Groupwork 02/04: MATH 112 Prof. Maxwell Auerbach

Show all work. No credit will be given for answers without sufficient work. No calculators are allowed.

1 In Class Problems: Type II Improper Integrals

To the right is the plot of $f(x) = \frac{1}{x^{1/2}}$.

1.1 What is $\int_{1/2}^{1} \frac{1}{x^{1/2}} dx$? 1.2 What is $\int_{1/4}^{1} \frac{1}{x^{1/2}} dx$? 1.3 What is $\lim_{t \to 0} \int_{t}^{1} \frac{1}{x^{1/2}} dx$?

 $f(x) = x^{-1/2}$

Definition: If f(x) is continuous on (a, b] and is discontinuous at a then $\int_{a}^{b} f(x) dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x) dx$. **Definition:** If f(x) is continuous on [a, b) and is discontinuous at bb then $\int_{a}^{b} f(x) dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x) dx$. **Definition:** If f(x) is discontinuous at c, a < c < b and $\int_{a}^{c} f(x) dx$ and $\int_{c}^{b} f(x) dx$ then we define $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$ 1.4 Find $\int_{0}^{1} \frac{1}{x^{1/2}} dx$ 1.5 Find $\int_{0}^{1} \frac{1}{x^{1}} dx$

1.6 Find $\int_{0}^{1} \frac{1}{x^2} dx$

1.7 For what positive p does $\int_0^1 \frac{1}{x^p} dx$ converge?

1.8 Find
$$\int_0^1 \frac{e^{-1/x}}{x^2} \, dx$$

1.9 Find $\int_0^1 \frac{\ln(x)}{x^2} \, dx$

Groupwork 02/04: MATH 112 Prof. Maxwell Auerbach

Show all work. No credit will be given for answers without sufficient work. No calculators are allowed.

$\mathbf{2}$ In Class Problems: The Comparison Test

To the right is the plot of two functions f and g

J

2.1 Find $\int_{1}^{\infty} \frac{1}{x^{1/2}} dx$ 2.2 Find $\int_{1}^{\infty} \frac{1}{x^1} dx$ 2.3 Find $\int_{1}^{\infty} \frac{1}{x^2} dx$ 2.4 For what positive p does $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ converge? \overline{g}

Theorem (The Comparison Test): If $f(x) \ge g(x) \ge 0$ are continuous functions on $[a, \infty)$

- **a)** If $\int_{a}^{\infty} f(x) dx$ converges then $\int_{a}^{\infty} g(x) dx$ converges **b)** If $\int_{-\infty}^{\infty} g(x) dx$ diverges then $\int_{-\infty}^{\infty} f(x) dx$ diverges
- 2.5 Let $f(x) = \frac{1}{x^2}$ let $g(x) = \frac{x^2 x + 1/4}{(x+1)(x+4)^2(x+7)}$. Use the comparison test to show that $\int_1^\infty g(x) dx$ converges. (Hint: show that the numerator of g(x) is less than x^2 and the denominator is greater than x^4 for $x \ge 1$. Conclude that $g(x) < 1/x^2$ to get an answer)

2.6 Let $f(x) = \frac{x^5 + 2x^4 + x + 1}{(x^2 - x + 1)^2(x - 4)(x - 3)}$ and $g(x) = \frac{1}{x}$. Use the comparison test to show that $\int_{10}^{\infty} f(x) dx \text{ diverges. (Hint: show that the numerator of } f(x) \text{ is greater than } x^5 \text{ and the denominator is less than } x^6 \text{ for } x \ge 10.$ Conclude that f(x) > 1/x to get an answer)

2.7 (7.8.76) If f(x) is continuous and $\int_{-\infty}^{\infty} f(x) dx$ is convergent where $\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{-\infty}^{a} f(x) dx$ $\int_{a}^{\infty} f(x) dx$ carefully show that for any b < a or b > a that r

$$\int_{-\infty}^{a} f(x) \, dx + \int_{a}^{\infty} f(x) \, dx = \int_{-\infty}^{b} f(x) \, dx + \int_{b}^{\infty} f(x) \, dx$$