
SMASH: STRUCTURED MATRIX APPROXIMATION BY SEPARATION AND

HIERARCHY ∗

DIFENG CAI, EDMOND CHOW, LUCAS ERLANDSON, YOUSEF SAAD AND YUANZHE XI

Abstract. This paper presents an efficient method to perform Structured Matrix Approximation by Separation
and Hierarchy (SMASH), when the original dense matrix is associated with a kernel function. Given points in
a domain, a tree structure is first constructed based on an adaptive partitioning of the computational domain to
facilitate subsequent approximation procedures. In contrast to existing schemes based on either analytic or purely
algebraic approximations, SMASH takes advantage of both approaches and greatly improves the efficiency. The
algorithm follows a bottom-up traversal of the tree and is able to perform the operations associated with each node on
the same level in parallel. A strong rank-revealing factorization is applied to the initial analytic approximation in the
separation regime so that a special structure is incorporated into the final nested bases. As a consequence, the storage
is significantly reduced on one hand and a hierarchy of the original grid is constructed on the other hand. Due to this
hierarchy, nested bases at upper levels can be computed in a similar way as the leaf level operations but on coarser
grids. The main advantages of SMASH include its simplicity of implementation, its flexibility to construct various
hierarchical rank structures and a low storage cost. Rigorous error analysis and complexity analysis are conducted to
show that this scheme is fast and stable. The efficiency and robustness of SMASH are demonstrated through various
test problems arising from integral equations, structured matrices, etc.

Key words. hierarchical rank structure, nested basis, error analysis, integral equation, Cauchy-like matrix

1. Introduction. The invention of the Fast Multipole Method (FMM) [55, 30] opened a new
chapter in scientific computing methodology by unraveling a set of effective techniques revolving
around the powerful principle of divide-and-conquer. When sets of points are far apart from each
other, the physical equations that couple them can be approximately expressed by means of a low
rank matrix. Among the many variations to this elegant idea, a few schemes have been developed
to gain further efficiency by building hierarchical bases in order to expand the various low-rank
couplings. The resulting hierarchical rank structured matrices [13, 16, 24, 34], culminated in H2

matrices[37, 34], provide efficient solution techniques for structured linear systems (Toeplitz, Hankel,
etc.)[61, 63, 67], integral equations [13, 16, 3, 43, 44], partial differential equations [16, 17, 34, 65],
matrix equations [16, 28, 29] and eigenvalue problems [7, 62]. Though these methods come under
various representations, they all start with a block partition of the coefficient matrix and approximate
certain blocks with low-rank matrices. The refinements of these techniques embodied in the H2

[16, 34, 35] and HSS [24, 60, 66] matrix representations take advantage of the relationships between
different (numerically) low-rank blocks and use nested bases [34] to minimize computational costs
and storage requirements. What is often not emphasized in the literature, is that this additional
efficiency in the solution phase is achieved at a rather high cost in the construction phase.

Both HSS andH2 matrices employ just two key ingredients: low-rank approximations and nested
bases. The low-rank approximation, or compression, methods exploited in these techniques can be
classified into three categories. The first category involves methods that rely on algebraic compres-
sion, such as the SVD and the rank–revealing QR (RRQR) [33] which are among the most common
approaches. Utilizing these techniques to compress low-rank blocks [11, 35, 66] will result in nested
bases that have orthogonal columns and an optimal rank. However, these methods will require the
matrix entries to be explicitly available and usually lead to quadratic construction cost [35, 66].
Other compression techniques, such as adaptive cross approximation (ACA) [3, 5, 6], extract a
low-rank factorization based only on part of the matrix entries and this leads to a nearly linear con-
struction cost. However, ACA may fail for general kernel functions and complex geometries due to
the heuristic nature of the method [15]. Other efficient low-rank approximation techniques include

∗The research of Edmond Chow was supported by NSF under grant ACI–1306573. The research of Yousef Saad
and Yuanzhe Xi were both supported by NSF under grants DMS–1216366 and DMS–1521573 and by the Minnesota
Supercomputing Institute.

1

but are not limited to Pseudo-skeleton approximations [58, 27], Mosaic-skeleton approximations [26],
Cross approximations [59] and their latest development [53, 51]. To the best of our knowledge, no
algebraic approach is able to achieve linear cost for an H2 or HSS construction with guaranteed
accuracy. The methods in the second category rely on information on the kernel to perform the
compression. They include methods based on interpolation [16, 36], Taylor expansion [37] or multi-
pole expansion (as in FMM [30, 55]), etc. Although these methods lead to a linear construction cost,
they usually yield nested bases whose rank is much larger than the optimal one [38]. Moreover, since
bases are stored as dense matrices, these methods suffer from high storage costs [13]. The methods
in the third category either combine algebraic compression with the analytic kernel information to
take advantage of both, or use other techniques like equivalent densities or randomized methods
to obtain a low-rank factorization. For example, hybrid cross approximation (HCA) [15] technique
improves the robustness of ACA by applying it only on a small matrix arising from the interpolation
of the kernel function. The kernel independent fast multipole methods [1, 68] use equivalent densities
to avoid explicit kernel expansions but it is only valid for certain kernels arising in potential theory.
The randomized construction algorithms [42, 45, 56, 62] compute the hierarchical rank structured
matrices by applying SVD/RRQR to the product of the original matrix and a random matrix and
are effective when a fast matrix vector multiplication routine is available.

