S| \leq |V(D_2')|$  and by Lemma 3.8,  $|V(C_i')| \leq 4$  for  $i=1,2,\ldots,\alpha$ , we have  $|V(D_\ell'')| \geq 2k+2$  for  $\ell=2$  or  $\ell=3$ . It is easy to see that  $D_\ell''$  contains 2k vertices  $x_1,x_2,\ldots,x_k$  and  $y_1,y_2,\ldots,y_k$  such that  $\{x_1,x_2,\ldots,x_k\} \Rightarrow \{y_1,y_2,\ldots,y_k\}$ . Since D is k-connected, there are k vertex-disjoint paths from  $\{y_1,y_2,\ldots,y_k\}$  to the set  $\{x_1,x_2,\ldots,x_k\}$ , say  $P_i$  from  $y_i$  to  $x_{m_i}$  for  $i=1,2,\ldots,k$ , where  $m_1,m_2,\ldots,m_k$  is a permutation of  $1,2,\ldots,k$ . Thus, every path  $P_i$  together with the arc  $x_{m_i}y_i$  forms a cycle, denoted by  $C_i''$ , which is of length at least 3, for  $i=1,2,\ldots,k$ .

If there is a cycle, say  $C_1''$ , that contains vertices not only from  $D_1'$ , but also from  $D_3'$ , then we see that  $C_1'', C_2'', \ldots, C_k''$  are the required cycles with respect to 1).

If at most one of  $\{P_1, P_2, \ldots, P_k\}$ , say  $P_1$  if there is one, contains some vertices of  $C'_1$ , then  $C'_1, C''_2, C''_3, \ldots, C''_k$  are k required cycles with respect to 1).

So, we assume without loss of generality that  $V(P_i) \cap V(C_1') \neq \emptyset$  for  $i = 1, 2, ..., \gamma$ , but  $V(P_j) \cap V(C_1') = \emptyset$  for  $j > \gamma$ , where  $\gamma \geq 2$ , and furthermore,  $V(P_i) \cap V(D_1') = \emptyset$  or  $V(P_i) \cap V(D_3') = \emptyset$  for every  $i \in \{1, 2, ..., k\}$ . Since  $C_1'$  is of length 4, we have  $\gamma \leq 4$ .

If  $\ell = 3$ , then, by the assumption above, we have  $V(P_i) \cap V(D'_1) = \emptyset$  for all  $i \in \{1, 2, ..., k\}$ . Since  $P_1$  must contain some vertices from  $D'_2$  and S, every vertex of  $D'_1$  can be inserted into  $C''_1$  to form a cycle that satisfies Condition 1).

Let  $\ell=2$ . Suppose that there is a path, say  $P_1$ , containing  $d_3$ . Then  $P_1$  contains at least one vertex from S. If there is another path, say  $P_2$ , containing  $d_1$ , then  $C''_1$  and  $C''_2$  satisfy Condition 2); if  $d_1$  does not belong to any paths  $P_i$  for  $i=1,2,\ldots,k$ , then  $d_1$  can be inserted into  $C''_1$  and we get a cycle satisfying Condition 1). Suppose now that none of  $\{P_1,\ldots,P_\gamma\}$  contains  $d_3$ , but there is one, say  $P_1$ , containing s, then it is easy to see that  $d_3$  can be inserted into  $P_1$ , and we are done as above. In the remaining case, we see that there is a path, say  $P_2$ , containing  $d_1$ . Since  $P_2$  contains at least one vertex from S, it is easy to check that  $d_3$  can be inserted into  $C''_2$  and we get a cycle satisfying Condition 1).  $\square$ 

Let  $C_1, C_2, \ldots, C_k$  be k vertex-disjoint cycles, which have the properties as described in Claim (\*) above and whose total length is minimal. By Lemma 3.8, we have  $3 \leq |V(C_i)| \leq 4$  for  $i = 2, 3, \ldots, k$  with respect to 1) and for  $i = 3, 4, \ldots, k$  with respect to 2).

Let  $Q = D - (V(C_1) \cup V(C_2) \cup \cdots \cup V(C_k))$  and  $Q_i = Q \cap D'_i$  for i = 1, 2, 3 and  $Q_4 = Q \cap D(S)$ . Note that if  $Q_i$  is not empty, then it is semicomplete, and hence, has a hamiltonian path for i = 1, 2, 3, 4.

