MATH 250 HANDOUT 1 - LOGIC

A statement is a sentence for which 'true or false' is meaningful.

1. Which of these are statements?
(1) Today it is raining.
(2) What is your name?
(3) Every student in this class is a math major.
(4) $2+2=5$.
(5) $x+1>0$.
(6) $x^{2}+1>0$.
(7) If it is raining, then I will wear my raincoat.
(8) Give me that.
(9) This sentence is false.
(10) If x is a real number, then $x^{2}>0$.
2. Which of these are true?
(1) (T or F) Every student in this class is a math major and a human being.
(2) (T or F) Every student in this class is a math major or a human being.
(3) (T or F) $2+2=5$ or $1>0$.
(4) (T or F) If x is a real number, then $x^{2} \geq 0$.
(5) (T or F) If x is a complex number, then $x^{2} \geq 0$.
3. Write the negations of the following.
(1) $2+2=5$
(2) $1>0$.
(3) $2+2=5$ or $1>0$.
(4) Every student in this class is a math major.
(5) Every student in this class is a math major or a human being.
(6) If x is a real number, then $x^{2}>0$.
4. Prove the following using truth tables.
(1) $P \wedge(Q \vee R)=(P \wedge Q) \vee(P \wedge R)$,
(2) $(P \vee Q) \vee R=P \vee(Q \vee R)$. (We thus write $P \vee Q \vee R$ for both.)
(3) $\neg(P \vee Q)=\neg P \wedge \neg Q$,
(4) $\neg(P \wedge Q)=($ make a guess similar to problem 3$)$,
(5) $\neg(\neg P)=P$.
5. In exercise 6, you may use the following variants of exercise 4 .
(1) $P \vee(Q \wedge R)=(P \vee Q) \wedge(P \vee R)$,
(2) $(P \wedge Q) \wedge R=P \wedge(Q \wedge R)$. (We thus write $P \wedge Q \wedge R$ for both.)
(3) $P \vee Q=Q \vee P$.
(4) $P \wedge Q=Q \wedge P$.
6. Prove or disprove the following without using truth tables.
(1) $\neg(P \wedge \neg Q)=\neg P \vee Q$.
(2) $P \vee((Q \wedge R) \wedge S)=(P \wedge Q) \vee(P \wedge R) \vee(P \wedge S)$.
(3) $P \vee(Q \wedge R) \wedge S)=(P \vee Q) \wedge(P \vee R) \wedge(P \vee S)$.
7. Write the negations of the following implications.
(1) If n is even, then n^{2} is even.
(2) If $1=0$, then $2+2=5$.
(3) If there is free coffee, then DZB will drink it
(4) If $1=0$ and $2+2=5$, then the sky is blue and kittens are popular on youtube
(5) If x and y are real numbers such that $x y=0$, then $x=0$ or $y=0$.
8. Which of these are true?
(1) (T or F) For all $x \in \mathbf{Z}, x$ is divisible by 2 .
(2) (T or F) There exists an $x \in \mathbf{Z}$ such that x is divisible by 2 .
(3) (T or F) For all $x \in \mathbf{R}$, if $x \neq 0$, then there exists a $y \in \mathbf{R}$ such that $x y=1$.
(4) (T or F) For all $x \in \mathbf{R}$, there exists a $y \in \mathbf{R}$ such that $x y=1$.
9. Write the negations of the following.
(1) For all $x \in \mathbf{Z}, x$ is divisible by 2 .
(2) There exists an $x \in \mathbf{Z}$ such that x is divisible by 2 .
(3) $\neg(\forall x, P(x))$,
(4) $\neg(\exists x$ s.t. $Q(x))$
(5) $\forall x,(P(x) \wedge Q(x))$.
(6) If $\exists x \in \mathbf{R}$ such that $2 x=1$, then for all $y, y^{2}<0$.
(7) For all $x \in \mathbf{R}$, there exists a $y \in \mathbf{R}$ such that $x y=1$.
10. Write the converse and contrapositive of the statements from problem 7.

Here are some basic identities.
(1) $P \wedge Q=Q \wedge P$
(2) $P \vee Q=Q \vee P$
(3) $(P \wedge Q) \wedge R=P \wedge(Q \wedge R)=P \wedge Q \wedge R$
(4) $(P \vee Q) \vee R=P \vee(Q \vee R)=P \vee Q \vee R$

Here are some useful identities.
(1) $\neg(P \wedge Q)=\neg P \vee \neg Q$
(2) $\neg(P \vee Q)=\neg P \wedge \neg Q$
(3) $\neg(\neg P)=P$
(4) $P \vee(Q \wedge R)=(P \vee Q) \wedge(P \vee R)$
(5) $P \wedge(Q \vee R)=(P \wedge Q) \vee(P \wedge R)$
(6) $\neg(P \Rightarrow Q)=P \wedge \neg Q$
(7) $\neg(\forall x, P(x))=\exists x$ such that $\neg P(x)$
(8) $\neg(\exists x$ such that $P(x))=\forall x, \neg P(x)$

We can combine these to negate more complicated statements
(1) $\neg(P \Rightarrow(Q \vee R))=$
$P \wedge \neg(Q \vee R))=$
$P \wedge \neg Q \wedge \neg R$
(2) If $1=0$ and $2+2=5$, then the sky is blue and kittens are cute If $(\mathrm{P}$ and Q$)$ then $(\mathrm{R}$ and T$)$

Its negation:
(P and Q) and not $(\mathrm{R}$ and T)
($1=0$ and $2+2=5$) and (the sky is not blue or kittens are not cute)
(3) $\neg Q \Rightarrow \neg P$
$\neg(\neg Q \Rightarrow \neg P)$
$\neg Q \wedge \neg(\neg P)$
$\neg Q \wedge P$
This last example is called the contrapositive, and is a useful proof technique! (Try it on your homework.)

$$
(P \Rightarrow Q)=(\neg Q \Rightarrow \neg P) \text { because they have the same negation. }
$$