1.1. Contributions. The aim of this paper is to introduce an efficient and unified framework
to construct an n × n H2 or HSS matrix based on structured matrix approximation by separation
and hierarchy (SMASH). In terms of the three categories discussed above, SMASH belongs to the
third category in that it starts with an initial analytic approximation in the Separation regime, then
algebraic techniques are employed to postprocess the approximation in order to build up a Hierarchy.
The main features of SMASH are as follows.

1. Fast and stable O(n) construction. SMASH starts with an adaptive partition of the com-
putational domain and then constructs a tree structure to facilitate subsequent operations as in
[2, 13, 16, 22]. The construction process follows a bottom-up traversal of the tree and is able to
compute the bases associated with each node on the same level in parallel. In fact, the construction
procedure is entirely local in the sense that the compression for a parent node only depends on the
information passed from its children. By combining the analytic compression technique with strong
RRQR [33], a special structure is incorporated into the final nested bases. In contrast to the methods
used in [45, 68], SMASH is able to set the approximation accuracy to any tolerance. In addition,
the nested bases at each non-leaf level can be computed directly in a similar way as the leaf-level
operations but on a coarser grid extracted from previous level of compression. Therefore, SMASH is
also advantageous relative to one based on the HCA method [12] since it does not need to construct
an H matrix first and then use a recompression scheme to recover the nested bases. SMASH can be
easily adapted to construct either an n × n H2 or HSS matrix depending on the properties of the
underlying applications with O(n) complexity. The guaranteed accuracy/robustness of SMASH is
justified by various test examples with complicated geometries (Section 6).

2. Low storage requirement. Construction algorithms that use analytic approximations usually
lead to high storage costs. SMASH alleviates this issue in several ways. First, instead of storing
nested bases as dense matrices, only one vector and one smaller dense matrix need to be saved for
each basis. Second, each coupling matrix [13] is a submatrix of the original matrix in this scheme.
Therefore, it suffices to store row and column indices associated with the submatrix instead of the
whole submatrix explicitly. Finally, the use of strong RRQR [33] can automatically reduce the rank
of the nested bases if their columns obtained from the analytic approximation are not numerically
linearly independent.

3. Simplicity and flexibility for approximation of variable order. Unlike analytic approaches
(e.g., FMM) in which farfield approximations and transfer matrices are obtained differently and
extra information is needed to compute transfer matrices (cf.[57]), SMASH only requires a farfield

2

approximation, which can be readily obtained for almost all kernels, for example, via interpolation
[36]. Moreover, the approximation rank in the compression on upper levels is independent of the
rank used in lower levels, which means that approximation rank can be chosen arbitrarily in the
compression at any level while still maintaining the H2 or HSS structure. This is due to the fact that
in each level of compression, SMASH produces transfer matrices directly, which is an advantage of
algebraic approaches. For interpolation-based constructions, there are restrictions on the maximal
degree of basis polynomials in each level in order to maintain the H2 structure. [35].

1.2. Outline and Notation. The paper is organized as follows. In Section 2 we review low-
rank approximations ([4, 13, 34]) associated with some kernel functions. Section 3 introduces SMASH
for the construction of hierarchical rank structured matrices with nested bases. The approximation
error and complexity of SMASH are analyzed in Section 4 and Section 5, respectively. Numerical
examples are provided in Section 6 and final concluding remarks are drawn in Section 7.

Throughout the paper, the following notation is used:
• A: a dense matrix associated with a kernel function κ;
• Â: H2 or HSS approximation to A;
• i = 1 : n denotes an enumeration of index i from 1 to n;
• |·| denotes the cardinality of a finite set if the input is a set;
• ‖·‖, ‖·‖F denote the L2 norm, Frobenius norm, respectively, and ‖A‖max denotes the ele-
mentwise sup-norm of a matrix, i.e.,

‖A‖max := max
i,j

|ai,j |, A = [ai,j]i,j ;

• diag(. . .) denotes a block diagonal matrix;
• Given a tree T , children(i) and lv(i) represent the children and level of node i, respectively,
where root node is at level 1. The location of a node i at level l is denoted as li when
enumerated from left to right;

• Let X and Y be two nonempty finite sets of points and A be a matrix whose (i, j)th entry is
determined by the ith point inX and jth point in Y . If i denotes the index set corresponding
to a subset Xi of X , then A|i denotes the submatrix of A with rows determined by Xi.
Furthermore, if index set j corresponds to a subset Yj of Y , then A|i×j denotes a submatrix
of A whose rows and columns are determined by Xi and Yj, respectively.

2. Degenerate and low-rank approximations. Hierarchical rank structured matrices are
often used to approximate matrices after a block partition such that most blocks display certain
(numerical) low-rank characteristics. For matrices derived from kernel functions, a low-rank ap-
proximation can be determined when the kernel function can be locally approximated by degenerate
functions [4]. In this section, we first review this property. For pedagogical reasons, we focus on
the kernel function 1/(x− y) but more general kernel functions can be handled in a similar way as
demonstrated in the numerical experiments section (Section 6).

