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Motivation: Deep Generative Modeling

Goal: Given samples x1,Xa,... € R" learn a representation of their
underlying distribution X.

Challenges: n typically large, X complicated (multimodal, disjoint
support, etc.)

Idea: Train parameters 6 of generator gg : RY — R” so that it
transforms a given latent distribution Z C R9 to match X.

Generator can be used for
> density estimation: px(x) ~ pg(x) = [ p(x|z)pz(z)dx
» sampling: gg(z) where z ~ Z (main focus today)



lllustration: Deep Generative Modeling
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how to compare?

> X - data distribution

> gg - generator (today: deep neural network)
» 0 - parameters/weights

> Z - latent distribution (today: N(0,14))

DGM - 3



Examples: Moons and MNIST Dataset

Moons toy example:

latent space, ¢ = 2
2.1
generate samples with gg
] =

A
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. estimate density with gal —1421 3 - 21
. =1 1 .

MNIST image generation example:

generator, gg : R2 — R




Workshop Overview: Intro to Deep Generative Modeling

Objective: Discuss the three most popular classes of approaches in
a common mathematical framework (main ref [13]).

1. (Continuous) Normalizing Flows (NF / CNF)
» construct gg : R"” — R” to be diffeomorphic
» train gg by maximizing likelihood of samples
2. Variational Autoencoders (VAE)

» support non-invertible, non-smooth gg : R — R”
> replace inverse of generator by approx. posterior pg(z|x)
> train generator using lower bound of samples’ likelihood

3. Generative Adversarial Networks (GAN)

» support non-invertible, non-smooth gg : R — R”
» likelihood-free training using classifier or transport-distance

each part: 20 min lecture + time for coding, discussion, break.



(Continuous) Normalizing
Flows



(Continuous) Normalizing Flows (CNF)

data space, n = 2

latent space, ¢ = 2!

2.1
generate samples with gg

Assumption: gg is diffeomorphism (requires g = n)
Use change of variables formula to approximate likelihood
px(x) = po(x) = pz (go_l(x)) - det Vge_l(x)

= ) oo (e ()17 - det Vi



Maximum Likelihood Training

ImL(0) = Exx [ log pe(x)]

~ li (1 H -1 (x(f)> H2 —logdet Vg ! (x(i)> + const)
o) 1 > &g g 8o

with i.i.d. samples x(1),x(®) . x(5) ~ x.

Remark: ming Juir(0) is equivalent to minimizing the
Kullback-Leibler divergence between py and py

KL(px|lps) = / px(x) log f,j((,f)) = B ['°g (Zj(()) ﬂ

since py(x) does not depend on 6.

Note: Training needs ggl, generation needs gg.



Finite Normalizing Flows

Idea: For a fixed x ~ Z, write generator as
go(z) = fxofxk_10---0 f(2)
and y(9O y(K=1) " y() pe the hidden features.

Then the inverse and log-determinant of the flow are

j=K

Trade off when choosing layer functions f;:

P expressiveness: able to approximate complicated
transformation

> tractability: easy-to-evaluate inverse and log-determinant



Normalizing Flows: Some References

latent space, =2

2.1
generate samples with gg
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> Efficient gg and gb,_1
» NICE: Non-linear independent components estimation [4]
» real NVP: real non-volume preserving flows [5] (next slide)
> Efficient gg but not gﬁ,_1
» planar and radial flows [12]
> inverse autoregressive flows [9]
> Not efficient gg but efficient ge_l
» masked auto-regressive flow [11]



Example: Real Non-Volume Preserving Flow [5]

Let n =g = 2. The jth layer splits its input yU) € R? into its

components ygj) and yg)

' ()
£ <y0)> = zij) exp (Sj <y§1))) +t (yY)) ] ;

where s, t; : R — R are neural networks that model scaling and
translation, respectively.

Checklist:
()

» switch the roles of ylj G)

and y;’ at other layers
» log-determinant and inverse trivial to compute (try it!)

> expressiveness may require many layers (think n large)



Example: Real NVP for Moons Dataset
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see RealNVP.ipynb



Continuous Normalizing Flows [8]

latent space, ¢ = 2

data space, n = 2

2.1
generate samples with gg
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For T >0, let gg(z) = y(T) where y : [0, T] — R”" satisfies

y'(t) = vo(y(t),t), where y(0)=z.

Here, v : R” x R — R" is a neural network ~» Neural ODE [3]



Example: OT-Flow for Moons Dataset
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see 0TFlow. ipynb
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Discussion: Normalizing Flows

v

latent space, ¢ = 2

2.1
generate samples with gg

X2

data space, n = 2
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s estimate density with g, 1£1.2 X 21

train gg by maximizing likelihood of samples

can be used for sampling and density estimation
limitation: gp : R” — R" is diffeomorphic = intrinsic
dimension of X must be n and support cannot be disjoint
NF: need to trade-off expressiveness and efficiency

CNF: scalable to high dimensions, that is, n = O(10?).



