Introduction to Deep Generative Modeling
Spring School on Models and Data, University of South Carolina

Lars Ruthotto
lruthotto@emory.edu

Departments of Mathematics and Computer Science
Emory University

l

Motivation: Deep Generative Modeling

Goal: Given samples x1,Xa,... € R" learn a representation of their
underlying distribution X.

Challenges: n typically large, X complicated (multimodal, disjoint
support, etc.)

Idea: Train parameters 6 of generator gg : RY — R” so that it
transforms a given latent distribution Z C R9 to match X.

Generator can be used for
> density estimation: px(x) ~ pg(x) = [p(x|z)pz(z)dx
» sampling: gg(z) where z ~ Z (main focus today)

lllustration: Deep Generative Modeling

A
0 2

how to compare?

> X - data distribution

> gg - generator (today: deep neural network)
» 0 - parameters/weights

> Z - latent distribution (today: N(0,14))

DGM - 3

Examples: Moons and MNIST Dataset

Moons toy example:

latent space, ¢ = 2
2.1
generate samples with gg
] =

A
S

. estimate density with gal —1421 3 - 21
. =1 1 .

MNIST image generation example:

generator, gg : R2 — R

Workshop Overview: Intro to Deep Generative Modeling

Objective: Discuss the three most popular classes of approaches in
a common mathematical framework (main ref [13]).

1. (Continuous) Normalizing Flows (NF / CNF)
» construct gg : R"” — R” to be diffeomorphic
» train gg by maximizing likelihood of samples
2. Variational Autoencoders (VAE)

» support non-invertible, non-smooth gg : R — R”
> replace inverse of generator by approx. posterior pg(z|x)
> train generator using lower bound of samples’ likelihood

3. Generative Adversarial Networks (GAN)

» support non-invertible, non-smooth gg : R — R”
» likelihood-free training using classifier or transport-distance

each part: 20 min lecture + time for coding, discussion, break.

(Continuous) Normalizing
Flows

(Continuous) Normalizing Flows (CNF)

data space, n = 2

latent space, ¢ = 2!

2.1
generate samples with gg

Assumption: gg is diffeomorphism (requires g = n)
Use change of variables formula to approximate likelihood
px(x) = po(x) = pz (go_l(x)) - det Vge_l(x)

=) oo (e ()17 - det Vi

Maximum Likelihood Training

ImL(0) = Exx [log pe(x)]

~ li (1 H -1 (x(f)> H2 —logdet Vg ! (x(i)> + const)
o) 1 > &g g 8o

with i.i.d. samples x(1),x(®) . x(5) ~ x.

Remark: ming Juir(0) is equivalent to minimizing the
Kullback-Leibler divergence between py and py

KL(px|lps) = / px(x) log f,j((,f)) = B ['°g (Zj(()) ﬂ

since py(x) does not depend on 6.

Note: Training needs ggl, generation needs gg.

Finite Normalizing Flows

Idea: For a fixed x ~ Z, write generator as
go(z) = fxofxk_10---0 f(2)
and y(9O y(K=1) " y() pe the hidden features.

Then the inverse and log-determinant of the flow are

j=K

Trade off when choosing layer functions f;:

P expressiveness: able to approximate complicated
transformation

> tractability: easy-to-evaluate inverse and log-determinant

Normalizing Flows: Some References

latent space, =2

2.1
generate samples with gg

3.5

Z
X2

See /
. . o 1 ny
JEB.S Zl 35 estimate density with g, 151.2 X 21

> Efficient gg and gb,_1
» NICE: Non-linear independent components estimation [4]
» real NVP: real non-volume preserving flows [5] (next slide)
> Efficient gg but not gﬁ,_1
» planar and radial flows [12]
> inverse autoregressive flows [9]
> Not efficient gg but efficient ge_l
» masked auto-regressive flow [11]

Example: Real Non-Volume Preserving Flow [5]

Let n =g = 2. The jth layer splits its input yU) € R? into its

components ygj) and yg)

' ()
£ <y0)> = zij) exp (Sj <y§1))) +t (yY))] ;

where s, t; : R — R are neural networks that model scaling and
translation, respectively.

Checklist:
()

» switch the roles of ylj G)

and y;’ at other layers
» log-determinant and inverse trivial to compute (try it!)