2.1. Degenerate expansion. Consider the kernel function κ(x, y) on C× C defined by

(2.1) κ(x, y) =

{
1

x−y , if x 6= y,

dx, if x = y,

where the number dx ∈ C can be arbitrary. If x and y are far from each other (See Definition 2.1
below), then κ(x, y) can be well approximated by a degenerate expansion

κ(x, y) ≈
r−1∑

k=0

k∑

l=0

ck,lφk(x)ψl(y),

3

where φk and ψl are univariate functions. In fact, interpolation in the x variable yields the simplest,
yet most general, way to obtain a degenerate approximation:

(2.2) κ(x, y) ≈
r∑

k=1

pk(x)κ(xk, y),

where xk’s are the interpolation points and the pk’s are the associated Lagrange polynomials.
Several ways to quantify the distance between two sets of points that are away from each other

have been defined [13, 34, 57]. One of these ([57]), given below, is often referred to. For a bounded
nonempty set S of C, let δ = minc∈C sups∈S |s− c|. Then we refer to the minimizer c∗ as the center
of S and to the corresponding minimum value δ as its radius.

Definition 2.1. Let X and Y be two nonempty bounded sets in C. Let a ∈ C and δa > 0 be
the center and radius of X with |x− a| ≤ δa, ∀x ∈ X. Analogously, let b ∈ C and δb > 0 denote the
center and radius of Y . Given a number τ ∈ (0, 1), we say that X and Y are well-separated with
separation ratio τ if the following condition holds

(2.3) δa + δb ≤ τ |a− b|.

Fig. 2.1 illustrates two well-separated intervals (centered at a = 0.5, b = 2.5, respectively) with
separation ratio τ = 0.5. Given two sets X and Y , if (2.3) only holds for τ ≈ 1, then this implies
that X and Y are close to each other and we cannot regard X and Y as being well-separated. Hence
we assume that τ is a given small or moderate constant (for example, τ ≤ 0.7) in the rest of this
paper.

0 1 2 3

X

a b

Y

Fig. 2.1: Well-separated intervals X,Y (centered at a = 0.5, b = 2.5) with separation ratio τ = 0.5.

Consider the kernel function 1/(x − y) again. When X and Y are well-separated so that (2.3)
holds, a degenerate expansion for the kernel function based on Taylor expansion takes the following
form [20]:

(2.4) κ(x, y) =
r−1∑

k=0

k∑

l=0

ck,lφa,l(x− a)φb,k−l(y − b) + ǫr, ∀x ∈ X, y ∈ Y,

where

(2.5)

ck,l :=

{
−k!(b− a)−(k+1)η−1

a,l η
−1
b,k−l(−1)k−l if l ≤ k,

0 if l > k,

φv,l(x) := ηv,l
xl

l!
, ηv,l =




1, if l = 0,(

l
e(2πr)

1

2r
1
δv

)l
if l = 1, . . . , r − 1,

and the approximation error ǫr satisfies

(2.6) |ǫr| ≤
(1 + τ)τr

(1 − τ)
|κ(x, y)|, ∀x ∈ X, y ∈ Y.

The above expansion will be used to illustrate the construction of hierarchical rank structured
matrices and analyze the approximation error in the remaining sections. The scaling factor ηv,l is
used to improve the numerical stability of the expansion (2.4). See [20] for more details.

4

2.2. Farfield and nearfield blocks. We now consider a dense matrix A defined by A :=
[κ(x, y)]x∈X,y∈Y . The degenerate approximation (2.4) immediately indicates that certain blocks of
A admit a low-rank approximation. In order to identify these low-rank blocks, it is necessary to
exploit nearfield and farfield matrix blocks as they are defined in [13].

Definition 2.2. Given two sets of points Xi and Yj, a submatrix A|i×j is called a farfield block
if Xi and Yj are well-separated in the sense of Definition 2.1; otherwise, A|i×j is called a nearfield
block.

A major difference between farfield and nearfield blocks is that each farfield block can be ap-
proximated by low-rank matrices, as a consequence of (2.4). The following theorem restates (2.4) in
matrix form for the two-dimensional case.

Theorem 2.3. If Xi and Yj are well-separated sets in C in the sense of (2.3) with centers ai
and aj, radii δi and δj, respectively, the farfield block A|i×j admits a low-rank approximation of the
form

(2.7) A|i×j = ÛiB̂i,j V̂
T
j + EF |i×j,

where

(2.8) Ûi = [φai,l(x − ai)] x∈Xi,
l=0:r−1

, V̂j =
[
φaj ,l(y − aj)

]
y∈Yj,

l=0:r−1

, B̂i,j = [ck,l]k,l=0:r−1 ,

with ck,l, φv,l(v = ai, aj) defined in (2.5), and

(2.9) ‖EF |i×j‖max ≤ ǫfar‖A|i×j‖max with ǫfar =
(1 + τ)τr

(1− τ)
.