Variational Autoencoders



Variational Autoencoders (VAE) [10]

Let now g # n, for example, g < n (very common).

Cannot use (C)NF since
> ggl may not exist
» KL(px(x)||pe(x)) may be unbounded

Need alternative way to define a loss function!

Apply Bayes' rule and note that

Po(x,z) _ po(x|z)pz(z) or z~
pe(z|x)  pe(z|x) f -

Pe(x) =

Cannot maximize right hand side directly (pg(z|x) is intractable)



Key idea in VAE: Approximate the Posterior

For an arbitrary generator gg, it is intractable to compute the
posterior pg(z|x).

Idea: Learn an approximate posterior

ey (2|x) ~ pa(2|x)

Today we consider a simple but common model

ey (zlx) = N (py(x), exp(Eyp(x))) -

where
» 1) are the weights (in general 1 # 6)
> 3.,(x) is diagonal

P> approximate posterior is similar to an encoder



Evidence Lower Bound Training

Idea: Replace min —log (pg(x,z)) by minlog (Pe(xaz)>
o po(z[x) w0 \ ey(z]X)

Why would this be meaningful?

logpe(x) = E,we,(zlx) [l0g po(x)]

B ey (zlx) :'Og (pa((x\j)))]
Ezney(2]x) :log <p9(X73 ol ’xiﬂ
)

PB

- o0 (X, z
= Ezwe¢(1‘x) _IOg <e¢, Z|X)) < >:|

Drop second term (i.e., KL (ey(z|x)||pg(2z|x)) > 0 to obtain lower
bound (called empirical lower bound or ELBO).




VAE Training Problem

JVAE('wv 0) = _EXNXEZN6¢(2|X) [|Og pg(x, Z) — log 6¢(Z’X)]
= EXNXEzwe,j,(z\x) [_ |0g pg(X‘Z) - |Og pZ(Z) + |0g e¢(Z’X)]

1< N ) n
=D |~ 1og pa(xV|2)) — log p2(2") + log e, (27 |x())
i=1

Q

with
» i.i.d. samples xW x@ 0 x6) from X

» one sample z{) per approximate posterior e¢(z]x(i)) (you can
use more, of course)

Remarks:
P> above estimate of objective is unbiased, but can be noisy

> miny Nar(Y, 0) for given 6 improves tightness of ELBO.



Interpret VAE as Regularized Autoencoder

Note that we can re-write the objective in VAE as

JELBO('l/’y 0) = EXNXEz~e¢(Z\x) [_ log pg(X|Z) + log e¢(2|x) — log pZ(z)]
= But [~Fae, (o [108 po(x[2) + KL (e (zlx) |2 (2))]

> first term: minimize approximation error
» second term: bias approximate posteriors toward Z

» need to carefully balance both terms (Bayesian vs. frequentist)

Example: Autoencoders are trained with no regularization
» minimize approximation error
> latent space can be irregular and different from Z

> cannot expect gg(z) to be similar to X when z ~ Z



Example: VAE for MNIST

generated images
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see VAE.ipynb



Example: Quality of Posterior Approximation MNIST
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see VAE.ipynb



Example: Structure of Latent Space

p(x) and labels samples Z with low pz(Z) [ reconstructions, gg(Z)

afafafafafafe]s]
HEENEE0aa

3.5
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gx 3SEHEEEEEE

—3.5

> go_l(X) # Z = generator not trained using samples from Z

P in general, expect poor performance of generator for z

see VAE.ipynb



Variational Auto Encoder

vVvYyyvyy

latent space, ¢ = 2 data space, n

[3]-]<
generator gg

support non-invertible, non-smooth gy : R9 — R"

use true posterior pg(z|x) by ey(z|x)

train gg and ey (z|x) using lower bound of samples’ likelihood
interpret as regularized autoencoder to get more flexibility

go trained using samples from approx. posteriors (# Z).



Generative Adversarial
Networks



Generative Adversarial Networks (GAN) [7, 6, 1]

¢ X 2(2)

use discriminator

Idea: Train by minimizing the distance between X’ and gg(2).

Some properties of GAN training
» likelihood free: no density estimate / lower bound needed
» avoids the correspondence problem
» sample from latent distribution in training (unlike CNF, VAE)

Key component: (trained) discriminator to measure the distance.
Today: Binary classification / Transport costs



Discriminator based on Binary Classification [7]

Idea: Consider two sample test problem. Find a discriminator

1, x~X

dpy : R" —[0,1] such that dy(x) ~
¢ ¢ 0, x~ gg(2).

