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Course Overview

I Part 1: Linear Models

1. Introduction and Applications
2. Linear Models: Least-Squares and Logistic Regression

I Part 2: Neural Networks

1. Introduction to Nonlinear Models
2. Parametric Models, Convolutions
3. Single Layer Neural Networks
4. Training Algorithms for Single Layer Neural Networks
5. Neural Networks and Residual Neural Networks

(ResNets)

I Part 3: Neural Networks as Differential Equations

1. ResNets as ODEs
2. Residual CNNs and their relation to PDEs
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Introducion
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Motivation: Nonlinear Models

In general, impossible to find a linear separator between classes

input features transformed features

Goal/Trick
Embed the points in higher dimension and/or move the points
to make them linearly separable
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Example: Linear Fitting

Assume C ∈ Rnc×n, Y ∈ Rnf×n and n� nf . Goal: Find
W ∈ Rnc×nf such that

C = WY

If rank(Y) < n, there may be no solution.

Two options:

1. Regression: Solve minW ‖WY − C‖2
F ; always has

solutions, but residual might be large

2. Nonlinear Model: Replace Y by σ(KY) in regression,
where σ is element-wise function (aka activation) and
K ∈ Rm×nf where m� nf
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Illustrating Nonlinear Models
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Remarks

I instead of WY = C solve Ŵσ(KY) = C
I solve bigger problem ; memory, computation, . . .

I what happens to rank(σ(KY)) when σ(x) = x?
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Conjecture: Universal Approximation Properties

Given the data Y ∈ Rnf×n and C ∈ Rnc×n with n� nf , there
is nonlinear function σ : R→ R, a matrix K ∈ Rm×nf , and a
bias b ∈ Rm such that

rank(σ(KY + b)) = n.

Therefore, possible [2, 7] to find W ∈ Rnc×m

Wσ(KY + b) = C.



Intro – 8

Choosing Nonlinear Model

Wσ(KY + b) = C

I how to choose σ?
I early days: motivated by neurons
I popular choice: σ(x) = tanh(x) (smooth, bounded, . . . )
I nowadays: σ(x) = max(x , 0) (aka ReLU, rectified linear

unit, non-differentiable, not bounded, simple)

I how to choose K and b?
I pick randomly ; branded as extreme learning

machines [8]
I train (optimize) ; done for most neural network
I deep learning when neural network has many layers
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First Experiment: Random Transformation
Select activation function and choose K and b randomly and
solve the least-squares/classification problem

The Pros:

I universal approximation theorem: can interpolate any
function

I very(!) easy to program

I can serve as a benchmark to more sophisticated methods

Some concerns:

I may require very large K (scale with n, number of
examples)

I may not generalize well

I large dense linear algebra

EELM Peaks.m
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Parametric Models
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Motivation
Recall single layer

Z = σ(KY + b),

where Y ∈ Rnf×n,K ∈ Rm×nf ,b ∈ Rm, and σ element-wise
activation.

We saw that m� nf needed to fit training data.
Conservative example: Consider MNIST (nf = 282) and use
m = nf ; 614, 656 unknowns for a single layer. Famous
quote:

With four parameters I can fit an elephant, and with
five I can make him wiggle his trunk.

Possible remedies:

I Regularization: penalize K
I Parametric model: K(θ) where θ ∈ Rp with

p � m · nf .
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Some Simple Parametric Models
I Diagonal scaling:

K(θ) = diag(θ) ∈ Rnf×nf

Advantage: preserves size and structure of data.
I Antisymmetric kernel

K(θ) =

 0 θ1 θ2

−θ1 0 θ3

−θ2 −θ3 0


Advantage?: real(λi(K(θ))) = 0.