Let ni = |Xi| and nj = |Yj|. If the points x of Xi are listed as columns and the various functions
φai,l(x− ai) are listed row-wise with l = 0, · · · , r − 1 and similarly for y, Yj, and φaj ,l(y − aj) then

the matrices Ûi, B̂ij and V̂j have dimensions ni × r, r × r, and nj × r, respectively. The theorem is
illustrated in Fig.2.2.

X

Y

A

B

V
^

^

^
U

i,j

i

j
T

i x j

j

i

Fig. 2.2: Illustration of Theorem 2.3.

2.3. Strong rank-revealing QR. Notice that in the approximation (2.7), Ûi only depends on
the points inXi, V̂j only depends the points in Yj and B̂i,j depends on both the centers ofXi and Yj as
well as their radii. This represents a standard expansion structure used in FMM [30, 55, 57]. As will

5

be seen in the next section the construction of H2 and HSS matrices will be significantly simplified
by further postprocessing Ûi and V̂j with a strong rank-revealing QR (SRRQR) factorization [33].
The following theorem summarizes Algorithm 4 in [33].

Theorem 2.4. ([33, Algorithm 4]) Let M be an m×n matrix and M 6= 0. Given a real number
s > 1 and a positive integer r (r ≤ rank(A)), the strong rank-revealing QR algorithm computes a
factorization of M in the form:

(2.10) MP = Q

[
R11 R12

R22

]
,

where P is a permutation matrix, Q ∈ Rm×m is an orthogonal matrix, R11 is a r × r upper
triangular matrix and R12 is a r × (n− r) dense matrix that satisfies the condition:

‖R−1
11 R12‖max ≤ s.

The complexity is O(n3 logs n) if m ≈ n.
In all of our implementations, we set s = 2. SRRQR unravels a set of columns of A that nearly

span the range of A – thus the term rank-revealing. Assume C is an n × r matrix with rank r.
Applying SRRQR to CT produces the following factorization:

CTP = Q
[
R11 R12

]
,

where Q ∈ R
r×r is an orthogonal matrix. A modification of the above equation leads to

C = P

[
I

(R−1
11 R12)

T

]
C̃,

where I is an identity matrix of order r and C̃ = (QR11)
T . Note that the above relation implies

that C̃ ∈ Rr×r is a submatrix of C consisting of the first r rows of the row-permuted matrix PTC.
From this perspective, the whole aim of the procedure is to extract a set of r rows from C that will
nearly span its row space.

When Ûi and V̂j in (2.7) both have more rows than columns, applying SRRQR to ÛT
i and then

to V̂ T
j yields:

(2.11) Ûi = Pi

[
I
Gi

]
Ûi |̂i, V̂j = Fj

[
I
Hj

]
V̂j |̂j.

Note that, as explained above for C̃, Ûi |̂i denotes a matrix made up of selected rows of Ûi.
Substituting the above two equations into (2.7) leads to another form of the low-rank approxi-

mation to A|i×j:

A|i×j ≈ Pi

[
I
Gi

]
Ûi |̂iB̂i,j(V̂j |̂j)T

(
Fj

[
I
Hj

])T

(2.12)

= Pi

[
I
Gi

]
(A|̂

i×ĵ
− EF |̂i×ĵ

)

(
Fj

[
I
Hj

])T

≈ Pi

[
I
Gi

]
A|̂

i×ĵ

(
Fj

[
I
Hj

])T

,(2.13)

where î and ĵ represent subsets of i and j, respectively, and (2.13) results from (2.7).
A major advantage of this form of approximation over (2.7) is a reduction in storage. Now only

four index sets are needed to represent (Pi, Fj , î, ĵ) and two smaller dense matrices (Gi, Hj) need to

be stored rather than three dense matrices (Ûi, B̂i,j , V̂j). This form is very memory efficient since

6

A|i×j can be quickly reconstructed on the fly based on the index set î, ĵ. There are other advantages
that will be discussed in the next section.

The operations represented by (2.11) will be used extensively in the construction of hierarchical
matrices to be seen in the next section. These will be denoted as follows:

(2.14) [Pi, Gi, î] = compr(Ûi, i) and [Fj , Hj , ĵ] = compr(V̂j , j).

Each of the above operations is also called a structure-preserving rank-revealing (SPRR) factorization
[67] or an interpolative decomposition [39]. For recent developments on rank-revealing algorithms,
see [31]. Notice that the matrices Ûi and V̂j in (2.7) serve as the approximate column and row bases
for A|i×j, respectively. Taylor expansion (2.4) is used to illustrate the compression of low-rank blocks
due to its simplicity. More advanced compression schemes such as weighted truncation techniques
[10], the modified ACA method [6] and the fast algorithm combining Green’s representation formula
with quadrature [14], can also be exploited to compute these bases.

3. Construction of hierarchical rank structured matrices with nested bases. This
section presents SMASH, an algorithm to construct either an H2 or an HSS matrix approximation
to an n× n matrix A := [κ(x, y)]x∈X,y∈Y , where κ is a given kernel function and X and Y are two
finite sets of points. Although the discussion focuses on square matrices, SMASH can be extended
to rectangular ones [61] without any difficulty.

3.1. Adaptive partition. SMASH starts with a hierarchical partition of the computational
domain Ω and then builds a tree structure T to facilitate subsequent operations. In order to deal with
the case when X and Y are non-uniformly distributed, an adaptive partition scheme is necessary.