If  $C_1$  satisfies Condition 1) in Claim (\*), i.e. it contains vertices from  $D_1'$  and from  $D_3'$ , then it is easy to see that every vertex of Q has a positive and a negative neighbor in  $C_1$ . It follows that  $D\langle V(C_1) \cup V(Q) \rangle$  is strong, and hence, it has a hamiltonian cycle, say C', by Theorem 3.9. Obviously,  $C', C_2, C_3, \ldots, C_k$  constitute the required factor of D.

Suppose now that  $C_1$  and  $C_2$  satisfy Condition 2) in Claim (\*). Assume that  $C_1$  and  $C_2$  have been chosen such that no vertex of Q can be inserted into  $C_1$  or into  $C_2$ .

Denote  $C_1 = a_1 a_2 \cdots a_{\mu} a_1$  and  $C_2 = b_1 b_2 \cdots b_{\nu} b_1$  and assume that  $a_1 \in V(D_3')$  and  $a_2, \ldots, a_i \in V(D_2')$  and  $a_{i+1} \in S$ ;  $b_1 \in V(D_1')$  and  $b_2, \ldots, b_j \in S$  and  $b_{j+1} \in V(D_2')$ . Then it is easy to check that  $\{a_2, \ldots, a_i\} \to b_1 \to a_{i+1}$  and  $b_j \to a_1 \to b_{j+1}$ .

It is a simple matter to check that  $Q_1 = \emptyset$  and  $Q_3 = \emptyset$ . We next show that if  $Q \neq \emptyset$ , then  $D\langle V(C_1) \cup V(C_2) \cup V(Q) \rangle$  has two complementary cycles.

Assume that  $V(Q_2) \neq \emptyset$  and  $V(Q_4) \neq \emptyset$ . It is easy to check that  $Q_4 \Rightarrow C_1 \Rightarrow Q_2 \Rightarrow C_2 \Rightarrow Q_4$ . Hence,  $a_1b_{j+1} \cdots b_{\nu}b_1a_{i+1} \cdots a_{\mu}a_1$  and  $a_2 \cdots a_iQ_2b_2 \cdots b_jQ_4a_2$  are two complementary cycles of  $D\langle V(C_1) \cup V(C_2) \cup V(Q) \rangle$ .

Assume now that  $Q = Q_4$  (the proof for  $Q = Q_2$  is analogous). It is clear that  $C_2 \Rightarrow Q \Rightarrow C_1$ , and hence,  $D\langle V(C_1)\rangle$  and  $D\langle V(C_2)\rangle$  are both semicomplete.

If  $i \geq 3$ , then  $a_1 \to a_3$ , and hence  $a_1 a_3 a_4 \cdots a_{\mu} a_1$  and  $a_2 b_1 b_2 \cdots b_{\nu} Q_4 a_2$  are two required cycles. So, we assume that i = 2.

If  $\mu \geq 4$ , then in the case when  $a_2 \to a_4$ , we have  $C_2 \to a_3$ , and hence,  $a_1b_{j+1}\cdots b_{\nu}a_3\cdots a_{\mu}a_1$  and  $a_2b_1\cdots b_jQ_4a_2$  are two required cycles; in the other case when  $a_4 \to a_2$ , the 3-cycle  $a_2a_3a_4a_2$  and  $a_1C_2Q_4a_5\ldots a_{\mu}a_1$  are two required cycles.

Therefore,  $\mu = 3$ . Similarly, it can be shown that  $\nu = 3$ .

Since Q contains more than two vertices, we see that  $a_1b_3qa_3a_1$  and  $a_2b_1b_2(Q-q)a_2$  are two required cycles, where q is a vertex of Q.

The proof of the theorem is complete.

Now we consider semicomplete digraphs.

LEMMA 4.4. Every k-connected semicomplete digraph D with  $n \ge 5k-2$  vertices contains at least k vertex-disjoint 3-cycles.

Proof. We prove the statement by induction on k. By Theorem 3.9, every strongly connected semicomplete digraph on at least 3 vertices contains a 3-cycle. Assume that  $k \geq 2$ . Since D is (k-1)-connected, it contains k-1 vertex-disjoint 3-cycles  $C_1, C_2, \ldots, C_{k-1}$ . Let H be the subdigraph induced by the vertices not in the 3-cycles. If H contains a 3-cycle, then we are done. So, we may assume that if H contains some cycles, then they are 2-cycles. Note that  $|V(H)| \geq n - 3(k-1) \geq 2k + 1$  because  $n \geq 5k - 2$ . Let  $P = x_1x_2 \cdots x_m$  be a hamiltonian path of H,  $A = \{x_1, x_2, \ldots, x_k\}$  and  $B = \{x_{m-k+1}, x_{m-k+2}, \ldots, x_m\}$ . Clearly, we have  $A \Rightarrow B$ . Since D is k-connected, there exist k vertex-disjoint paths from k to k0 form k1 vertex-disjoint cycles, and hence, k2 contains k3 vertex-disjoint 3-cycles.

