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Reading List
Historical Context: First works on neural approximations of PDEs and operators in
the 90s. Popularized in the mid 2010s, benchmarks reveal accuracy gap to traditional
methods.

Key Readings:
1. Raissi et al. (2019) – Physics-Informed Neural Networks. J. Comp. Physics

Foundational PINN framework for forward/inverse problems.

2. Lu et al. (2021a) – DeepONet: Learning Nonlinear Operators. Nature Mach. Intell.
Universal approximation for operators.

3. Li et al. (2021a) – Fourier Neural Operator for Parametric PDEs. ICLR
Spectral methods for fast operator learning.

4. Takamoto et al. (2022a) – PDEBench. NeurIPS Datasets
Standardized benchmarks revealing accuracy gaps.

5. Krishnapriyan et al. (2021a) – PINN Failure Modes. NeurIPS
Spectral bias and optimization challenges.

Lecture Outline: Classical Methods → PINNs → Neural Operators → Hybrid
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Running Example: 2D Heterogeneous Darcy Flow
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−∇ · (κ(x, y)∇u) = f in Ω = [0, 1]2

with u = 0 on ∂Ω

Physical meaning: Porous media flow
▶ κ(x, y): permeability field (input)
▶ u(x, y): pressure/potential (output)
▶ f = 1: constant forcing

Dataset: PDEBench
▶ 128×128 grid = 16,384 unknowns
▶ 10,000 samples (train/val/test)
▶ κ: thresholded GRF ∈ {0.1, 1.0}
▶ Reference solutions via finite-volume

solver

running example: same problem, all methods, fair comparison
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Classical Baseline: Finite Differences + CG
Discretization
▶ 5-point stencil (FD ≡ P1

FEM)
▶ Harmonic averaging of κ at

faces
▶ Sparse linear system Au = b

Solver
▶ Conjugate Gradient (CG)
▶ IC(0) preconditioner
▶ Tolerance: 10−8 relative

Performance (5 samples)
▶ Solve time: 0.14s
▶ Iterations: 3–4 (with IC)
▶ Rel. L2 vs PDEBench: 6.1%

Why ∼6% Error?
▶ FD uses harmonic avg of κ
▶ PDEBench: cell-centered finite-volume
▶ Different discretizations!

a good baseline to ground neural methods
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Roadmap: Scientific ML for PDEs

Linear
Algebra Optimization PDEs

Approx.
Theory Statistics

Probability

Comp
Math

AI

Rigorous Tools
New Capabilities

Goal: Use AI to accelerate or improve classical PDE solvers for
▶ Outer-loop problems: Inverse problems, optimal design
▶ Multi-scale closures (turbulence)
▶ High dimensions (d > 6)

Lecture Outline: Theory → PINNs → Neural Operators → Hybrid Methods
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Theoretical Foundations
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Why Neural Networks for PDEs?

Classical Universal Approximation Theorem (Cybenko 1989)
Single hidden layer net can approximate any f ∈ C(Rn,R) to arbitrary accuracy
Common argument: PDE solutions u(x, t) are functions ⇒ NNs can represent them

Operator Approximation Theorem (Chen and Chen 1995)
Neural nets can approximate nonlinear operators G : V → W between function spaces
Common argument: PDEs define operators mapping inputs (ICs, BCs, params) to
solutions ⇒ NNs can represent solution operators

Critical Caveats
▶ Approximation exists ̸= efficiently learnable
▶ May require infeasible width / data
▶ Finding good weights is a non-convex optimization challenge

In theory there is no gap between theory and practice, in practice there may be

Title Intro Theory PINNs Operators Results Hybrid Σ References 7



lruthot@emory.edu Comp Math and AI @ SciML for PDEs

Automatic Differentiation: Enabling PINNs
Modern ML frameworks (PyTorch, JAX) compute exact derivatives through
computational graphs

How It Enables PINNs

Neural network: uθ(x, t)

Derivatives: ∂uθ
∂x , ∂uθ

∂t , ∂2uθ
∂x2 (exact via chain rule)

PDE residual: ∂uθ
∂t − α∂2uθ

∂x2 =?

