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Motivation: Deep Generative Modeling

Goal: Given samples x1, x2, . . . ∈ Rn learn a representation of their
underlying distribution X .

Challenges: n typically large, X complicated (multimodal, disjoint
support, etc.)

Idea: Train parameters θ of generator gθ : Rq → Rn so that it
transforms a given latent distribution Z ⊂ Rq to match X .

Generator can be used for

I density estimation: pX (x) ≈ pθ(x) =
∫
p(x|z)pZ(z)dx

I sampling: gθ(z) where z ∼ Z (main focus today)
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Illustration: Deep Generative Modeling

how to compare?

Z

gθ(Z)X

I X - data distribution

I gθ - generator (today: deep neural network)

I θ - parameters/weights

I Z - latent distribution (today: N (0, Iq))
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Examples: Moons and MNIST Dataset
Moons toy example:

latent space, q = 2 data space, n = 2

generate samples with gθ

estimate density with g−1
θ

MNIST image generation example:
latent space, q = 2 data space, n = 784

generator, gθ : R2 → R784
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Workshop Overview: Intro to Deep Generative Modeling

Objective: Discuss the three most popular classes of approaches in
a common mathematical framework (main ref [13]).

1. (Continuous) Normalizing Flows (NF / CNF)
I construct gθ : Rn → Rn to be diffeomorphic
I train gθ by maximizing likelihood of samples

2. Variational Autoencoders (VAE)
I support non-invertible, non-smooth gθ : Rq → Rn

I replace inverse of generator by approx. posterior pθ(z|x)
I train generator using lower bound of samples’ likelihood

3. Generative Adversarial Networks (GAN)
I support non-invertible, non-smooth gθ : Rq → Rn

I likelihood-free training using classifier or transport-distance

each part: 20 min lecture + time for coding, discussion, break.
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(Continuous) Normalizing
Flows
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(Continuous) Normalizing Flows (CNF)

latent space, q = 2 data space, n = 2

generate samples with gθ

estimate density with g−1
θ

Assumption: gθ is diffeomorphism (requires q = n)

Use change of variables formula to approximate likelihood

pX (x) ≈ pθ(x) = pZ
(
g−1
θ (x)

)
· det∇g−1

θ (x)

= (2π)−
n
2 exp

(
−1

2
‖g−1
θ (x)‖2

)
· det∇g−1

θ (x)



DGM – 8

Maximum Likelihood Training

JML(θ) = Ex∼X [− log pθ(x)]

≈ 1

s

s∑
i=1

(
1

2

∥∥∥g−1
θ

(
x(i)
)∥∥∥2
− log det∇g−1

θ

(
x(i)
)

+ const

)

with i.i.d. samples x(1), x(2), . . . , x(s) ∼ X .

Remark: minθ JML(θ) is equivalent to minimizing the
Kullback-Leibler divergence between pX and pθ

KL(pX ||pθ) =

∫
pX (x) log

pX (x)

pθ(x)
dx = Ex∼X

[
log

(
pX (x)

pθ(x)

)]
since pX (x) does not depend on θ.

Note: Training needs g−1
θ , generation needs gθ.
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Finite Normalizing Flows
Idea: For a fixed x ∼ Z, write generator as

gθ(z) = fK ◦ fK−1 ◦ · · · ◦ f1(z)

and y(K), y(K−1), . . . , y(1) be the hidden features.

Then the inverse and log-determinant of the flow are

g−1
θ (x) = f −1

1 ◦ f −1
2 ◦ · · · ◦ f −1

K (x),

log det∇g−1
θ (x) =

1∑
j=K

log det∇f −1
j

(
y(j)
)
.