Without loss of generality, assume both X and Y are contained in a unit box Ω = [0, 1]d in Rd

(d = 1, 2, 3). The basic idea of this partition algorithm (similar to [2]) is to recursively subdivide
the computational domain Ω into several subdomains until the number of points included in each
resulting subdomain is less than a prescribed constant ν0 (usually much smaller than the number
of points in the domain). Specifically, at level 1, Ω is not partitioned. Starting from level l (l ≥ 2),
each box obtained at level l − 1 that contains more than ν0 points is bisected along each of the d
dimensions.

For convenience we assume that the number of points from X and Y in each partition is the
same. If a box is empty, it is discarded. Let L be the maximum level where the recursion stops.
Then the information about the partition can be represented by a tree T with L levels, where the
root node is at level 1 and corresponds to the domain Ω and each nonroot node i corresponds to
a partitioned subdomain Ωi. See Fig. 3.1 for a 1D example. The adaptive partition guarantees
that each subdomain corresponding to a leaf node contains a small number of points less than the
prescribed constant ν0.

3.2. Review of H2 and HSS matrices. The low-rank property of a block A|i×j associated
with a node pair (i, j) is related to the strong (or standard) admissibility condition employed to
define H and H2 matrices ([16],[38]):

for a fixed τ ∈ (0, 1), the node pair (i, j) in T is admissible if Xi and Yj are well-
separated in the sense of Definition 2.1.

Hierarchical matrices are often defined in terms of the above condition, which, in essence, spells out
when a given block in the matrix can be compressed. A matrix Â (associated with a tree T) is called
an H matrix ([36]) of rank r if there exists a positive integer r such that

rank(Â|i×j) ≤ r, whenver (i, j) is admissible.

Furthermore, Â is called a uniform H matrix ([36]) if there exist a column basis set {Ui}i∈T and a

row basis set {Vi}i∈T associated with T , such that when (i, j) is admissible, Â|i×j admits a low-rank

7

Fig. 3.1: Illustration of an adaptive partition for the case X = Y = {x1, x2, . . . , x8}. Left: the
computational domain Ω is recursively bisected until the number of points in each sub-interval
Ωi centered at ai is less than 4 (circled dots represent the points xi). Right: the corresponding
postordered binary tree T with indices of points stored at each node.

a1

a2 a3

a4 a5

a6

a7

level 4

level 3

level 2

level 1
x1 x2 x3 x4x5 x6 x7 x8 7 [1:8]

6 [4:8]

5 [8]4[4:7]

3 [6:7]2[4:5]

1[1:3]

factorization:

Â|i×j = UiBi,jV
T
j , for some matrix Bi,j .

This factorization is referred to as an AKB representation in [34], where Bi,j is called a coefficient
matrix. In [13], Bi,j is termed a coupling matrix and we will follow this terminology here.

The class of H2 matrices [36] is a subset of uniform H matrices with a more refined structure.
That is, Â is an H2 matrix if it is a uniform H matrix with nested bases in the sense that one can
readily express a basis at one level from that of its children (see (3.2)). What is exploited here is
that admissible blocks are low-rank and in addition their factors (or generators) can be expressed
from lower levels.

c c c3c21 4

p
A|c1×Q ≈ Uc1 T̃c1

A|c2×Q ≈ Uc2 T̃c2

A|c3×Q ≈ Uc3 T̃c3

A|c4×Q ≈ Uc4 T̃c4

Fig. 3.2: A parent node p with children c1, · · · , c4 and the corresponding partition of the matrix
block A|p×Q, where Q is the collection of indices associated with all nodes q such that (p, q) is
admissible. In the context of HSS matrices there are at most 2 children since the trees are binary.
For H2 matrices the trees are more general.

Assume we have a situation illustrated in Fig. 3.2 where the parent node p has children c1, . . . , c4.
According to the interpolation in (2.2), the column basis Ui associated with the set i (for any nonroot
node i) can be chosen as

Ui =
[
p
(i)
k (x)

]
x∈Xi

k=1:r

,

where p
(i)
k (k = 1, . . . , r) are Lagrange basis polynomials corresponding to interpolation points

xi1 , . . . , xir . If i is a child of node p, we can write (cf.[36])

(3.1) p
(p)
k (x) =

∑

l=1:r

p
(p)
k (xil)p

(i)
l (x).

8

The matrix version of (3.1) then leads to the so-called nested basis :

Up =



Uc1Rc1

...
Uc4Rc4


 , with Ri =




p
(p)
1 (xi1) . . . p

(p)
r (xi1)

...
...

...

p
(p)
1 (xir) . . . p

(p)
r (xir)


 .

The nested basis can also be obtained through algebraic compressions based on a bottom-up
procedure. Let A|p×Q denote the entire (numerically) low rank block row associated with node
p, i.e., Q is the union of all indices q such that (p, q) is admissible. As illustrated in Fig. 3.2,
assuming that the column basis Uci has been obtained from a rank-r factorization of the submatrix
A|ci×Q ≈ Uci T̃ci , we then derive

A|p×Q ≈




Uc1

Uc2

Uc3

Uc4







T̃c1
T̃c2
T̃c3
T̃c4


 .