> expressiveness may require many layers (think n large)

Example: Real NVP for Moons Dataset

)i (2

2.1
N i W
) . & g
J '-.',_.‘_t‘ &
"‘l‘l‘ﬁ
L2y 2.1 7R, 21

= <

hidden layers

35 35
’@EL E | .
§
-35
5 235 z 35

-3.5
5 3.

see RealNVP.ipynb

Continuous Normalizing Flows [8]

latent space, ¢ = 2

data space, n = 2

2.1
generate samples with gg

X3

5
LA
‘M‘?
i . o .
,5W71£1.2 x 21

For T >0, let gg(z) = y(T) where y : [0, T] — R”" satisfies

y'(t) = vo(y(t),t), where y(0)=z.

Here, v : R” x R — R" is a neural network ~» Neural ODE [3]

Example: OT-Flow for Moons Dataset

) o (2

2.1

X
w
\ﬁ_’
L

= <

-
£ A % ¥
g

35
35 235 7

see 0TFlow. ipynb

bl
=

Discussion: Normalizing Flows

v

latent space, ¢ = 2

2.1
generate samples with gg

X2

data space, n = 2
At
Y
LR
"N‘i"“?

. . . 1 15
s estimate density with g, 1£1.2 X 21

train gg by maximizing likelihood of samples

can be used for sampling and density estimation
limitation: gp : R” — R" is diffeomorphic = intrinsic
dimension of X must be n and support cannot be disjoint
NF: need to trade-off expressiveness and efficiency

CNF: scalable to high dimensions, that is, n = O(10?).

Variational Autoencoders

Variational Autoencoders (VAE) [10]

Let now g # n, for example, g < n (very common).

Cannot use (C)NF since
> ggl may not exist
» KL(px(x)||pe(x)) may be unbounded

Need alternative way to define a loss function!

Apply Bayes' rule and note that

Po(x,z) _ po(x|z)pz(z) or z~
pe(z|x) pe(z|x) f -

Pe(x) =

Cannot maximize right hand side directly (pg(z|x) is intractable)

Key idea in VAE: Approximate the Posterior

For an arbitrary generator gg, it is intractable to compute the
posterior pg(z|x).

Idea: Learn an approximate posterior

ey (2|x) ~ pa(2|x)

Today we consider a simple but common model

ey (zlx) = N (py(x), exp(Eyp(x))) -

where
» 1) are the weights (in general 1 # 6)
> 3.,(x) is diagonal

P> approximate posterior is similar to an encoder

Evidence Lower Bound Training

Idea: Replace min —log (pg(x,z)) by minlog (Pe(xaz)>
o po(z[x) w0 \ ey(z]X)

Why would this be meaningful?

logpe(x) = E,we,(zlx) [l0g po(x)]

B ey (zlx) :'Og (pa((x\j)))]
Ezney(2]x) :log <p9(X73 ol ’xiﬂ
)

PB

- o0 (X, z
= Ezwe¢(1‘x) _IOg <e¢, Z|X)) < >:|

Drop second term (i.e., KL (ey(z|x)||pg(2z|x)) > 0 to obtain lower
bound (called empirical lower bound or ELBO).

VAE Training Problem

JVAE('wv 0) = _EXNXEZN6¢(2|X) [|Og pg(x, Z) — log 6¢(Z’X)]
= EXNXEzwe,j,(z\x) [_ |0g pg(X‘Z) - |Og pZ(Z) + |0g e¢(Z’X)]

1< N) n
=D |~ 1og pa(xV|2)) — log p2(2") + log e, (27 |x())
i=1

Q

with
» i.i.d. samples xW x@ 0 x6) from X

» one sample z{) per approximate posterior e¢(z]x(i)) (you can
use more, of course)

Remarks:
P> above estimate of objective is unbiased, but can be noisy

> miny Nar(Y, 0) for given 6 improves tightness of ELBO.

Interpret VAE as Regularized Autoencoder

Note that we can re-write the objective in VAE as

JELBO('l/’y 0) = EXNXEz~e¢(Z\x) [_ log pg(X|Z) + log e¢(2|x) — log pZ(z)]
= But [~Fae, (o [108 po(x[2) + KL (e (zlx) |2 (2))]

> first term: minimize approximation error
» second term: bias approximate posteriors toward Z

» need to carefully balance both terms (Bayesian vs. frequentist)

Example: Autoencoders are trained with no regularization
» minimize approximation error
> latent space can be irregular and different from Z

> cannot expect gg(z) to be similar to X when z ~ Z

Example: VAE for MNIST

generated images

MEARENGN AEBERES
<12|0]b|9|0}|SM2[7]1|7|58|6]1]3
917>/4]7|6|/50 /3851033
40410\ [3\§5glen]]]1]52

