MATH 250 HANDOUT 1 - LOGIC

1. Which of these are statements? (I.e., for which of these sentences is 'true or false' meaningful?)
(1) Today it is raining.
(2) What is your name?
(3) Every student in this class is a math major.
(4) $2+2=5$.
(5) $x+1>0$.
(6) $x^{2}+1>0$.
(7) If it is raining, then I will wear my raincoat.
(8) Give me that.
(9) This sentence is false.
(10) If x is a real number, then $x^{2}>0$.
2. Which of these are true?
(1) (T or F) Every student in this class is a math major and a human being.
(2) (T or F) Every student in this class is a math major or a human being.
(3) (T or F) $2+2=5$ or $1>0$.
(4) (T or F) If x is a real number, then $x^{2} \geq 0$.
(5) (T or F) If x is a complex number, then $x^{2} \geq 0$.
3. Write the negations of the following.
(1) $2+2=5$
(2) $1>0$.
(3) $2+2=5$ or $1>0$.
(4) Every student in this class is a math major.
(5) Every student in this class is a math major or a human being.
(6) If x is a real number, then $x^{2}>0$.
4. Prove the following using truth tables.
(1) $P \wedge(Q \vee R)=(P \wedge Q) \vee(P \wedge R)$,
(2) $(P \vee Q) \vee R=P \vee(Q \vee R)$. (We thus write $P \vee Q \vee R$ for both.)
(3) $\neg(P \vee Q)=\neg P \wedge \neg Q$,
(4) $\neg(P \wedge Q)=($ make a guess similar to problem 3$)$,
(5) $\neg(\neg P)=P$.
5. In exercise 6, you may use the following variants of exercise 4 .
(1) $P \vee(Q \wedge R)=(P \vee Q) \wedge(P \vee R)$,
(2) $(P \wedge Q) \wedge R=P \wedge(Q \wedge R)$. (We thus write $P \wedge Q \wedge R$ for both.)
(3) $P \vee Q=Q \vee P$.
(4) $P \wedge Q=Q \wedge P$.
6. Prove or disprove the following without using truth tables.
(1) $\neg(P \wedge \neg Q)=\neg P \vee Q$.
(2) $P \vee((Q \wedge R) \wedge S)=(P \wedge Q) \vee(P \wedge R) \vee(P \wedge S)$.
(3) $P \vee(Q \wedge R) \wedge S)=(P \vee Q) \wedge(P \vee R) \wedge(P \vee S)$.
7. Write the negations of the following implications.
(1) If n is even, then n^{2} is even.
(2) If $1=0$, then $2+2=5$.
(3) If there is free beer, then DZB will drink it
(4) If $1=0$ and $2+2=5$, then the sky is blue and kittens are popular on youtube
(5) If x and y are real numbers such that $x y=0$, then $x=0$ or $y=0$.
8. Which of these are true?
(1) (T or F) For all $x \in \mathbf{Z}, x$ is divisible by 2 .
(2) (T or F) There exists an $x \in \mathbf{Z}$ such that x is divisible by 2 .
(3) (T or F) For all $x \in \mathbf{R}$, if $x \neq 0$, then there exists a $y \in \mathbf{R}$ such that $x y=1$.
(4) (T or F) For all $x \in \mathbf{R}$, there exists a $y \in \mathbf{R}$ such that $x y=1$.
9. Write the negations of the following.
(1) For all $x \in \mathbf{Z}, x$ is divisible by 2 .
(2) There exists an $x \in \mathbf{Z}$ such that x is divisible by 2 .
(3) $\neg(\forall x, P(x))$,
(4) $\neg(\exists x$ s.t. $Q(x))$
(5) $\forall x,(P(x) \wedge Q(x))$.
(6) If $\exists x \in \mathbf{R}$ such that $2 x=1$, then for all $y, y^{2}<0$.
(7) For all $x \in \mathbf{R}$, there exists a $y \in \mathbf{R}$ such that $x y=1$.
10. Write the converse and contrapositive of the statements from problem 7.