THEOREM 4.5. Let D be a k-connected semicomplete digraph. If D contains k+1 vertex-disjoint 3-cycles, then D has a factor composed of k cycles, and at least k-2 of them are 3-cycles.

*Proof.* Let  $C_1, C_2, \ldots, C_k, C$  be k+1 vertex-disjoint 3-cycles in D,  $F = \{ C_i \mid 1 \leq i \leq k \}$  and  $H = D - \bigcup_{i=1}^k V(C_i)$ . Note that C is a 3-cycle in H. Let  $H_1, \ldots, H_q$  be the strong decomposition of H. Assume without loss of generality that  $N^+(H_q) \cap V(C_i) \neq \emptyset$  for  $i = 1, 2, \ldots, \alpha$ , and  $C_j \Rightarrow H_q$  for  $j > \alpha$ . If there is an arc from  $C_j$  to  $H_1$  for some  $j \leq \alpha$ , then we see that  $D\langle V(C_j) \cup V(H) \rangle$  is strong and we are done by Theorem

3.9. So, we may assume that  $H_1 \Rightarrow C_i$  for all  $i \leq \alpha$ . Let  $F_1 = \bigcup_{i=1}^{\alpha} C_i$ . It is clear that for every  $i > \alpha$ , either  $H_1 \Rightarrow C_i$  or  $C_i$  has at least one positive neighbor in  $H_1$ . Without loss of generality let  $F_2 = \bigcup_{i=\alpha+1}^{\beta} C_i$  and  $F_3 = \bigcup_{j=\beta+1}^{k} C_j$  such that  $H_1 \Rightarrow C_i$  for each  $i \in \{\alpha+1,\ldots,\beta\}$  (if  $\beta \geq \alpha+1$ ) and  $N^-(H_1) \cap V(C_j) \neq \emptyset$  for all  $j > \beta$ . From the connectivity assumption, we conclude that

(1) 
$$|V(F_1)| \ge k \text{ and } |V(F_3)| \ge k$$
.

Since D is k-connected, there are k vertex-disjoint paths from  $F_1$  to  $F_3$ . We denote k such shortest paths by  $P_1, P_2, \ldots, P_k$ , and denote the start vertex (end vertex, respectively) of  $P_i$  by  $x_i$  (by  $y_i$ , respectively) for  $i = 1, 2, \ldots, k$ .

In the following, we assume, to the contrary, that D does not contain k cycles which have the properties as described in the theorem. We consider the following cases:

## Case 1. Suppose q=1.

It is clear that  $F_3 \Rightarrow H \Rightarrow F_1$ , and moreover, either  $C_i \Rightarrow C_j$  or  $C_j \Rightarrow C_i$  when  $i \neq j$ . Note that  $F_2 = \emptyset$  and  $P_i$  is of length 1 for i = 1, 2, ..., k. Assume without loss of generality that  $P_1$  is an arc from  $C_1$  to  $C_k$ , i.e.,  $x_1 \in V(C_1)$  and  $y_1 \in V(C_k)$ . It follows that  $C_1 \Rightarrow C_k$ . So, we have  $H \Rightarrow C_1 \Rightarrow C_k \Rightarrow H$ . Let z be a vertex of H. Then  $C' = x_1y_1zx_1$  is a 3-cycle. Since H - z has a hamiltonian path,  $D\langle V(H) \cup V(C_1) \cup V(C_k) \rangle - V(C')$  is strong, and hence, it has a hamiltonian cycle, say C''. Now we see that  $C', C_2, C_3, C_4, \ldots, C_{k-1}, C''$  are k cycles, which have the properties as described in the theorem, a contradiction.

## Case 2. Suppose q=2.

Assume without loss of generality that C is contained in  $H_1$ . If there is an arc from  $F_1$  to  $F_3$ , for example, from  $C_1$  to  $C_k$ , then we see that  $D\langle V(C_1) \cup V(C_k) \cup V(H_2) \rangle$  is strong. Thus, a hamiltonian cycle of  $H_1$  and a hamiltonian cycle of  $D\langle V(C_1) \cup V(C_k) \cup V(H_2) \rangle$  together with  $C_2, C_3, \ldots, C_{k-1}$  yield a contradiction.