I M-matrix

K(θ) =

 θ1 + θ2 −θ1 −θ2

−θ3 θ3 + θ4 −θ4

−θ5 −θ6 θ5 + θ6

 θ ≥ 0

Advantage: like differential operator
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Differentiating Parametric Models

Need derivatives of model to optimize θ in

E (Wσ(K(θ)Y + b),C)

(we can re-use previous derivatives and use chain rule)

Note that all previous models are linear in the following sense

K(θ) = mat(Qθ)

Therefore, matrix-vector products with the Jacobian simply are

Jθ(K(θ))v = mat(Q v) and Jθ(K(θ))>w = Q>w

where v ∈ Rp and w ∈ Rm.
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Example: Derivative of M-matrix

K(θ) =

 θ1 + θ2 −θ1 −θ2

−θ3 θ3 + θ4 −θ4

−θ5 −θ6 θ5 + θ6

 θ ≥ 0

verify that this can be written as K (θ) = mat(Qθ) where

Q =



1 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 0 −1 0
−1 0 0 0 0 0

0 0 1 1 0 0
0 0 0 0 0 −1
0 −1 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 1


∈ R9×6

Note: not efficient to construct Q when p large but helpful
when computing derivatives
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Convolutional Neural Networks [9]

y ∈ R28×28 input features

θ ∈ R5×5 convolution kernel

z ∈ R28×28 output features

I useful for speech, images, videos, . . .

I efficient parameterization, efficient codes (GPUs, . . . )

I later: CNNs as parametric model and PDEs, simple code

I see E13Conv2D.m



Intro – 16

Convolutions in 1D

Let y , z , θ : R→ R, z : R→ R be continuous functions then

z(x) = (θ ∗ y)(x) =

∫ ∞
−∞

θ(x − t)y(t)dt.

Assume θ(x) 6= 0 only in interval [−a, a] (compact support).

A few properties

I θ ∗ y = F−1((Fθ)(Fy)), F is Fourier transform

I θ ∗ y = y ∗ θ
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Discrete Convolutions in 1D
Let θ ∈ R2k+1 be stencil, y ∈ Rnf grid function

zi = (θ ∗ y)i =
k∑

j=−k

θjyi−1.

Example: Discretize θ ∈ R3 (non-zeros only), y, z ∈ R4 on
regular grid

z1 = θ3w1 + θ2x1 + θ1x2

z2 = θ3x1 + θ2x2 + θ1x3

z3 = θ3x2 + θ2x3 + θ1x4

z4 = θ3x3 + θ2x4 + θ1w2

where w1,w2 are used to implement different boundary
conditions (right choice? depends . . . ).
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Structured Matrices - 1


z1

z2

z3

z4

 =


θ3 θ2 θ1

θ3 θ2 θ1

θ3 θ2 θ1

θ3 θ2 θ1




w1

x1

x2

x3

x4

w2


Different boundary conditions lead to different structures

I Zero boundary conditions: w1 = w2 = 0
z1

z2

z3

z4

 =


θ2 θ1

θ3 θ2 θ1

θ3 θ2 θ1

θ3 θ2




x1

x2

x3

x4


This is a Toeplitz matrix (constant along diagonals).
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Structured Matrices - 2
I Periodic boundary conditions: w1 = x4 and w2 = x1

z1

z2

z3

z4

 =


θ2 θ1 θ3

θ3 θ2 θ1

θ3 θ2 θ1

θ1 θ3 θ2




x1

x2

x3

x4


this is a circulant matrix (each row/column is periodic
shift of previous row/column)

An attractive property of a circulant matrix is that we can
efficiently compute its eigendecomposition

K(θ) = F∗diag(λ)F

where F is the discrete Fourier transform and the eigenvalues,
λ ∈ C4, can be computed using first column

λ = F(K(θ)u1) where u1 = (1, 0, 0, 0)>.
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Coding: 1D Convolution using FFTs

Let θ ∈ R3 be some stencil and nf = m = 16

1. build a sparse matrix K for computing the convolution
with periodic boundary conditions. Hint: spdiags

2. compute the eigenvalues of K using eig(full(K)) and
using fft and first column of K. Compare!

