R 1ruthoteemory.edu Comp Math and Al @ SciML for PDEs

Computational Mathematics and Al

Lecture 7: Scientific Machine Learning for PDEs

Lars Ruthotto
Departments of Mathematics and Computer Science
lruthotto@emory.edu

) larsruthotto 28
o
Xm)l

Title Intro Theory PINNs Operators Results Hybrid 3  References


https://linkedin.com/in/larsruthotto

5 1lruthot@emory.edu Comp Math and Al @ SciML for PDEs

Reading List

Historical Context: First works on neural approximations of PDEs and operators in
the 90s. Popularized in the mid 2010s, benchmarks reveal accuracy gap to traditional
methods.
Key Readings:
1. Raissi et al. (2019) — Physics-Informed Neural Networks. J. Comp. Physics
Foundational PINN framework for forward/inverse problems.
2. Luetal. (2021a) — DeepONet: Learning Nonlinear Operators. Nature Mach. Intell.
Universal approximation for operators.
3. Lietal. (2021a) — Fourier Neural Operator for Parametric PDEs. ICLR

Spectral methods for fast operator learning.
4. Takamoto et al. (2022a) — PDEBench. NeurlPS Datasets

Standardized benchmarks revealing accuracy gaps.

5. Krishnapriyan et al. (2021a) — PINN Failure Modes. NeurlPS

Spectral bias and optimization challenges.

Lecture Outline: Classical Methods — PINNs — Neural Operators — Hybrid
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Running Example: 2D Heterogeneous Darcy Flow
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Dataset: PDEBench
~V - (k(x,y)Vu) =f inQ=1]0,1] > 128x128 grid = 16,384 unknowns
» 10,000 samples (train/val/test)

with "= 0on 3? | > «: thresholded GRF € {0.1, 1.0}
Physical meaning: Porous media flow » Reference solutions via finite-volume
> x(x,y): permeability field (input) solver

> u(x,y): pressure/potential (output)
» f = 1: constant forcing
running example: same problem, all methods, fair comparison
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Classical Baseline: Finite Differences + CG

Discretization
» 5-point stencil (FD = P1
FEM)
» Harmonic averaging of  at
faces

» Sparse linear system Au =b

Solver
» Conjugate Gradient (CG)
» 1C(0) preconditioner
» Tolerance: 10~ relative

Performance (5 samples)
» Solve time: 0.14s
» lterations: 3—4 (with IC)
» Rel. L?> vs PDEBench: 6.1%
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» FD uses harmonic avg of x
» PDEBench: cell-centered finite-volume
» Different discretizations!
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Why ~6% Error?

a good baseline to ground neural methods
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Roadmap: Scientific ML for PDEs

Comp Math and Al @ SciML for PDEs

Rigorous Tools <

3 New Capabilities
L4

T—T

Comp
Math

Linear
Algebra Optimization ppDEs

Approx.

Al

Probability

Theory Statistics

Goal: Use Al to accelerate or improve classical PDE solvers for
» Outer-loop problems: Inverse problems, optimal design

» Multi-scale closures (turbulence)
» High dimensions (d > 6)

Lecture Outline: Theory — PINNs — Neural Operators — Hybrid Methods
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Theoretical Foundations
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Why Neural Networks for PDEs?

Classical Universal Approximation Theorem (Cybenko 1989)
Single hidden layer net can approximate any f € C(R”,R) to arbitrary accuracy
Common argument: PDE solutions u(x, ¢) are functions = NNs can represent them

Operator Approximation Theorem (Chen and Chen 1995)
Neural nets can approximate nonlinear operators G : V — W between function spaces
Common argument: PDEs define operators mapping inputs (ICs, BCs, params) to
solutions = NNs can represent solution operators
Critical Caveats

» Approximation exists # efficiently learnable

» May require infeasible width / data

» Finding good weights is a non-convex optimization challenge

In theory there is no gap between theory and practice, in practice there may be
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Automatic Differentiation: Enabling PINNs

Modern ML frameworks (PyTorch, JAX) compute exact derivatives through
computational graphs

How It Enables PINNs

Neural network: uy(x, )

L autodiff
Derivatives: 2, % 882;9 (exact via chain rule)
!
PDE residual: % — o2t =7

l

Loss: minimize residual w.r.t. 8

Why This is Helpful
» Exact derivatives (not finite difference approximations)
» Dimension-agnostic (same code 1D — 10D)
» Complex PDEs (nonlinear, coupled, high-order)
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Two Paradigms: PINNs vs Neural Operators

Fundamental Distinction

Aspect PINNs Neural Operators

Learn what?  One solution u(x,¢) Operator G: inputs — u(x, 1)

Theory Function approximation Operator approximation

Training data  PDE residual + BCs Many solved instances

Optimization  Physics-informed Supervised learning

Data cost Low (physics-only) High (need 1000s PDEs)