Thus, we only need consider the situation that  $F_3 \Rightarrow F_1$ . It follows that  $P_i$  contains at least one vertex of  $F_2$  for each  $i \in \{1, 2, ..., k\}$ . This and (1) imply that  $|V(F_1)| = |V(F_2)| = |V(F_3)| = k$ , and therefore,  $P_i$  is of length exactly 2 and  $P_i$  plus the arc from  $y_i$  to  $x_i$  forms a 3-cycle, say  $C_i'$ , for i = 1, 2, ..., k. Since  $V(F_1) = N^+(H_2)$  and  $V(F_3) = N^-(H_1)$ , the subdigraph  $D\langle V(P_1) \cup H \rangle$  is strong, and hence,  $C_2', C_3', ..., C_k'$  and a hamiltonian cycle of  $D\langle V(P_1) \cup H \rangle$  yield a contradiction.

Case 3. Suppose  $q \geq 3$  and  $|V(H_{\ell})| \geq 3$  for some  $\ell$  with  $1 < \ell < q$ .

Assume without loss of generality that C is contained in  $H_{\ell}$ .

If there is a path (for example,  $P_1$  from  $C_1$  to  $C_k$ ) that contains neither a vertex from  $F_2$  nor a vertex from C, then  $C_2, C_3, \ldots, C_{k-1}, C$  and a hamiltonian cycle of  $D\langle V(C_1) \cup V(C_k) \cup V(H-V(C)) \rangle$  yield a contradiction.

Therefore,  $P_i$  contains at least one vertex from  $F_2 \cup C$  for every  $i \in \{1, 2, ..., k\}$ . This implies that  $F_3 \Rightarrow F_1$  and  $|V(F_2)| \in \{k, k-3\}$ . Let  $C_i'$  denote the cycle formed by  $P_i$  and the arc  $y_i x_i$  for i = 1, 2, ..., k, and assume without loss of generality that  $|V(C_1')| \leq |V(C_2')| \leq \cdots \leq |V(C_k')|$ . Obviously,  $|V(C_1')| \geq 3$  holds. Let  $t = \max\{i \mid C_i' \text{ is a 3-cycle}\}$  if  $|V(C_1')| = 3$ , otherwise, t = 0.

Subcase 3.1. Suppose  $|V(F_2)| = k$ .

It is clear that  $|V(F_1)| = |V(F_2)| = |V(F_3)| = k$ ,  $V(F_1) = N^+(H_q)$  and  $V(F_3) = N^-(H_1)$ .

Suppose that  $t \geq k-2$ . Then, all vertices in  $F_2 \cup H$ , which do not belong to any cycle  $C_i'$  for  $i=1,2,\ldots,n$ , can be inserted into  $C_k'$  to form a new cycle, and this new cycle with  $C_1', C_2', \ldots, C_{k-2}', C_{k-1}'$  together yield a contradiction.

Suppose now that  $t \leq k-3$ . Since the subdigraph  $D\langle\{y_{t+1},y_{t+2},\ldots,y_k\}\rangle$  is semicomplete, it has a hamiltonian path. Assume without loss of generality that  $P'=y_{t+1}y_{t+2}\cdots y_k$  is such a path. Let  $C_i''$  be the unique 3-cycle containing  $x_i$  in  $C_i'$  for  $i=t+2,t+3,\ldots,k$ . Since  $D\langle V(P_{t+1})\cup V(P')\cup V(H_1)\cup V(H_q)\rangle$  is strong, it has a hamiltonian cycle, denoted by C''. It is not difficult to see that every vertex in  $H_2\cup H_3\cup\cdots\cup H_{q-1}\cup F_2$  that does not belong to any cycles of  $\{C_1',\ldots,C_t',C_{t+2}'',\ldots,C_k''\}$  can be inserted into the cycle C'' to form a new cycle. This cycle with  $C_1',\ldots,C_t',C_{t+2}'',\ldots,C_k''$  yield a contradiction.

Subcase 3.2. Suppose  $|V(F_2)| = k - 3$ .

Assume without loss of generality that  $\alpha = k/3 + 1$ , i.e.,  $|V(F_1)| = k + 3$  and  $|V(F_3)| = k$ . Note that

(2) 
$$V(F_3) = N^-(H_1)$$
 and  $|N^+(H_q) \cap V(F_1)| \ge k$ .