3. verify that norm(K*y - real(ifft(lam.*fft(y)))) is
small.

4. repeat previous item for transpose.

5. write code that computes eigenvalues for arbitrary stencil
size without building K. Hint: circshift
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Derivatives of 1D Convolution - 1

Recall that we need a way to compute

Jθ(K(θ)Y)v and Jθ(K(θ)Y)>w, (Jθ ∈ Rm×p)

(note that we put Y inside the bracket to avoid tensors)

Assume single example, y. Since we have periodic boundary
conditions

K(θ)y = real(F∗(λ(θ)� Fy))

= real(F∗ diag(Fy) λ(θ)), λ(θ) = F(K(θ)u1).

Need to differentiate eigenvalues w.r.t. θ. Note linearity

K(θ)u1 = Qθ, Q =?
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Derivatives of 1D Convolution - 2

Assume we have

K(θ)y = real(F∗ diag(Fy) FQθ))

Then mat-vecs with Jacobian are easy to compute

Jθ(K(θ)y)v = real(F∗(diag(Fy)FQv))

and (note that F> = F and (F∗)> = F∗)

Jθ(K(θ)y)>w = real(Q>Fdiag(Fy)F∗w)

Code this and check Jacobian and its transpose using
conv1D.m!
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Extension: Width of CNNs
RGB image input channels output channels

Width of CNN can be controlled by number of input and
output channels of each layer. Let y = (yR , yG , yB), then we
might compute

z1

z2

z3

z4

 =


K11(θ11) K12(θ12) K11(θ13)
K21(θ21) K22(θ22) K23(θ23)
K31(θ31) K32(θ32) K33(θ33)
K41(θ41) K42(θ42) K43(θ43)


 yR

yG
yB

 ,

where Kij is a 2D convolution operator with stencil θij
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Outlook: Possible Extensions

For now, we just introduced the very basic convolution layer.
CNNs used in practice also use the following components

I pooling: reduce image resolution (e.g. average over
patches)

I stride: Example: stride of two reduces image resolution
by computing z only at every other pixel.

Build your own parametric model

I M−matrix for convolution

I cheaper convolution models: separable kernels, doubly
symmetric kernels

I Wavelet, . . .

I other sparsity patterns
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Single Layer Neural Networks
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Learning the Weights

Assume that the number of examples, n, is very large.
Using random weights, K might need to be very large to fit
training data.
Solution may not generalize well to test data.

Idea: Learn K and b from the data (in addition to W)

min
K,W,b

E (Wσ(KY + b),Cobs) + λR(W,K,b)

About this optimization problem:

I more unknowns K ∈ Rm×nf , W ∈ Rnc×m, b ∈ Rm

I non-convex problem ; local minima, careful initialization

I need to compute derivatives w.r.t. K,b
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Non-Convexity
The optimization problem is non-convex. Simple illustration of
cross-entropy along two random directions dK and dW

(see ESingleLayer PlotObjective)

Expect worse when number of layers grows!
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Optimization for Single Layer Neural

Networks
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Gauss-Newton Method
Goal: Use curvature information for fast convergence

∇KE (K,b,W) = (JKZ)>∇ZE (Wσ(KY + b),C),

where JKZ = ∇Kσ(KY + b)>. This means that Hessian is

∇2
KE (K) = (JKZ)>∇2

ZE (C,Z,W)JKZ

+
n∑

i=1

m∑
j=1

∇2
Kσ(KY + b)ij∇ZE (C,Z,W)ij

First term is spsd and we can compute it.
We neglect second term since
I can be indefinite and difficult to compute
I small if transformation is roughly linear or close to

solution (easy to see for least-squares)

do the same for b and use full Hessian for W ; ignore
coupling!
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Variable Projection - 1
Idea: Treat learning problem as coupled optimization problem
with blocks θ = (K,b) and W.
Simple illustration for coupled least-squares problem [4, 3, 11]