Trade off when choosing layer functions fj :

I expressiveness: able to approximate complicated
transformation

I tractability: easy-to-evaluate inverse and log-determinant
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Normalizing Flows: Some References

latent space, q = 2 data space, n = 2

generate samples with gθ

estimate density with g−1
θ

I Efficient gθ and g−1
θ

I NICE: Non-linear independent components estimation [4]
I real NVP: real non-volume preserving flows [5] (next slide)

I Efficient gθ but not g−1
θ

I planar and radial flows [12]
I inverse autoregressive flows [9]

I Not efficient gθ but efficient g−1
θ

I masked auto-regressive flow [11]
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Example: Real Non-Volume Preserving Flow [5]

Let n = q = 2. The jth layer splits its input y(j) ∈ R2 into its

components y
(j)
1 and y

(j)
2

fj

(
y(j)
)

=

[
y

(j)
1

y
(j)
2 · exp

(
sj

(
y

(j)
1

))
+ tj

(
y

(j)
1

) ] ,
where sj , tj : R→ R are neural networks that model scaling and
translation, respectively.

Checklist:

I switch the roles of y
(j)
1 and y

(j)
2 at other layers

I log-determinant and inverse trivial to compute (try it!)

I expressiveness may require many layers (think n large)
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Example: Real NVP for Moons Dataset

training data pθ(x) and gθ(z)

hidden layers g−1
θ (x)

see RealNVP.ipynb



DGM – 13

Continuous Normalizing Flows [8]

latent space, q = 2 data space, n = 2

generate samples with gθ

estimate density with g−1
θ

For T > 0, let gθ(z) = y(T ) where y : [0,T ]→ Rn satisfies

y′(t) = vθ(y(t), t), where y(0) = z.

Here, vθ : Rn × R→ Rn is a neural network ; Neural ODE [3]
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Example: OT-Flow for Moons Dataset

training data pθ(x) and gθ(z)

hidden layers g−1
θ (x)

see OTFlow.ipynb
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Discussion: Normalizing Flows

latent space, q = 2 data space, n = 2

generate samples with gθ

estimate density with g−1
θ

I train gθ by maximizing likelihood of samples

I can be used for sampling and density estimation

I limitation: gθ : Rn → Rn is diffeomorphic ⇒ intrinsic
dimension of X must be n and support cannot be disjoint

I NF: need to trade-off expressiveness and efficiency

I CNF: scalable to high dimensions, that is, n = O(102).
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Variational Autoencoders
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Variational Autoencoders (VAE) [10]

Let now q 6= n, for example, q � n (very common).

Cannot use (C)NF since

I g−1
θ may not exist

I KL(pX (x)||pθ(x)) may be unbounded

Need alternative way to define a loss function!

Apply Bayes’ rule and note that

pθ(x) =
pθ(x, z)

pθ(z|x)
=

pθ(x|z)pZ(z)

pθ(z|x)
, for z ∼ Z.

Cannot maximize right hand side directly (pθ(z|x) is intractable)
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Key idea in VAE: Approximate the Posterior

For an arbitrary generator gθ, it is intractable to compute the
posterior pθ(z|x).

Idea: Learn an approximate posterior

eψ(z|x) ≈ pθ(z|x)

Today we consider a simple but common model

eψ(z|x) = N
(
µψ(x), exp(Σψ(x))

)
.

where

I ψ are the weights (in general ψ 6= θ)

I Σψ(x) is diagonal

I approximate posterior is similar to an encoder
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Evidence Lower Bound Training

Idea: Replace min
θ
− log

(
pθ(x, z)

pθ(z|x)

)
by min

ψ,θ
log

(
pθ(x, z)

eψ(z|x)

)

Why would this be meaningful?

log pθ(x) = Ez∼eψ(z|x) [log pθ(x)]

= Ez∼eψ(z|x)

[
log

(
pθ(x, z)

pθ(z|x)

)]
= Ez∼eψ(z|x)

[
log

(
pθ(x, z)

eψ(z|x)
· eψ(z|x)

pθ(z|x)

)]
= Ez∼eψ(z|x)

[
log

(
pθ(x, z)

eψ(z|x)

)
+ log

(
eψ(z|x)

pθ(z|x)

)]
Drop second term (i.e., KL (eψ(z|x)||pθ(z|x)) ≥ 0 to obtain lower
bound (called empirical lower bound or ELBO).
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VAE Training Problem

JVAE(ψ,θ) = −Ex∼XEz∼eψ(z|x) [log pθ(x, z)− log eψ(z|x)]