Because of  $|V(F_2)| + |V(C)| = k$ , every path  $P_i$  contains exactly one vertex of  $F_2 \cup C$  for i = 1, 2, ..., k.

**Claim.** There is an integer j such that  $D' = D - (\bigcup_{i \neq j} V(P_i))$  is strong.

*Proof.* Let x, x', x'' be the three vertices in  $F_1$ , which do not belong to any path  $P_i$  for i = 1, 2, ..., k.

Suppose that the subdigraph  $D(\{x,x',x''\})$  contains a hamiltonian path, say  $x \to x' \to x''$ , such that x'' has a positive neighbor in  $P_j$  for some j. Clearly,  $D(\{x,x',x''\} \cup V(P_j))$  is strong. By (2), we have that  $N^+(H_q) \cap \{x,x',x'',x_j\} \neq \emptyset$  and  $y_j \in N^-(H_1)$ , hence, the subdigraph D' is strong.

Suppose now that  $D\langle\{x,x',x''\}\rangle$  does not contain any hamiltonian path whose end-vertex has a positive neighbor in  $P_i$  for some  $i\in\{1,2,\ldots,k\}$ . Then, it is easy to check that the three vertices x,x',x'' must belong to a common 3-cycle in  $F_1$ . Assume without loss of generality that this 3-cycle is  $C_1$ . Note that  $\{x_1,x_2,\ldots,x_k\}=V(C_2)\cup\cdots\cup V(C_\alpha)$ . By the definition of  $F_1$ , we may assume that  $x_1\in N^+(H_q)$ . Clearly,  $D\langle V(D-\bigcup_{i=2}^k V(P_i))\rangle - \{x,x',x''\}$  is strong, but now,  $D\langle V(D-\bigcup_{i=2}^k V(P_i))\rangle$  must be strong, since  $C_1$  has at least k positive neighbors.

In the following proof, one can see that we may assume without loss of generality that j=1, i.e.  $D\langle V(D-\cup_{i=2}^k V(P_i))\rangle$  is strong. Since  $D\langle V(D')\cup W\rangle$  is strong for every subset W of  $V(F_2)\cup (\cup_{i=2}^{q-1} V(H_i))$ , we only need find k-1 vertex-disjoint cycles in  $D-V(D')=D\langle \cup_{i=2}^k V(P_i)\rangle$  such that they contain all vertices of  $\{x_2,x_3,\ldots,x_k\}\cup \{y_2,\ldots,y_k\}$  and at least k-2 of them are 3-cycles.

If  $t \geq k-1$ , then we are done. So, suppose now that  $t \leq k-2$ . Let  $t' = \max\{1, t\}$ . Since  $D(\{y_{t'+1}, y_{t'+2}, \dots, y_k\})$  is semicomplete, it has a hamiltonian path, say P' and assume without loss of generality that P' starts at  $y_{t'+1}$  and ends at  $y_k$ . So,  $C''_{t'+1} = x_{t'+1}P_{t'+1}y_{t'+1}P'y_kx_{t'+1}$  is a cycle. Let  $C''_i$  be the 3-cycle in  $C'_i$  which contains  $x_i$  for  $i \geq t'+2$ . Now we see that  $C'_i$  for i satisfying  $1 \leq i \leq t'$  (if  $1 \leq i \leq t'$ ) and  $1 \leq i \leq t'+1$ ,  $1 \leq i \leq$ 

Case 4. Suppose  $q \geq 3$  and  $|V(H_i)| \leq 2$  for all i satisfying 1 < i < q.

Since the 3-cycle C is in H, one of  $H_1$  and  $H_q$  contains a 3-cycle. Assume without loss of generality that  $|V(H_q)| \geq |V(H_1)|$  and C is contained in  $H_q$ .

Subcase 4.1. Suppose  $|V(H_q)| \ge 4$ .

If  $F_2 \neq \emptyset$ , then we can change C and  $C_{\beta}$  and we are done by Case 3. Suppose now that  $F_2 = \emptyset$ . Let Q be the terminal component of  $H_q - V(C)$ . Assume without loss of generality that  $x_1 \in V(C_1)$  and  $y_1 \in V(C_k)$ . If Q has at least one positive neighbor in  $C_1$ , then  $D \setminus V(C_1) \cup C_2$ 

 $V(C_k) \cup V(H) \rangle - V(C)$  is strong and  $C, C_2, C_3, \ldots, C_{k-1}$  are k-1 cycles of length 3, and hence, we are done. If  $C_1 \Rightarrow Q$ , then, by changing C and  $C_1$ , we are done by Case 3 again.