min
θ,w

φ(θ,w) =
1

2
‖A(θ)w − c‖2 +

λ

2
‖Lw‖2 +

β

2
‖Mθ‖2

Note that for given θ the problem becomes a standard
least-squares problem. Define:

w(θ) =
(
A(θ)>A(θ) + λL>L

)−1
A(θ)>c

This gives optimization problem in θ only (aka
reduced/projected problem)

min
θ
φ̃(θ) =

1

2
‖A(θ)w(θ)− c‖2 +

λ

2
‖Lw(θ)‖2 +

β

2
‖Mθ‖2
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Variable Projection - 2

min
θ
φ̃(θ) =

1

2
‖A(θ)w(θ)− c‖2 +

λ

2
‖Lw(θ)‖2 +

β

2
‖Mθ‖2

Optimality condition:

∇φ̃(θ) = ∇θφ(θ,w) +∇θw(θ)∇wφ(θ,w)
!

= 0.

Less complicated than it seems since

∇wφ(θ,w(θ)) = A(θ)>(A(θ)w(θ)− c) + λL>Lw(θ) = 0

Discussion:

I ignore second term in gradient computation

I apply gradient descent/NLCG/BFGS to minimize φ̃

I solve least-squares problem in each evaluation of φ̃

I gradient is only correct if LS problem is solved exactly
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Variable Projection for Single Layer

min
θ,W

E (Wσ(K(θ)Y),C) + λR(θ,W)

Assume that the regularizer is separable, i.e.,

R(θ,W) = R1(θ) + R2(W)

and that R2 is convex and smooth. Hence, the projection
requires solving the regularized classification problem

W(θ) = arg min
W

E (Wσ(K(θ)Y),C) + λR2(W)

practical considerations:

I solve for W(θ) using Newton (need accuracy)

I need good solver to approximate gradient w.r.t. θ well

I use Gauss-Newton or steepest descent to solve for θ
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Stochastic Optimization

Assume that each yi , ci pair is drawn from some (unknown
probability distribution).
Then, we can interpret the learning problem as minimizing the
expected value of the cross entropy, e.g., in linear regression

E (θ,W) = E
(

1

2
‖Wσ(K(θ)y + b)− c‖2

)
This is a stochastic optimization problem [1]. One idea:
Stochastic Approximation: Design iteration
(θk ,Wk)→ (θ∗,W∗) so that expected value decreases.
Example: Stochastic Gradient Descent, ADAM, . . .
Pro: sample can be small (mini batch)
Con: how to monitor objective, linesearch, descent, . . .
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Stochastic Average Approximation

Alternative way to solve stochastic optimization problem

E (W) = E
(

1

2
‖Wσ(K(θ)y + b)− c‖2

)
Pick relatively large sample S ⊂ {1, . . . , n} and use
deterministic optimization method to solve

min
θ,W

1

2|S |
∑
s∈S

‖Wσ(K(θ)ys + b)− c>s ‖2.

Pro: use your favorite solver, linesearch, stopping. . .
Con: large batches needed

Note: Sample stays fixed during iteration.
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Experiment: Peaks

Compare the three approaches for training a single layer neural
network

I ESingleLayer PeaksSGD.m - stochastic gradient descent

I ESingleLayer PeaksNewtonCG.m - Newton CG with
block-diagonal Hessian approximation

I ESingleLayer PeaksVarPro.m - Fully coupled solver.
Eliminate θ and use steepest descent/Newton CG for
reduced problem.
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Example: Conditioning of Single Layer Training

Consider the regression problem with a single neural network
layer

min
W,K

1

2n
‖R(W,K)‖2

F , where R(W,K) = Wσ(KY)− C

The problem above is a non-linear least squares problem
(NNLS). Common to look at the Jacobian of r = vec(R), i.e.,
J = [JW JK] where

JW = σ(KY)>⊗I, and JK = (I⊗W) diag(σ′(KY)) (Y>⊗I)