Loss: minimize residual w.r.t. θ

autodiff

Why This is Helpful
▶ Exact derivatives (not finite difference approximations)
▶ Dimension-agnostic (same code 1D → 10D)
▶ Complex PDEs (nonlinear, coupled, high-order)
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Two Paradigms: PINNs vs Neural Operators
Fundamental Distinction

Aspect PINNs Neural Operators
Learn what? One solution u(x, t) Operator G: inputs → u(x, t)
Theory Function approximation Operator approximation
Training data PDE residual + BCs Many solved instances
Optimization Physics-informed Supervised learning
Data cost Low (physics-only) High (need 1000s PDEs)
Training cost High (optimization) Medium (supervised)
Inference cost High (solve each) Very low (forward pass)
Use case One-off, inverse Parametric, real-time

Example
▶ PINN: Given heat equation with specific u0(x), learn that u(x, t)
▶ Neural Op: Given 1000s of heat equations with varying u0, learn map u0 → u(x, t)

function vs operator learning—fundamentally different

Title Intro Theory PINNs Operators Results Hybrid Σ References 9



lruthot@emory.edu Comp Math and AI @ SciML for PDEs

Physics-Informed Neural Networks
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Physics-Informed Neural Networks (PINNs)
Idea: Train neural net to satisfy PDEs, boundary conditions, and data simultaneously

The PINN Method
Given PDE: N [u(x)] = 0 (e.g., Burgers: N [u(x)] = ut + uux − νuxx)
Three Steps:

1. Represent solution: Neural network uθ(x, t)
2. Define composite loss:

L = λrLPDE + λbLBC + λdLdata

where LPDE = 1
Nr

∑Nr
i=1 |N [uθ](xi)|2

3. Train: Gradient descent to minimize L

Theoretical Appeal
▶ Mesh-free, dimension-agnostic, seamless data fusion
▶ Joint solution-parameter learning for inverse problems

next: reality check from rigorous benchmarking
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PINN for Darcy Flow: Heterogeneous κ

Given κ, find uθ by minimizing

LPINN(θ) = LPDE(θ) + λLBC(θ)

LPDE(θ) =
1
N

N∑
i=1

|∇·(κ(xi, yi)∇uθ(xi, yi))−f |2

with cell-centered grid points (xi, yi).

Architecture (HPO-tuned)
▶ 4 layers × 32 neurons, GELU
▶ 500 interior + 800 boundary points
▶ λBC = 85 (strong BC weighting)

Results
▶ Training: ∼200s (20k iterations)
▶ Rel. L2: 37.9% (heterogeneous κ!)

κ uref

uθ |uθ − uref|

0 0.5 1 1.5 2

·104

10−1

100

iteration
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ss
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Documented Difficulties in PINNs
1. Spectral Bias Krishnapriyan et al. 2021b
▶ Networks learn low frequencies first, struggle with high frequencies
▶ Cannot capture shocks, sharp gradients, thin boundary layers
▶ Partial fix: Fourier features help but don’t eliminate problem

2. Gradient Pathologies Wang et al. 2021
▶ PDE, BC, data losses operate at vastly different scales
▶ Gradient imbalance: some terms dominate, others ignored
▶ Requires problem-specific tuning (no general rule for λ ratios)

3. Optimization Difficulties Krishnapriyan et al. 2021b; Takamoto et al. 2022b
▶ Non-convex landscape with many poor local minima
▶ Extreme sensitivity to initialization, learning rate, architecture
▶ Reproducibility issues: early papers missed hyperparameter details

making PINNs work is more difficult and problem-specific than initially thought
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Neural Operator Learning
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Learn Once, Solve Many Times
The Concept
Train once on many examples → instant solve for new instances