Subcase 4.2. Suppose  $|V(H_q)| = 3$ .

Suppose that there is an arc from  $C_i$  to  $H_j$  for some  $i \leq \beta$  and some  $j \leq q-1$ . Because  $H_1 \Rightarrow C_i$ , the subdigraph  $D\langle V(H) \cup V(C_i) \rangle - V(C)$  is not strong, and furthermore, either its terminal component has at least four vertices or one of its internal components contains  $C_i$ . But, in both these cases we are done by Subcase 4.1 or Case 3, respectively.

Suppose now that  $H_i\Rightarrow C_j$  for every  $i\leq q-1$  and every  $j\leq \beta$ . If D has an arc xy from  $F_1$  to  $F_3$  (without loss of generality that  $x\in V(C_1)$  and  $y\in V(C_k)$ ), then  $D\langle V(C_1)\cup V(C_k)\cup V(H)\rangle-V(C)$  is strong and  $C,C_2,C_3,\ldots,C_{k-1}$  are k-1 cycles of length 3, a contradiction. If  $F_3\Rightarrow F_1$ , then it is not difficult to check that  $V(P_i)\cap V(F_2)\neq\emptyset$  for  $i=1,2,\ldots,k$ . This and (1) imply that  $|V(F_i)|=k$  for i=1,2,3. Therefore,  $C_j'=x_jP_jy_jx_j$  is a 3-cycle for each  $j\in\{1,2,\ldots,k\}$ . Note that  $N^+(C)=V(F_1)$  and  $N^-(H_1)=V(F_3)$ . Since  $D\langle V(C_1')\cup V(H)\rangle$  is strong and  $C_2',C_3',\ldots,C_k'$  are 3-cycles, we get a contradiction.

The proof of the theorem is complete.

THEOREM 4.6. Let D be a k-connected semicomplete digraph on  $n \geq 5k+1$  vertices. Then D has a factor composed of k cycles such that one of them is of length at most 5.

*Proof.* Since D is k-connected, it contains k vertex-disjoint 3-cycles, say  $C_1, C_2, \ldots, C_k$ , by Lemma 4.4. Let  $F = \bigcup_{i=1}^k C_i$  and H = D - V(F). If H contains a 3-cycle, then we are done by Theorem 4.5. So, we assume that every strongly connected component of H contains at most two vertices. Let  $h_1h_2\cdots h_m$  be a hamiltonian path of H. Because of  $n \geq 5k+1$ , we have  $m \geq 2k+1$ . Let  $A = \{h_1, h_2, \ldots, h_k\}$  and  $B = \{h_{m-k+1}, h_{m-k+2}, \ldots, h_m\}$ . Then, we have  $A \Rightarrow B$ .

By the connectivity assumption for D, there are k vertex-disjoint paths from B to A. Let  $P_i = v_1^i v_2^i \cdots v_{m_i}^i$ , i = 1, 2, ..., k, be k such shortest paths and assume without loss of generality that  $v_2^i, v_{m_i-1}^i \not\in V(H)$  for i = 1, 2, ..., k.

Clearly,  $m_i \geq 3$  and  $C'_i = v_1^i v_2^i v_3^i v_1^i$  and  $C''_i = v_{m_i}^i v_{m_i-2}^i v_{m_i-1}^i v_{m_i}^i$  are 3-cycles in  $D\langle V(P_i)\rangle$  for  $i=1,2,\ldots,k$ . If there is a  $P_i$  with  $m_i \geq 6$ , then  $C'_i$  and  $C''_i$  are vertex-disjoint. It follows that D contains at least k+1 vertex-disjoint 3-cycles, and hence, we are done by Theorem 4.5. Therefore, we only need consider the case when  $3 \leq m_i \leq 5$  for i=1

 $1, 2, \ldots, k$ . By the same argument, we may assume that  $P_1, P_2, \ldots, P_k$  go through all 3-cycles in F. Denote  $P = \{P_1, P_2, \ldots, P_k\}$ .

Suppose that there is a path  $P_i$  with  $|V(P_i) \cap V(H)| \geq 3$ . Then it is easy to check that  $v_2^i \in V(C_\mu)$ ,  $v_3^i = h_j$ ,  $v_4^i \in V(C_\nu)$  for some  $\mu, \nu \in \{1, 2, ..., k\}$  and some j satisfying  $k + 1 \leq j \leq m - k$ . We call such  $P_i$  a W-path.