Applying a rank-r factorization to the transpose of
[
T̃ T
c1 T̃ T

c2 T̃ T
c3 T̃ T

c4

]
leads to




T̃c1
T̃c2
T̃c3
T̃c4


 ≈




Rc1

Rc2

Rc3

Rc4


Tp −→ A|p×Q ≈ UpTp with Up =




Uc1Rc1

Uc2Rc2

Uc3Rc3

Uc4Rc4


 .

Thus, we can get the basis Up for the parent node from the children’s Uci ’s and the matrices
Rci from both analytic and algebraic compression schemes. The Ris are called transfer matrices.
Clearly, a similar process can be applied to obtain a row-basis Vp and so, more generally, we can
write

(3.2) Up =



Uc1Rc1

...
UckRck


 , Vp =



Vc1Wc1

...
VckWck


 .

Hence only the matrices Ui, Vi for all leaf nodes i need to be stored. Matrices Up, Vp for a
non-leaf node p can be obtained via transfer matrices which require much less storage. This is at
the origin of the improvement from an O(n logn) cost for the early method in this class developed
by Barnes and Hut [2] (H structure) into an O(n) cost method obtained later by the FMM [30] (H2

structure) for computing matrix-vector multiplications for some kernel matrices ([57]).
Note that as they are described in the literature H and H2 matrices are associated with more

general trees than those traditionally used for HSS matrices [23, 24] which are binary trees, according
to the partition algorithm described in Section 3.1. In fact HSS matrices can be viewed as a special
class of H2 matrices in which the strong admissibility condition is replaced by the weak admissibility
condition[38]:

the node pair (i, j) in T is admissible if i 6= j.
The above weak admissibility condition implies that, if Â is an HSS matrix, and i, j are two children
of the root node, then the matrix block Â|i×j should admit a low-rank factorization.

In the context of integral equations, this requirement means that the HSS structure will face
difficulties in situations when couplings between nearfield blocks require a relatively high rank rep-
resentation. Approximation by HSS matrices will work well for integral equations defined on a curve

9

where kernel functions are discretized. In other cases the numerical rank of A|i×j may not necessar-
ily be small even when a non-oscillatory kernel function is discretized on a surface or in a volume
[13, 63].

The construction of H2 and HSS matrices involves computing the basis matrices U, V at the leaf
level, along with the transfer matrices R,W , and the coupling matrices B associated with a tree T .
In particular, each leaf node i is assigned four matrices {Ui, Vi, Ri,Wi} and each nonleaf node i at
level l ≥ 3 is assigned two matrices {Ri,Wi}.

There are two types of Bi,j matrices, those corresponding to the nearfield blocks at the leaf
level, and those corresponding to the coupling matrix where the product UiBi,jV

T
j approximates

block A|i×j for certain admissible (i, j). In general, the computation of Bi,j is more complicated
because one has to carefully specify the set of admissible node pairs (i, j) to be used for the efficient
approximation of A. If the distribution of points is uniform, the corresponding node pairs (i, j)
are related to what is called interaction list in FMM [30, 57]. In more general settings where points
can be arbitrarily distributed, they are called admissible leaves [13]. The set of admissible leaves
corresponding to the minimal admissible partition [34] can be defined as follows:

L ={(i, j) : i, j ∈ T are nodes at the same level such that (i, j) is admissible

but (pi, pj) is not admissible , where pi, pj are parents of i, j, respectively}
∪ {(i, j) : i ∈ T is a leaf node and j ∈ T with lv(j) > lv(i) such that

(i, j) is admissible but (i, pj) is not admissible with pj the parent of j}
∪ {(i, j) : j ∈ T is a leaf node and i ∈ T with lv(i) > lv(j) such that

(i, j) is admissible but (pi, j) is not admissible with pi the parent of i}.

(3.3)

The node pairs (i, j) corresponding to blocks Bi,j that can not be compressed or partitioned, can
be identified through inadmissible leaves as defined below (cf.[13]):

(3.4) L− := {(i, j) : i, j ∈ T are leaf nodes and (i, j) is not admissible} .

In particular, for HSS matrices, it can be seen that L and L− have the following simple expression:

(3.5) L = {(i, j) : i, j ∈ T and j = sibling of i}, L− = {(i, i) : i ∈ T is a leaf node}.

This special feature will be used later (Section 3.3.1) to simplify the notation associated with HSS
matrices. The U, V,R,W,B matrices are called H2, or HSS, generators in the remaining sections.

3.3. Levelwise construction. Although the HSS structure may appear to be simpler than
the H2 structure, based on their algebraic definitions the HSS construction procedure is actually
more complex. This is because HSS matrices require the compression of both nearfield and farfield
blocks while H2 matrices only require the compression on farfield blocks. For example, if two sets Xi

and Yj are almost adjacent to each other (τ ≈ 1 in (2.3)), then the analytic approximation will not
produce a low rank, i.e., to get an accurate approximation, r has to be large in (2.6). In this case,
the H2 matrix will form this block explicitly as a dense matrix while the HSS matrix still requires
the block to be factorized. In what follows, we will first discuss SMASH for the HSS construction
in detail and then present the H2 construction with an emphasis on their differences.