Comparison

Aspect PINNs Neural Operators
Training paradigm Solve one instance Learn from many
Training cost Low (physics) High (need dataset)
Inference cost High (optimization) Very low (forward pass)
Use case One-off Parametric, real-time

Two Architectures
▶ DeepONet: Branch (encode input) + Trunk (encode location) →

G(u)(x) ≈ ∑
k bk(u) · tk(x)

▶ Fourier Neural Operator (FNO): Learn in frequency domain, O(N logN) via FFT

Goal: amortize expensive offline training in massive outer-loop problems
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Fourier Neural Operator (FNO) Architecture
Key Idea Li et al. 2021b: Learn operators in frequency domain

κ(x, y)

Input

Lift

[κ, x, y]P

V(0)

H×W×c

F−1(Rθ · F)

Wθ (local)

σ(·)

FNO Block

· · ·
L layers

F−1(Rθ · F)

Wθ (local)

σ(·)

V(L) Project

Q1Q2

u(x, y)

Output

Spectral conv (global, low-freq) Linear Wθ (local, high-freq)

Spectral Convolution Layer

K(V) = F−1 (Rθ · F(V))

▶ Rθ ∈ Cc×c×k×k: learnable weights
▶ Truncate to k lowest modes per

dimension

Key Properties
▶ FFT: O(N logN) per layer
▶ Resolution-invariant

(discretization-free)
▶ Global receptive field (vs. local

CNNs)
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DeepONet Architecture

Input κ(x, y)

κ|sensors

m

sample

Branch Net

MLP

b ∈ Rp

p

(x, y)

2
Trunk Net

MLP

t ∈ Rp

p

⟨·, ·⟩

Output Gθ(κ)(x, y)

Encodes input function

Encodes query location

Gθ(κ)(x, y) =

p∑

k=1

bk(κ) · tk(x, y) = ⟨b, t⟩

Key Idea Lu et al. 2021b: Separate encoding of input function and query location

Theoretical Foundation
Universal approximation theorem for
operators (Chen and Chen 1995)

Key Properties
▶ Mesh-free evaluation
▶ Flexible sensor placement
▶ Scales with latent dim p, not grid size

Title Intro Theory PINNs Operators Results Hybrid Σ References 17



lruthot@emory.edu Comp Math and AI @ SciML for PDEs

When Does Upfront Training Pay Off?
Training cost: Dataset generation + GPU
training time
Darcy Flow example:
▶ Training: 9000 samples, ∼20-40 min GPU
▶ Inference: 5-8 ms per solve
▶ Classical: 300ms per solve

Break-even Analysis
Neural operators beat classical when:

Tdata gen + Ttrain + N · Tinfer︸ ︷︷ ︸
Neural Op

< N · Tclassical︸ ︷︷ ︸
Classical

Rule of thumb: 10,000+ solves to amortize
training

Accuracy Time
Classical ∼6% 140ms
FNO ∼8% 0.9ms
DeepONet ∼9% 0.5ms

When It Makes Sense
▶ Parametric optimization (50k+

evals)
▶ Real-time control (<10ms

required)
▶ Uncertainty quantification

(100k samples)

trade-off: ∼8-9% accuracy with fast inference —economical for repeated solves
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Darcy Flow Results
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DeepONet for Darcy Flow: Branch-Trunk Architecture
Learn operator G : κ 7→ u from data

G(κ)(x, y) ≈
p∑

k=1

bk(κ) · tk(x, y)

▶ Branch: encodes κ at sensor points
▶ Trunk: encodes query location (x, y)

Architecture
▶ Latent dim: 256, Hidden: 3 × 512
▶ Parameters: 3.4M

Results
▶ Test MSE: 3.6 × 10−4

▶ Test Rel. L2: 9.1%
▶ Training: ∼12 min (300 epochs)

κ uref

Gθ(κ) |Gθ(κ) − uref|

0 100 200 300

10−4

10−3

10−2

epoch

M
S

E

train

val
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FNO for Darcy Flow: Fourier Neural Operator
Learn in frequency domain: O(N logN)
via FFT

fθ(V) = F−1 (Rθ · F(V))︸ ︷︷ ︸
global

+V W︸︷︷︸
local

▶ Fourier: mixes k low-freq. modes
▶ Linear: channel mixing (high freq.)