Training cost  High (optimization) Medium (supervised)

Inference cost High (solve each) Very low (forward pass)

Use case One-off, inverse Parametric, real-time
Example

» PINN: Given heat equation with specific uy(x), learn that u(x, t)
» Neural Op: Given 1000s of heat equations with varying u, learn map uy — u(x, 1)
function vs operator learning—fundamentally different
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Physics-Informed Neural Networks
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Physics-Informed Neural Networks (PINNS)
Idea: Train neural net to satisfy PDEs, boundary conditions, and data simultaneously

The PINN Method
Given PDE: Nu(x)] = 0 (e.g., Burgers: N{u(x)] = u, + uu, — vuy,)
Three Steps:

1. Represent solution: Neural network uy(x, )

2. Define composite loss:

L = \.Lppe + MpLec + Ailgata

where Lppg = 1% Zi\il ./\/'[ug](x,')lz
3. Train: Gradient descent to minimize L

Theoretical Appeal
» Mesh-free, dimension-agnostic, seamless data fusion
» Joint solution-parameter learning for inverse problems

next: reality check from rigorous benchmarking
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PINN for Darcy Flow: Heterogeneous x

Reference u (PDEBench)

1.0

0.4

Given x, find uy by minimizing
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Lpinn(8) = Lppge(8) + ALgc () " s " os
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LPDE Z |v x[, yl vue (XI, yl))_f|2 0.0 0.2 04':05 0.8 1.0 0.0 0.2‘ 0.4 . 0.6 |0.8 1.0
10 PINN ug (37.9%) ‘:e ,_umuf‘mf
with cell-centered grid points (x;, y;)-
Architecture (HPO-tuned)
» 4 layers x 32 neurons, GELU
» 500 interior + 800 boundary points T e e e e
> A\gc = 85 (strong BC weighting)
10° E
Results 8 . 7 7
» Training: ~200s (20k iterations) —_—

> Rel. L% 37.9% (heterogeneous «!)

iteration

=
>
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Documented Difficulties in PINNs
1. Spectral Bias Krishnapriyan et al. 2021b
» Networks learn low frequencies first, struggle with high frequencies
» Cannot capture shocks, sharp gradients, thin boundary layers
» Partial fix: Fourier features help but don’t eliminate problem

2. Gradient Pathologies Wang et al. 2021
» PDE, BC, data losses operate at vastly different scales
» Gradient imbalance: some terms dominate, others ignored
» Requires problem-specific tuning (no general rule for A ratios)

3. Optimization Difficulties Krishnapriyan et al. 2021b; Takamoto et al. 2022b
» Non-convex landscape with many poor local minima
» Extreme sensitivity to initialization, learning rate, architecture
» Reproducibility issues: early papers missed hyperparameter details

making PINNs work is more difficult and problem-specific than initially thought
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Neural Operator Learning
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Learn Once, Solve Many Times

The Concept
Train once on many examples — instant solve for new instances

Comparison

Aspect PINNs Neural Operators
Training paradigm Solve one instance Learn from many
Training cost Low (physics) High (need dataset)
Inference cost High (optimization) Very low (forward pass)
Use case One-off Parametric, real-time

Two Architectures
» DeepONet: Branch (encode input) + Trunk (encode location) —

G(u)(x) = 224 be(u) - (x)
» Fourier Neural Operator (FNO): Learn in frequency domain, O(N log N) via FFT

Goal: amortize expensive offline training in massive outer-loop problems
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Fourier Neural Operator (FNO) Architecture

Key Idea Li et al. 2021b: Learn operators in frequency domain

Input FNO Block Output

pf J:

F (R - F) 1(Re F)

—> Llft v —> W, (local) — _)Wa (local)-—> v —>M—> H
HxWxe -~ ‘

[k, z, y]P . L layers

n(z y) u(z,y)
== Spectral conv (global, low-freq) === Linear Wy (local, high-freq)
Spectral Convolution Layer Key Properties

» FFT: O(NlogN) per layer

» Resolution-invariant
(discretization-free)

K(V)=F " (Rg- F(V))

> R, € C=k<k: |earnable weights » Global receptive field (vs. local
CNNs
» Truncate to k lowest modes per )
dimension
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DeepONet Architecture

Encodes input function

MLP
K]sensors

b € R?
sample
= [ == —()

Input x(z,y) Output Go(k)(z,y)

Go(r)(,y) = Y bifr) - ti(z,y) = (b, t)
k=1

MLP
t € RP
(z,y)
0 —>| Trunk Net l:] v

Encodes query location

Key Idea Lu et al. 2021b: Separate encoding of input function and query location

Theoretical Foundation Key Properties
Universal approximation theorem for » Mesh-free evaluation

operators (Chen and Chen 1995) > Flexible sensor placement

» Scales with latent dim p, not grid size

17
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When Does Upfront Training Pay Off?