= Ex∼XEz∼eψ(z|x) [− log pθ(x|z)− log pZ(z) + log eψ(z|x)]

≈ 1

s

s∑
i=1

[
− log pθ(x(i)|z(i))− log pZ(z(i)) + log eψ(z(i)|x(i))

]
with

I i.i.d. samples x(1), x(2), . . . , x(s) from X
I one sample z(i) per approximate posterior eψ(z|x(i)) (you can

use more, of course)

Remarks:

I above estimate of objective is unbiased, but can be noisy

I minψ JVAE(ψ, θ̄) for given θ̄ improves tightness of ELBO.
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Interpret VAE as Regularized Autoencoder

Note that we can re-write the objective in VAE as

JELBO(ψ,θ) = Ex∼XEz∼eψ(z|x) [− log pθ(x|z) + log eψ(z|x)− log pZ(z)]

= Ex∼X

[
−Ez∼eψ(z|x) [log pθ(x|z) + KL (eψ(z|x)||pZ(z))]

]
.

I first term: minimize approximation error

I second term: bias approximate posteriors toward Z
I need to carefully balance both terms (Bayesian vs. frequentist)

Example: Autoencoders are trained with no regularization

I minimize approximation error

I latent space can be irregular and different from Z
I cannot expect gθ(z) to be similar to X when z ∼ Z
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Example: VAE for MNIST

test images generated images

see VAE.ipynb
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Example: Quality of Posterior Approximation MNIST
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see VAE.ipynb
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Example: Structure of Latent Space

µ(x) and labels samples from eψ(z|x)samples z̃ with low pZ(z̃) reconstructions, gθ(z̃)

I g−1
θ (X ) 6= Z ⇒ generator not trained using samples from Z

I in general, expect poor performance of generator for z̃

see VAE.ipynb
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Σ : Variational Auto Encoder

latent space, q = 2 data space, n = 784

generator gθ

approx. posterior eψ

I support non-invertible, non-smooth gθ : Rq → Rn

I use true posterior pθ(z|x) by eψ(z|x)

I train gθ and eψ(z|x) using lower bound of samples’ likelihood

I interpret as regularized autoencoder to get more flexibility

I gθ trained using samples from approx. posteriors ( 6= Z).
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Generative Adversarial
Networks
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Generative Adversarial Networks (GAN) [7, 6, 1]

use discriminator

Z

gθ(Z)X

Idea: Train by minimizing the distance between X and gθ(Z).

Some properties of GAN training

I likelihood free: no density estimate / lower bound needed

I avoids the correspondence problem

I sample from latent distribution in training (unlike CNF, VAE)

Key component: (trained) discriminator to measure the distance.
Today: Binary classification / Transport costs



DGM – 28

Discriminator based on Binary Classification [7]

Idea: Consider two sample test problem. Find a discriminator

dφ : Rn → [0, 1] such that dφ(x) ≈
{

1, x ∼ X
0, x ∼ gθ(Z).

Note: dφ will be a DNN with weights φ.

GAN training seeks to find a Nash equilibrium of

JGAN(θ,φ) = Ex∼X [log(dφ(x))] + Ez∼Z [log (1− dφ(gθ(z)))] .

In other words, find (θ∗,φ∗) such that

φ∗ ∈ arg max
φ

JGAN(θ∗,φ) and θ∗ ∈ arg min
θ

JGAN(θ,φ∗).

In practice: Use stochastic approximation and alternate between
updating φ and θ (need to balance learning rates, batch sizes, . . . )
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Reminder: Solving Saddle-Point Problems ain’t easy!

Let θ∗ be the weights of an optimal generator with gθ∗(Z) = X .

What would that mean for the optimal discriminator dφ∗?

Remarks:

1. gθ∗ and dφ∗ are parameterized by DNN

2. need expressiveness and ideal weights to find this equilibrium

⇒ GAN effectiveness is very hard to predict

This equilibrium will not be stable! Let θ̃ = θ∗ + δθ with ‖δθ‖
small and gθ̃(Z) 6= X . Then, the optimal discriminator would be
able to distinguish between samples and data points.