Architecture (HPO-tuned)
▶ Modes: 12, Width: 20, 4 layers
▶ Parameters: 926K

Results
▶ Test MSE: 2.8 × 10−4

▶ Test Rel. L2: 8.5%
▶ Training: ∼13 min (150 epochs)

κ uref

Gθ(κ) |Gθ(κ) − uref|

0 50 100 150

10−4

10−3

epoch
M

S
E

train

val
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FNO vs DeepONet: Test Samples
κ (input) FNO pred FNO error DeepONet pred DeepONet error

FNO: 8.5% rel. error — DeepONet: 9.1% rel. error
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Summary: Performance on 2D Darcy Flow, PDEBench)

Method Accuracy Time Training Params Data
Classical (CG+IC) 6.1% 0.14s — — —
PINN 37.9% 200s 200s 3K 0
DeepONet 9.1% 0.5ms 12 min 3.4M 8K
FNO 8.5% 0.9ms 13 min 926K 8K

When to Use What

▶ Single solve, high accuracy →
Classical

▶ Inverse problem, sparse data →
PINN

▶ 1000+ parametric solves → Neural
operators

▶ Real-time (<10ms) → Neural
operators
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Hybrid Approaches
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GNN-Enhanced Preconditioners (Trifonov et al. (2024))
Key Idea: Learn correction to incomplete
Cholesky:

L(θ) = LIC + α · GNN(θ, LIC, b)

▶ Start from IC(0) or ICt(1) factor
▶ GNN: 5 message-passing rounds
▶ Preserves SPD structure

Training Loss

L =
1
N

N∑
i=1

∥L(θ)L(θ)⊤xi − bi∥2
2

bi ∼ N (0, I), xi = A−1bi ⇒ emphasizes low
frequencies

Results: 2D Diffusion

Method Iters
IC(0) 95
PreCorrector 52

κ : 270 → 55 (79% ↓)

ML augments classical preconditioner to improve performance
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Summary
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Benchmarking Best Practices
Need for Tough Baselines
▶ Always compare against state-of-the-art classical methods (FEniCS, PETSc)
▶ Same problem, same metrics, fair compute budgets

Reproducibility Checklist
□ Full hyperparameters documented?
□ Multiple runs with confidence intervals?
□ Open-source code provided?
□ Failure modes documented?

Honest Assessment
▶ PDEBench revealed 10−3 vs 10−6 accuracy gap
▶ Document limitations, don’t cherry-pick successes
▶ Rigorous benchmarking prevents wasted effort

extraordinary claims require extraordinary evidence
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Σ: Scientific ML for PDEs
What We Learned
▶ Theory: UAT + autodiff enable neural PDE

methods
▶ PINNs: optimization overhead, perhaps

promising for inverse problems
▶ Neural Operators: 8-9% accuracy,

100-300× faster after training
▶ Hybrid: Augment classical at bottlenecks

(20-30% speedup)

Running Example Results (Darcy Flow)

Method Accuracy Time
Classical CG 6.1% 0.14s
PINN 37.9% 200s
FNO 8.5% 0.9ms
DeepONet 9.1% 0.5ms

When to Use What
▶ High accuracy needed?

→ Classical (only option)
▶ 10,000+ parametric solves?

→ Neural operators
▶ Real-time (<10ms)?

→ Neural operators
▶ High-dim (d>6)?

→ PINNs (Lecture 8)
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