3.3.1. HSS construction. Due to the simple structure of L,L− in (3.5), the notation denoting
the coupling matrices and nearfield blocks can be simplified in the HSS representation. Specifically,
for (i, j) ∈ L, Bi,j can be represented as Bi with the second index j dropped because j = sibling of i
is uniquely determined in a binary tree. An additional symbol Di is introduced to represent diagonal
blocks Bi,i because (i, j) ∈ L− implies j = i.

10

Fig. 3.3: Illustration of the sets Ni used in HSS constructions.

N

N

SepSep

i

i, k i, k

k

ik

i

p

k ii k k
leaf

p
ppp

Case 2 Case 1 Case 3

k

p
i

p
i

The basic idea of SMASH for the HSS construction is to first apply a truncated SVD to obtain
a basis for nearfield blocks, use interpolation or expansion to obtain a basis for farfield blocks and
then apply SRRQR to the combination of these two bases to obtain the U, V,R and W matrices.
The D and B matrices are submatrices of the original kernel matrix and their indices are readily
available after the computation of U, V,R,W matrices. In order to distinguish between column and
row indices associated with a node i, we use superscript row to mark its row indices and col to mark
its column indices. For example, irow and icol denote the indices of points from X and Y contained
in Ωi, respectively.

Assuming the HSS tree T has L levels, the HSS construction algorithm traverses T through
level l = L,L− 1, . . . , 2. Before the construction, two intermediate sets īrow and īcol are initialized
as follows for each node i:

(3.6) īrow =

{
irow if i is a leaf,

∅ otherwise,
īcol =

{
icol if i is a leaf,

∅ otherwise,

where the index sets irow and icol have been saved for each leaf node after the partition of Ω.
Let Ni be the set of blocks that are nearfield to node i. .We set Ni = ∅ when i = root. For the

other cases, Ni is defined below where pi denotes the parent of i:

(3.7)
Ni = {k ∈ T such that : either k is a sibling of i

or pk ∈ Npi
and (i, k) /∈ Sep

or k is a leaf such that k ∈ Npi
and (i, k) /∈ Sep}

,

where Sep denotes the set of all well-separated pairs of subdomains corresponding to a given partition:

(3.8) Sep := {(i, j) : Ωi,Ωj are well-separated } .

See Figure 3.3 for a pictorial illustration.
Note that when i is a child of root then Npi

is empty and so only the first case can take place (k
is a sibling of i). We also remark that the third case (k is a leaf such that k ∈ Np and (i, k) /∈ Sep)
is required for non-uniform distributions and that it is empty if the distribution of the points is
uniform. It is easy to see that if Ω = [0, 1] and X = Y is uniformly distributed, T is a perfect binary
tree. In addition, if the separation ratio is set to τ = 0.5, then for any nonroot node i, Ni contains
at most two nodes.

For each node i, let i denote the index set of the points in X ∩ Ωi. Similarly, j represents the
index set of the points in Y ∩ Ωj . Namely, Xi = X ∩ Ωi and Yj = Y ∩ Ωj .

Remark 3.1. Since the HSS structure [23, 24] is associated with a binary tree regardless of the
dimension of the problem (see Section 3.2), to construct HSS matrices, bisection is used throughout

11

the adaptive partitions. For example, given a domain or a curve enclosed in a square in R2, we use
bisection in the horizontal direction and the vertical direction alternatively in consecutive stages of
the adaptive partitions, i.e., if horizontal bisection is used at partition level l, then vertical bisection
will be employed at level l + 1. The numerical experiments in Section 6.3 and Section 6.4 provide
illustrations. This partition strategy corresponds to the geometrically regular clustering (cf.[13]),
and can be generalized into the geometrically balanced clustering (cf.[13]).

For each node i at level l, the construction algorithm first applies a truncated SVD to compute
an approximate column basis for the nearfield block rows in terms of Xīrow :

(3.9) A−
i :=

[
A|̄irow×j̄col

]
j∈Ni

= SiΣ
−
i

[
S̃j

]

j∈Ni

+
[
E−

Σ |̄irow×j̄col

]
j∈Ni

,

where the columns of Si and [S̃j]j∈Ni
are the left/right singular vectors of A−

i and Σ−
i is a diagonal

matrix composed of corresponding singular values of A−
i such that the following estimate holds

(3.10) ‖E−
Σ |̄irow×j̄col‖F ≤

√
|̄irow||̄jcol|ǫSVD‖A−

i ‖2, ∀ j ∈ Ni.

Here, ǫSVD is the relative tolerance used in the truncated SVD. The matrix Si is then taken as an
approximate column basis for the nearfield block rows A−

i .

For farfield blocks with respect to Xīrow , a column basis Ûi can be easily obtained through
interpolation (2.2) or Taylor expansion (2.8) that only rely on Xīrow and Ωi. Next, we apply SRRQR
to the combined basis [Ûi, Si] as shown below

(3.11) [Pi, Gi, î
row] = compr([Ûi, Si], ī

row).