Even worse: We could have ∇θJGAN(θ̃,φ∗) ≈ 0.

For more detailed theory and other issues, see [1]
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Mode Collapse in GAN Training

Example: gθ maps almost all z ∼ Z to first data point, that is,

gθ(z) = x(1) for almost all z ∼ Z

What would that mean for the optimal discriminator dφ∗?

In this example, mode collapse is easy to detect! What would
happen if gθ mapped almost no z ∼ Z close to x(1)?

Mode collapse is difficult to detect/avoid. For some heuristics
(batch statistics, label smoothing, . . . ) see [14].
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Example: DCGAN for MNIST

test images generated images, random initgenerated images, VAE init

see DCGAN.ipynb
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Wasserstein GAN: Transport Costs as Discriminator [2]

Idea: Train gθ to minimize Wasserstein-1 distance between X and
gθ(Z).

W1(gθ(Z),X ) = inf
γ∈Π

E(x̂,x)∼γ [‖x̂− x‖]

Here:

I γ is a (probabilistic) transport map

I γ(x̂, x): probability of moving mass between x̂ and x

I Π: set of all γ(·, ·) with marginals X and gθ(Z), respectively.

Most practical implementations use equivalent definition

W1(gθ(Z),X ) = max
f ∈Lip(f )≤1

Ez∼Z [f (gθ(z))]− Ex∼X [f (x)] .

Crux: Need to design and train another NN model fφ : Rn → R
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Properties of GAN Training [2]

min
θ

max
f ∈Lip(f )≤1

Ez∼Z [f (gθ(z))]− Ex∼X [f (x)]

Theoretical advantages over discriminator-based GAN

I gθ continuous ⇒ (θ) 7→W1(gθ(Z),X ) continuous

I gθ loc. Lipschitz ⇒ (θ) 7→W1(gθ(Z),X ) differentiable

Practical considerations

I Need to enforce f ∈ Lip(f ) ≤ 1 (crop weights, gradient
penalty, . . . )

I Training f more accurately may not improve results [15]
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Example: WGAN for MNIST

test images generated images, random initgenerated images, VAE init

see WGAN.ipynb
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Summary



DGM – 36

Workshop Overview: Intro to Deep Generative Modeling

Objective: Discuss the three most popular classes of approaches in
a common mathematical framework (main ref [13]).

1. (Continuous) Normalizing Flows (NF / CNF)
I construct gθ : Rn → Rn to be diffeomorphic
I train gθ by maximizing likelihood of samples

2. Variational Autoencoders (VAE)
I support non-invertible, non-smooth gθ : Rq → Rn

I replace inverse of generator by approx. posterior pθ(z|x)
I train generator using lower bound of samples’ likelihood

3. Generative Adversarial Networks (GAN)
I support non-invertible, non-smooth gθ : Rq → Rn

I likelihood-free training using classifier or transport-distance
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Comparison of Approaches

I (Continuous) Normalizing Flows

+ compute and optimize likelihood
+ minimize distance between g−1

θ (X ) and Z
- assume smoothness of generator
- in most cases q unknown or known that q < n

I Variational Autoencoders

+ gθ can be non-invertible, non-smooth and q 6= n
+ loss is related to likelihood, no saddle point problem
- computing likelihood is intractable
- not clear that latent space is sampled well during training

I Generative Adversarial Networks

+ gθ can be non-invertible, non-smooth and q 6= n
+ optimize quality of samples ; often performs best
- danger of mode collapse (not for WGAN)
- need to compare high-dimensional and complex distributions
- difficult saddle point problems (hyperparameters,. . . )
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Σ: Deep Generative Modeling

DGM likely to remain an active research topic

Some mathematical challenges:

I how to compare high-dimensional, complicated distributions?
core problem in statistics for decades

I DGM is ill-posed ; need to better understand role of
hyperparameters (NN design, objective function,
regularization, optimization,..)

I no real guidelines for choosing the latent distribution (or even
determine the intrinsic dimensionality of the data)

I improve efficiency of training algorithms

Thanks to the organizers and all participants!

Questions/suggestions/remarks? → lruthotto@emory.edu

lruthotto@emory.edu
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