Assume that  $\mu = \nu$ . We show that  $D\langle V(C_{\mu}) \cup V(H) \rangle$  contains two vertex-disjoint 3-cycles, i.e., D contains k+1 vertex-disjoint 3-cycles, and hence, we are done by Theorem 4.5. Let v be another vertex of  $C_{\mu}$ . Obviously,  $C_{\mu} = v_2^i v v_4^i v_2^i$ . If  $v \to v_1^i$ , then  $v_1^i v_2^i v v_1^i$  and  $C_i''$  are two 3-cycles in  $D\langle V(C_{\mu}) \cup V(H) \rangle$ ; if  $v_5^i \to v$ , then  $v_5^i v v_4^i v_5^i$  and  $C_i'$  are two 3-cycles in  $D\langle V(C_{\mu}) \cup V(H) \rangle$ ; in the remaining case when  $v_1^i \to v \to v_5^i$ , we see that  $v_1^i v v_5^i v_1^i$  and  $v_2^i v_3^i v_4^i v_2^i$  are two 3-cycles in  $D\langle V(C_{\mu}) \cup V(H) \rangle$ .

Assume now that every W-path goes through two different 3-cycles in F. If there are two W-paths  $P_{\alpha}, P_{\beta} \in P$  such that  $v_i^{\alpha}, v_j^{\beta}$  are in a common cycle  $C_{\mu}$  for  $i, j \in \{2, 4\}$ , then  $v_{i-1}^{\alpha}v_i^{\alpha}v_{i+1}^{\alpha}v_{i-1}^{\alpha}$  and  $v_{j-1}^{\beta}v_j^{\beta}v_{j+1}^{\beta}v_{j-1}^{\beta}$  are two vertex-disjoint cycles in  $D\langle V(C_{\mu}) \cup V(H) \rangle$ , and we are done by Theorem 4.5 again. Therefore, there exist at most  $\lfloor k/2 \rfloor$  W-paths in P. It follows that  $\sum_{i=1}^k |V(P_i)| \leq 5k + \lfloor k/2 \rfloor$ .

In the following we show that if  $\bigcup_{i=1}^k V(P_i)$  does not contain all vertices of F, then we can find k vertex-disjoint cycles  $Q_1, Q_2, \ldots, Q_k$  satisfying the following conditions:

- a)  $|V(Q_i) \cap A| = 1$  and  $|V(Q_i) \cap B| = 1$  for i = 1, 2, ..., k;
- b)  $\bigcup_{i=1}^{k} V(Q_i) = \bigcup_{j=1}^{k} V(P_j) \cup V(F)$ .

Suppose that  $C_{\ell}$  contains a vertex v that is not in  $\bigcup_{i=1}^{k} V(P_i)$  for some  $\ell \in \{1, 2, \dots, k\}$ , and there are two paths (say  $P_{\alpha}$  and  $P_{\beta}$ ) going through  $C_{\ell}$  (assume without loss of generality that  $C_{\ell} = v_{i}^{\alpha}v_{j}^{\beta}vv_{i}^{\alpha}$ ) such that  $v_{j-1}^{\beta} \Rightarrow v \Rightarrow v_{i+1}^{\alpha}$  (we call  $C_{\ell}$  an X-cycle of P). Then  $v_{1}^{\alpha}v_{2}^{\alpha} \cdots v_{i}^{\alpha}v_{j}^{\beta}v_{j+1}^{\beta} \cdots v_{m_{\beta}}^{\beta}$  and  $v_{1}^{\beta} \cdots v_{j-1}^{\beta}vv_{i+1}^{\alpha} \cdots v_{m_{\alpha}}^{\alpha}$  are two paths containing all vertices of  $P_{\alpha} \cup P_{\beta} \cup C_{\ell}$ . So, it is not difficult to check that there are k vertex-disjoint paths  $P'_{1}, P'_{2}, \dots, P'_{k}$  which have the following properties:

- (1) each of them starts at a vertex of B and ends at a vertex of A;
- (2) they do not have any X-cycles;
- $(3) \cup_{j=1}^k V(P_j) \subseteq \cup_{i=1}^k V(P_i') \subseteq \cup_{j=1}^k V(P_j) \cup V(F).$

Let  $Q_i'$  be the cycle formed by the path  $P_i'$  and the corresponding arc from A to B for  $i=1,2,\ldots,k$ . We show that every vertex in F, but not in  $\bigcup_{i=1}^k V(Q_i')$  can be inserted into  $Q_j'$  for some  $j \in \{1,2,\ldots,k\}$  if  $\bigcup_{i=1}^k V(P_i') \neq \bigcup_{j=1}^k V(P_j) \cup V(F)$ .