1]#/0
4|4]6/35|5(6cl0fq|2[6]/|7]£|2]=
ONOENEGE ERREOEE

see VAE.ipynb

Example: Quality of Posterior Approximation MNIST

()
b0
(o]
E
()
=
=
)

see VAE.ipynb

Example: Structure of Latent Space

p(x) and labels samples Z with low pz(Z) [reconstructions, gg(Z)

afafafafafafe]s]
HEENEE0aa

3.5

IIIIIIEI
gx 3SEHEEEEEE

—3.5

> go_l(X) # Z = generator not trained using samples from Z

P in general, expect poor performance of generator for z

see VAE.ipynb

Variational Auto Encoder

vVvYyyvyy

latent space, ¢ = 2 data space, n

[3]-]<
generator gg

support non-invertible, non-smooth gy : R9 — R"

use true posterior pg(z|x) by ey(z|x)

train gg and ey (z|x) using lower bound of samples’ likelihood
interpret as regularized autoencoder to get more flexibility

go trained using samples from approx. posteriors (# Z).

Generative Adversarial
Networks

Generative Adversarial Networks (GAN) [7, 6, 1]

¢ X 2(2)

use discriminator

Idea: Train by minimizing the distance between X’ and gg(2).

Some properties of GAN training
» likelihood free: no density estimate / lower bound needed
» avoids the correspondence problem
» sample from latent distribution in training (unlike CNF, VAE)

Key component: (trained) discriminator to measure the distance.
Today: Binary classification / Transport costs

Discriminator based on Binary Classification [7]

Idea: Consider two sample test problem. Find a discriminator

1, x~X

dpy : R" —[0,1] such that dy(x) ~
¢ ¢ 0, x~ gg(2).

Note: dg will be a DNN with weights ¢.
GAN training seeks to find a Nash equilibrium of

Jean(0, @) = Ex.x [log(dg(x))] + E,~z [log (1 — dy(g6(2)))] -

In other words, find (6%, ¢*) such that

¢* € argmaxJaan(0*,¢) and 0" € argmin Joan(0, @F).
¢ 0

In practice: Use stochastic approximation and alternate between
updating ¢ and @ (need to balance learning rates, batch sizes, .. .)

Reminder: Solving Saddle-Point Problems ain't easy!

Let 8" be the weights of an optimal generator with gg«(Z) = X.
What would that mean for the optimal discriminator dg-7?

Remarks:
1. go+ and dy+ are parameterized by DNN
2. need expressiveness and ideal weights to find this equilibrium

= GAN effectiveness is very hard to predict

This equilibrium will not be stable! Let & = 8* + 66 with [|6)|
small and gz(Z) # X'. Then, the optimal discriminator would be
able to distinguish between samples and data points.

Even worse: We could have VgJgan(8, ¢*) =~ 0.

For more detailed theory and other issues, see [1]

Mode Collapse in GAN Training

Example: gg maps almost all z ~ Z to first data point, that is,

go(z) =x) foralmostall z~ Z

What would that mean for the optimal discriminator dy-?

In this example, mode collapse is easy to detect! What would
happen if gg mapped almost no z ~ Z close to x(1)?

Mode collapse is difficult to detect/avoid. For some heuristics
(batch statistics, label smoothing, ...) see [14].

Example: DCGAN for MNIST

(CEITEED)
712/ 10la] /<2 Jo[2[52]5]51/]8)
GREEGRNE CRNEEaneg
ERROENRNE NEENNEES
ACECENEN AGERANEE
BEREFaNPN RENGERCH
\[5[46[51[7]0
4/u635]5|c0f7]66/[5]4]5|¢]
ONOESEGE ERRESnn

see DCGAN.ipynb

Wasserstein GAN: Transport Costs as Discriminator [2]

Idea: Train gy to minimize Wasserstein-1 distance between X and
8o(Z).

Wi(go(2), X) = inf Bz [[IX =]

Here:
» ~ is a (probabilistic) transport map
» ~(X,x): probability of moving mass between X and x
» [1: set of all ¥(+,-) with marginals X and gg(Z), respectively.

Most practical implementations use equivalent definition

Wilgo(2).¥) = max Eez[f (go(z))] - Exr [F()].

