MATH 250 HANDOUT 2-DIVISIBILITY

(1) Show that if $d \neq 0$ and $d \mid a$, then $d \mid(-a)$ and $-d \mid a$.
(2) Show that if $a \mid b$ and $b \mid a$, then $a=b$ or $a=-b$.
(3) Suppose that n is an integer such that $5 \mid(n+2)$. Which of the following are divisible by 5 ?
(a) $n^{2}-4$
(b) $n^{2}+8 n+7$
(c) $n^{4}-1$
(d) $n^{2}-2 n$
(4) Prove that the square of any integer of the form $5 k+1$ for $k \in \mathbf{Z}$ is of the form $5 k^{\prime}+1$ for some $k^{\prime} \in \mathbf{Z}$.
(5) Show that if $a c \mid b c$ and $c \neq 0$, then $a \mid b$.
(6) (a) Prove that the product of three consecutive integers is divisible by 6 .
(b) Prove that the product of four consecutive integers is divisible by 24.
(c) Prove that the product of n consecutive integers is divisible by $n(n-1)$.
(d) (Challenge problem) Prove that the product of n consecutive integers is divisible by n !.
(7) Find all integers $n \geq 1$ so that $n^{3}-1$ is prime. Hint: $n^{3}-1=\left(n^{2}+n+1\right)(n-1)$.
(8) Show that for all integers a and b,

$$
a^{2} b^{2}\left(a^{2}-b^{2}\right)
$$

is divisible by 12 .
(9) Suppose that a is an integer greater than 1 and that n is a positive integer. Prove that if $a^{n}+1$ is prime, then a is even and n is a power of 2 . Primes of the form $2^{2^{k}}+1$ are called Fermat primes.
(10) Suppose that a and n are integers that are both at least 2. Prove that if $a^{n}-1$ is prime, then $a=2$ and n is a prime. (Primes of the form $2^{n}-1$ are called Mersenne primes.)
(11) Let n be an integer greater than 1 . Prove that if one of the numbers $2^{n}-1,2^{n}+1$ is prime, then the other is composite.
(12) Show that every integer of the form $4 \cdot 14^{k}+1, k \geq 1$ is composite. Hint: show that there is a factor of 3 when k is odd and a factor of 5 when k is even.
(13) Can you find an integer $n>1$ such that the sum

$$
1+\frac{1}{2}+\frac{1}{3}++\cdots+\frac{1}{n}
$$

is an integer?