Let v be a vertex of  $C_t$  for some  $t \in \{1, 2, ..., k\}$  with  $v \notin \bigcup_{i=1}^k V(P_i')$ . If only one path  $P_{\gamma}'$  goes through  $C_t$ , then  $D\langle V(C_t) \cup V(Q_{\gamma}') \rangle$  is strong, and hence, it has a hamiltonian cycle. Assume now that there are two paths, say  $P_{\alpha}$  and  $P_{\beta}$ , going through  $C_t$ . Since  $C_t$  is not an X-path, it is easy to see that one of  $D\langle \{v\} \cup V(Q_{\alpha}') \rangle$  and  $D\langle \{v\} \cup V(Q_{\alpha}') \rangle$  is strong.

Therefore, all vertices in V(F), but not in  $\bigcup_{i=1}^k V(P_i')$  can be inserted into some of  $Q_1', Q_2', \ldots, Q_k'$ . This means that we can find k vertex-disjoint cycles  $Q_1, Q_2, \ldots, Q_k$  satisfying the conditions a) and b) above.

Because of  $|\bigcup_{i=1}^k V(Q_i)| \leq 5k + \lfloor k/2 \rfloor$ , at least one of  $Q_1, Q_2, \ldots, Q_k$ , say  $Q_k$ , is of length at most 5. Since  $D\langle V(Q_1) \cup V(H - \bigcup_{i=1}^k V(Q_i)) \rangle$  is strong, a hamiltonian cycle of it and  $Q_2, Q_3, \ldots, Q_k$  form a factor of D. The proof of the theorem is complete.

The next corollary states our main result.

COROLLARY 4.7. Let D be a k-connected locally semicomplete digraph with  $k \geq 3$  and  $\overline{g}$  denote the length of a longest induced cycle in D. If D has at least  $7(k-1)\overline{g}$  vertices, then it has a factor composed of k cycles, and at least one of them is of length  $\overline{g}$  or 5.

*Proof.* We only need to consider the three cases (a), (b) and (c) as described in Theorem 3.3. So, this corollary can be confirmed by Corollary 4.2, Theorem 4.3 and 4.6, respectively.  $\Box$ 

Another immediate consequence of Theorem 4.6 is the result of [3]:

COROLLARY 4.8 ([3]). Every k-connected tournament T with at least 8k vertices contains k vertex-disjoint cycles that span V(T).

#### References

- [1] J. Bang-Jensen, Locally semicomplete digraphs: A generalization of tournaments, J. Graph Theory 14 (1990), 371–390.
- [2] J. Bang-Jensen, Y. Guo, G. Gutin and L. Volkmann, A classification of locally semicomplete digraphs, Discrete Math. 167/168 (1997), 101-114.
- [3] G.-T. Chen, R. J. Gould and H. Li, Partitioning Vertices of a Tournament into Independent Cycles, J. Combin. Theory Ser. B 83 (2001), 213–220.
- [4] Y. Guo, Locally Semicomplete Digraphs. PhD thesis, RWTH Aachen, Germany. Aachener Beiträge zur Mathematik, Band 13, Augustinus-Buchhandlung Aachen, 1995.
- [5] Y. Guo and L. Volkmann, On complementary cycles in locally semicomplete digraphs, Discrete Math. 135 (1994), 121-127.
- [6] \_\_\_\_\_\_, Locally semicomplete digraphs that are complementary m-pancyclic, J. Graph Theory 21 (1996), 121–136.
- [7] J. W. Moon, On subtournaments of a tournament, Canad. Math. Bull. 9 (1996), 297–301.

- [8] K. B. Reid, Two complementary circuits in two-connected tournaments, Ann. Discrete Math. 27 (1985), 321–334.
- [9] Z.-M. Song, Complementary cycles of all lengths in tournaments, J. Combin. Theory Ser. B 57 (1993), 18–25.

Ronald J. Gould Dept. of Math. and CS Emory University Atlanta, GA 30322, USA

Yubao Guo Lehrstuhl C für Mathematik RWTH Aachen, 52056 Aachen Germany E-mail: guo@mathc.rwth-aachen.de