Training cost: Dataset generation + GPU

training time Accuracy Time
Darcy Flow example: Classical ~6% 140ms
» Training: 9000 samples, ~20-40 min GPU FNO ~8%  0.9ms

~ O,
> Inference: 5-8 ms per solve DeepONet 9% 0.5ms

» Classical: 300ms per solve When It Makes Sense

Break-even Analysis » Parametric optimization (50k+
Neural operators beat classical when: evals)

» Real-time control (<10ms

?data gen + Tt:iin +N- TinfeL < N - Tyassical required)
Neural Op Classical » Uncertainty quantification
Rule of thumb: 10,000+ solves to amortize (100k samples)

training

trade-off: ~8-9% accuracy with fast inference —economical for repeated solves
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Darcy Flow Results
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DeepONet for Darcy Flow: Branch-Trunk Architecture,,

n

Learn operator G : x — u from data

Zbk thy

» Branch: encodes « at sensor points
» Trunk: encodes query location (x,y)

Architecture
» Latent dim: 256, Hidden: 3 x 512
» Parameters: 3.4M

Results
» Test MSE: 3.6 x 10~*
» Test Rel. L?: 9.1%
» Training: ~12 min (300 epochs)
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FNO for Darcy Flow: Fourier Neural Operator

Learn in frequency domain: O(N log N) . :
via FFT - “
foV)=F ' (Ry- F(V)+VYW A e I

ob local
global oca

Go(r) [Go (k) — trer

» Fourier: mixes k low-freq. modes
» Linear: channel mixing (high freq.)
Architecture (HPO-tuned)
» Modes: 12, Width: 20, 4 layers
» Parameters: 926K
Results
» Test MSE: 2.8 x 10~* g
> Test Rel. L2: 8.5% 5 | |
» Training: ~13 min (150 epochs) ’ * 100 0

MSE

epoch
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FNO vs DeepONet: Test Samples

 (input) FNO pred FNO error  DeepONet pred DeepONet error

-

FNO: 8.5% rel. error — DeepONet: 9.1% rel. error
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Summary: Performance on 2D Darcy Flow, PDEBench)

Method Accuracy Time Training Params Data
Classical (CG+IC) 6.1% 0.14s — — —
PINN 37.9% 200s 200s 3K 0
DeepONet 9.1% 0.5ms 12 min 3.4M 8K
FNO 8.5% 0.9ms 13 min 926K 8K

When to Use What

» Single solve, high accuracy — » 1000+ parametric solves — Neural
Classical operators

> Inverse problem, sparse data — » Real-time (<10ms) — Neural
PINN operators
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Hybrid Approaches
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GNN-Enhanced Preconditioners (Trifonov et al. (2024))

Key Idea: Learn correction to incomplete Results: 2D Diffusion
Cholesky:
1o* — 1C(0)
L(9> = L|C + (%% GNN(Q, L|C, b) 102 —— Learned

107

Residual

» Start from IC(0) or ICt(1) factor
» GNN: 5 message-passing rounds 12
» Preserves SPD structure

1078

0 20 40 60 80 100 120
Iteration

Training Loss

Method Ilters
BN 1C(0) 95
L= > ILOLO) % — bill3 PreCorrector 52
i=1
bi ~ N(O,I)’ X = A—lbi - emphaSizeS low Kk :270 — 55 (79 Yo i)
frequencies

ML augments classical preconditioner to improve performance
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Summary
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Benchmarking Best Practices

Need for Tough Baselines
» Always compare against state-of-the-art classical methods (FEnIiCS, PETSc)
» Same problem, same metrics, fair compute budgets

Reproducibility Checklist
[J Full hyperparameters documented?
[J Multiple runs with confidence intervals?
[J Open-source code provided?
[J Failure modes documented?

Honest Assessment
» PDEBench revealed 1073 vs 10-¢ accuracy gap
» Document limitations, don’t cherry-pick successes
» Rigorous benchmarking prevents wasted effort

extraordinary claims require extraordinary evidence
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> Scientific ML for PDEs

What We Learned

» Theory: UAT + autodiff enable neural PDE

methods

» PINNs: optimization overhead, perhaps

promising for inverse problems

» Neural Operators: 8-9% acc
100-300x faster after training

» Hybrid: Augment classical at bottlenecks

(20-30% speedup)

Running Example Results (Darcy Flow)

uracy,

Method Accuracy Time
Classical CG 6.1% 0.14s
PINN 37.9% 200s
FNO 8.5% 0.9ms
DeepONet 9.1% 0.5ms

Title Intro Theory PINNs Operators Results Hybrid X

RECICHES

Comp Math and Al @ SciML for PDEs

When to Use What

» High accuracy needed?
— Classical (only option)

» 10,000+ parametric solves?
— Neural operators

» Real-time (<10ms)?
— Neural operators

» High-dim (d>6)?
— PINNSs (Lecture 8)
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