Note: dg will be a DNN with weights ¢.
GAN training seeks to find a Nash equilibrium of

Jean(0, @) = Ex.x [log(dg(x))] + E,~z [log (1 — dy(g6(2)))] -

In other words, find (6%, ¢*) such that

¢* € argmaxJaan(0*,¢) and 0" € argmin Joan(0, @F).
¢ 0

In practice: Use stochastic approximation and alternate between
updating ¢ and @ (need to balance learning rates, batch sizes, .. .)



Reminder: Solving Saddle-Point Problems ain't easy!

Let 8" be the weights of an optimal generator with gg«(Z) = X.
What would that mean for the optimal discriminator dg-7?

Remarks:
1. go+ and dy+ are parameterized by DNN
2. need expressiveness and ideal weights to find this equilibrium

= GAN effectiveness is very hard to predict

This equilibrium will not be stable! Let & = 8* + 66 with [|6)|
small and gz(Z) # X'. Then, the optimal discriminator would be
able to distinguish between samples and data points.

Even worse: We could have VgJgan(8, ¢*) =~ 0.

For more detailed theory and other issues, see [1]



Mode Collapse in GAN Training

Example: gg maps almost all z ~ Z to first data point, that is,

go(z) =x)  foralmostall z~ Z

What would that mean for the optimal discriminator dy-?

In this example, mode collapse is easy to detect! What would
happen if gg mapped almost no z ~ Z close to x(1)?

Mode collapse is difficult to detect/avoid. For some heuristics
(batch statistics, label smoothing, ...) see [14].



Example: DCGAN for MNIST
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see DCGAN.ipynb



Wasserstein GAN: Transport Costs as Discriminator [2]

Idea: Train gy to minimize Wasserstein-1 distance between X and
8o(Z).

Wi(go(2), X) = inf Bz [[IX = ]

Here:
» ~ is a (probabilistic) transport map
» ~(X,x): probability of moving mass between X and x
» [1: set of all ¥(+,-) with marginals X and gg(Z), respectively.

Most practical implementations use equivalent definition

Wilgo(2).¥) = max  Eez[f (go(z))] - Exr [F()].

Crux: Need to design and train another NN model f3 : R" — R



Properties of GAN Training [2]

i E,wz [f — Ex~x [f
meln feLrS)E(]fX)Sl z [f (g0(2))] x [f(x)]

Theoretical advantages over discriminator-based GAN
» gy continuous = (0) — Wi(ge(Z), X) continuous
» gp loc. Lipschitz = (0) — Wi(ge(2), X) differentiable

Practical considerations
> Need to enforce f € Lip(f) < 1 (crop weights, gradient
penalty, ...)
» Training f more accurately may not improve results [15]



Example: WGAN for MNIST
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see WGAN.ipynb



Summary



Workshop Overview: Intro to Deep Generative Modeling

Objective: Discuss the three most popular classes of approaches in
a common mathematical framework (main ref [13]).

1. (Continuous) Normalizing Flows (NF / CNF)
» construct go : R" — R” to be diffeomorphic
> train gg by maximizing likelihood of samples
2. Variational Autoencoders (VAE)
» support non-invertible, non-smooth gg : R — R”
> replace inverse of generator by approx. posterior pg(z|x)
> train generator using lower bound of samples’ likelihood
3. Generative Adversarial Networks (GAN)

» support non-invertible, non-smooth gg : R — R”
> likelihood-free training using classifier or transport-distance



Comparison of Approaches

» (Continuous) Normalizing Flows

+ compute and optimize likelihood

+ minimize distance between g, !(X) and Z

- assume smoothness of generator

- in most cases g unknown or known that g < n

» Variational Autoencoders

-+ gg can be non-invertible, non-smooth and g # n
+ loss is related to likelihood, no saddle point problem
- computing likelihood is intractable
- not clear that latent space is sampled well during training
» Generative Adversarial Networks
+ gg can be non-invertible, non-smooth and g # n
+ optimize quality of samples ~» often performs best
- danger of mode collapse (not for WGAN)
- need to compare high-dimensional and complex distributions
- difficult saddle point problems (hyperparameters,...)



> . Deep Generative Modeling

DGM likely to remain an active research topic

Some mathematical challenges:

» how to compare high-dimensional, complicated distributions?
core problem in statistics for decades

» DGM is ill-posed ~ need to better understand role of
hyperparameters (NN design, objective function,
regularization, optimization,..)

» no real guidelines for choosing the latent distribution (or even
determine the intrinsic dimensionality of the data)

» improve efficiency of training algorithms

Thanks to the organizers and all participants!

Questions/suggestions/remarks? — lruthotto@emory.edu


lruthotto@emory.edu
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