MATH 250 HANDOUT 6 - SETS

(1) Recall that $d \mathbf{Z}=\{n: n \in \mathbf{Z}$ s.t. $d \mid n\}$.
(a) $25 \mathbf{Z} \subseteq 5 \mathbf{Z}$;
(b) $5 \mathbf{Z} \subseteq 25 \mathbf{Z}$;
(c) $24 \mathbf{Z} \subseteq 4 \mathbf{Z}$;
(2) Prove or disprove each of the following:
(a) $(-1,1) \subseteq(-2,2)$.
(b) $(-1,2) \subseteq(-2,1)$.
(3) Let A, B, C and D be arbitrary sets. Prove or disprove the following.
(a) If $A \subseteq B, B \subseteq C$, and $C \subseteq D$, then $A \subseteq D$.
(b) If $A \nsubseteq B$ and $B \nsubseteq C$, then $A \nsubseteq C$.
(c) If $A \subseteq B$ and $B \nsubseteq C$, then $A \nsubseteq C$.
(4) Prove each of the following:
(a) $(-10,5] \cap[0,10]=[0,5]$.
(b) $(-10,5] \cup[0,10]=(-10,10]$.
(c) $(-10,5]-[0,10]=(-10,0)$.
(5) Prove that $4 \mathbf{Z}-6 \mathbf{Z}=4 \mathbf{Z}-3 \mathbf{Z}$.
(6) Let $A, B \subseteq C$ be sets. Prove each of the following:
(a) $A \cap B \subseteq A$;
(b) $A \cap \emptyset=\emptyset$;
(c) Suppose that $B \subseteq C$. Prove that $A-C \subseteq A-B$.
(d) $A \subseteq B$ if and only if $A \cap B=A$.