(here, we vectorized R, I is identity, and ⊗ is the Kronecker
product)
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Example: Condition Numbers
sing. vals. m = 8 sing. vals. m = 16 sing. vals. m = 32

0 10 20 30
10−6

10−2

102

0 20 40 60
10−6

10−2

102

0 20 40 60 80 100
10−6

10−2

102

R(K,W) = Wσ(KY)− C

I d = 3/n = 1 input/output
features

I s = 100 examples
∼ U([−1, 1]d)

I m = {8, 16, 32} width of
network

I σ = tanh

I K,W ∼ N (0, 1)

Discussion:

I problem is ill-posed ;
regularize!

I cond(J) large ; smart
LinAlg

I how about single/half
precision?

I NNLS solvers will not be
effective

I need better initialization /
method
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Deep Neural Networks
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Why Deep Networks?

I Universal approximation theorem of NN suggests that we
can approximate any function by two layers.

I But - The width of the layer can be very large O(n · nf )

I Deeper architectures can lead to more efficient
descriptions of the problem.
(No real proof but lots of practical experience)
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Deep Neural Networks

How deep is deep?
We will answer this question later ...

Until recently, the standard architecture was

Y1 = σ(K0Y0 + b0)
... =

...

YN = σ(KN−1YN−1 + bN−1)

And use YN to classify. This leads to the optimization problem

min
K0,...,N−1,b0,...,N−1,W

E
(
WYN(K1, . . . ,KN−1,b1, . . . ,bN−1),Cobs

)
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Deep Neural Networks in Practice

(Some) challenges:

I Computational costs (architecture have
millions or billions of parameters)

I difficult to design

I difficult to train (exploding/vanishing
gradients)

I unpredictable performance

In 2015, He et al. [5, 6] came with a new
architecture that solves many of the problems
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Residual Neural Networks
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Simplified Residual Neural Network

Residual Network

Y1 = Y0 + σ(K0Y0 + b0)
... =

...

YN = YN−1 + σ(KN−1YN−1 + bN−1)

And use YN to classify. This leads to the optimization problem

min
K0,...,N−1,b0,...,N−1,W

E
(
WYN(K1, . . . ,KN−1,b1, . . . ,bN−1),Cobs

)

Leads to smoother objective function [10].
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Neural Net vs. ResNet
Rough comparison: Use nf = 4, nc = 1 and build neural net
with 5 hidden layers of 4.

1. fNN, neural net: Yl+1 = σ(KlYl)

2. fRes, ResNet: Yl+1 = Yl + σ(KlYl)

Generate two sets of random weights θ1, θ0 and define
θ(t) = tθ0 + (1− t)θ1.

‖fNN(Y,θ(t))−fNN(Y,θ(0)‖
‖fNN(Y,θ(0))‖ hist(∇JNN) ‖fRes(Y,θ(t))−fRes(Y,θ(0)‖

‖fRes(Y,θ(0))‖ hist(∇JRes)

see EReseNet vs NeuralNet.m
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Experiment: Peaks

Compare the three approaches for training a residual neural
network

I EResNet PeaksSGD.m - stochastic gradient descent

I EResNet PeaksNewtonCG.m - Newton CG with
block-diagonal Hessian approximation

I EResNet PeaksVarPro.m - Fully coupled solver.
Eliminate θ and use steepest descent/Newton CG for
reduced problem.
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Part 2 Summary: Nonlinear Models

I main idea: overcome limitations of linear model by
(learned) feature transformation

I single layer neural networks
I illustration of universal approximation theorem
I random transformation ; extreme learning
I optimize transformation ; non-convex optimization

I Parametric models
I design, e.g., to enable fast computation
I most famous: convolutional neural network

I deep neural networks
I multilayer perceptron: vanishing gradients
I residual neural networks: smoother objective
I ResNets can be very deep (∞ as we see next)
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