Crux: Need to design and train another NN model f3 : R" — R

Properties of GAN Training [2]

i E,wz [f — Ex~x [f
meln feLrS)E(]fX)Sl z [f (g0(2))] x [f(x)]

Theoretical advantages over discriminator-based GAN
» gy continuous = (0) — Wi(ge(Z), X) continuous
» gp loc. Lipschitz = (0) — Wi(ge(2), X) differentiable

Practical considerations
> Need to enforce f € Lip(f) < 1 (crop weights, gradient
penalty, ...)
» Training f more accurately may not improve results [15]

Example: WGAN for MNIST

et imogss VAE it
HENRENER PEBEGEE
GREEGONE BanEnAng
G754 7]6]e s 7[3851]03[3]
ACECENEN GHEEUNED
BEREFANPN REAGGHER
t[s[X[6£[{#]0
4/u635]5|c0fq] 66| /[£]4|2]2]
ONOESEGE ERREasns

see WGAN.ipynb

Summary

Workshop Overview: Intro to Deep Generative Modeling

Objective: Discuss the three most popular classes of approaches in
a common mathematical framework (main ref [13]).

1. (Continuous) Normalizing Flows (NF / CNF)
» construct go : R" — R” to be diffeomorphic
> train gg by maximizing likelihood of samples
2. Variational Autoencoders (VAE)
» support non-invertible, non-smooth gg : R — R”
> replace inverse of generator by approx. posterior pg(z|x)
> train generator using lower bound of samples’ likelihood
3. Generative Adversarial Networks (GAN)

» support non-invertible, non-smooth gg : R — R”
> likelihood-free training using classifier or transport-distance

Comparison of Approaches

» (Continuous) Normalizing Flows

+ compute and optimize likelihood

+ minimize distance between g, !(X) and Z

- assume smoothness of generator

- in most cases g unknown or known that g < n

» Variational Autoencoders

-+ gg can be non-invertible, non-smooth and g # n
+ loss is related to likelihood, no saddle point problem
- computing likelihood is intractable
- not clear that latent space is sampled well during training
» Generative Adversarial Networks
+ gg can be non-invertible, non-smooth and g # n
+ optimize quality of samples ~» often performs best
- danger of mode collapse (not for WGAN)
- need to compare high-dimensional and complex distributions
- difficult saddle point problems (hyperparameters,...)

> . Deep Generative Modeling

DGM likely to remain an active research topic

Some mathematical challenges:

» how to compare high-dimensional, complicated distributions?
core problem in statistics for decades

» DGM is ill-posed ~ need to better understand role of
hyperparameters (NN design, objective function,
regularization, optimization,..)

» no real guidelines for choosing the latent distribution (or even
determine the intrinsic dimensionality of the data)

» improve efficiency of training algorithms

Thanks to the organizers and all participants!

Questions/suggestions/remarks? — lruthotto@emory.edu

lruthotto@emory.edu

References

(1]
(2]
(3]

(9]

M. Arjovsky and L. Bottou. Towards Principled Methods for Training Generative
Adversarial Networks. arXiv:1701.04862, Jan. 2017.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. arXiv:1701.07875,
Jan. 2017.

T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural Ordinary
Differential Equations. In NeurlPS, June 2018.

L. Dinh, D. Krueger, and Y. Bengio. NICE: Non-linear Independent Components
Estimation. arXiv:1410.8516, Oct. 2014.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using Real NVP.
arXiv:1605.08803, May 2016.

I. Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks.
arXiv:1701.00160, Dec. 2016.

|. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. volume 27, pages
2672-2680, 2014.

W. Grathwohl, R. T. Chen, J. Bettencourt, |. Sutskever, and D. Duvenaud.
Ffjord: Free-form continuous dynamics for scalable reversible generative models.
In International Conference on Learning Representations, 2018.

D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and

M. Welling. Improving Variational Inference with Inverse Autoregressive Flow.
arXiv:1606.04934, June 2016.

References (cont.)

(10]

[11]

D. P. Kingma, M. Welling, et al. An introduction to variational autoencoders.
Foundations and Trends®) in Machine Learning, 12(4):307-392, 2019.

G. Papamakarios, T. Pavlakou, and I. Murray. Masked autoregressive flow for
density estimation. In Advances in Neural Information Processing Systems, pages
2338-2347, 2017.

D. Rezende and S. Mohamed. Variational inference with normalizing flows. In
International Conference on Machine Learning, pages 1530-1538, 2015.

L. Ruthotto and E. Haber. An introduction to deep generative modeling, 2021.

T. Salimans, |. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen.
Improved techniques for training gans. pages 2234-2242, 2016.

J. Stanczuk, C. Etmann, L. M. Kreusser, and C.-B. Schonlieb. Wasserstein gans
work because they fail (to approximate the wasserstein distance), 2021.

	Motivation
	(Continuous) Normalizing Flows
	Variational Autoencoders
	Generative Adversarial Networks
	Summary
	References