From these outputs, we set

(3.12)

Ui : = Pi

[
I
Gi

]
if i is a leaf node,

[
Rc1

Rc2

]
: = Pi

[
I
Gi

]
if i is a parent with children c1, c2.

Similarly, in order to compute V,W generators, a truncated SVD is first applied to the nearfield
block columns (transposed) in terms of Yīcol :

(3.13) A
|
i : =

[(
Aj̄row×īcol

)T]

j∈Ni

= TiΣ
|
i

[
T̃j

]

j∈Ni

+
[
(E

|
Σ |̄jrow×īcol)

T
]

j∈Ni

,

where the truncation error satisfies

(3.14) ‖E|
Σ |̄jrow×īcol‖F ≤

√
|̄icol||̄jrow|ǫSVD‖A|

i‖2, ∀ j ∈ Ni.

In the next step we compute a row basis V̂i for the farfield blocks with respect to Yīcol based on (2.2)
or (2.8) and apply SRRQR to [V̂i, Ti]:

[Fi, Hi, î
col] = compr([V̂i, Ti], ī

col).

Then we set

(3.15)

Vi : = Fi

[
I
Hi

]
if i is a leaf node,

[
Wc1

Wc2

]
: = Fi

[
I
Hi

]
if i is a parent with children c1, c2.

12

Once the compressions for children nodes (at level l) are complete, we update the intermediate index
set associated with the parent node (at level l − 1) as shown below :

(3.16) p̄row = ĉ1
row ∪ ĉ2

row, p̄col = ĉ1
col ∪ ĉ2

col,

where c1, c2 are the children of p.
After the bottom-up traversal of T and hence the computation of U, V,R,W matrices, the B

and D matrices can be extracted as follows:

(3.17) Bi := A|̂
irow×ĵcol

, j = sibling of i, and Di := A|irow×icol , i = leaf node.

3.3.2. H2 construction. As mentioned at the beginning of Section 3.3, the H2 construction
is simpler because nearfield blocks will not be factorized, and the only complication is that an H2

matrix may be associated with a more general tree structure where a parent can have more than
two children.

SMASH for the H2 construction also follows a bottom-up levelwise traversal of T through level
l = L,L− 1, . . . , 2. For each node i at level l, a column/row basis Ûi/V̂i corresponding to a farfield
block row/column with index īrow/̄icol can be obtained via either interpolation (2.2) or Taylor
expansion (2.8). The bases Ûi and V̂i are then passed into SRRQR

(3.18) [Pi, Gi, î
row] = compr(Ûi, ī

row) and [Fi, Hi, î
col] = compr(V̂i, ī

col).

The H2 generators U,R, V,W are then set as

(3.19)

Ui : = Pi

[
I
Gi

]
if i is a leaf node,



Rc1
...

Rck


 : = Pi

[
I
Gi

]
if i is a parent with children c1, . . . , ck,

Vi : = Fi

[
I
Hi

]
if i is a leaf node,



Wc1
...

Wck


 : = Fi

[
I
Hi

]
if i is a parent with children c1, . . . , ck.

Again, once the compressions for children nodes (at level l) are complete, the intermediate index set
associated with the parent node (at level l − 1) can be updated as in (3.16). Namely,

(3.20) p̄row = ĉ1
row ∪ · · · ∪ ĉk

row, p̄col = ĉ1
col ∪ · · · ∪ ĉk

col, with children(p) = {c1, . . . , ck}.

Finally, analogous to (3.17), the coupling matrices associated with admissible leaves are extracted

based on index sets îrow and ĵcol as

(3.21) Bi,j := A|̂
irow×ĵcol

, ∀(i, j) ∈ L,

and the nearfield blocks associated with inadmissible leaves are formed by

(3.22) Bi,j := A|irow×jcol , ∀(i, j) ∈ L−.

Compared with standard H2 constructions based on either expansion or interpolation, SMASH
is more efficient and easier to implement. First, in order to complete the H2 construction procedure,

13

it suffices to provide only the column/row basis for each farfield block, which can be easily obtained
based on interpolation (2.2), for example, and the coupling matrices Bi,j can be simply extracted
from the original matrix without resorting to any other formulas. Second, no information is required
about the translation to compute transfer matrices because the computation of R/W is essentially
the same as that of U/V at leaf level. For all the children i of a node p, Ri/Wi are calculated jointly
based on a subset of points located inside Ωp (i.e., Xp̄row/Yp̄col). Therefore, SMASH essentially
builds a hierarchy of grids and computes the bases at each level of the tree by repeating the same
operations (3.18) on each coarse grid. In addition, the use of SRRQR guarantees that each entry of
the U, V,R,W matrices is bounded by a user-specified constant, which ensures the numerical stability
of the construction procedure. Note that the special structures in the nested bases (3.19) result in
not only a reduced storage but also in faster matrix operations such as matrix-vector multiplications,
linear system solutions, etc. Finally, since the computation of the basis matrices only relies on the
information local to each node, as can be seen from (3.11) and (3.18), this construction algorithm
is inherently suitable for a parallel computing environment.

3.4. Matrix-vector multiplication. Among various hierarchical rank structured matrix op-
erations, the matrix-vector multiplication is the most widely used, as indicated by the popularity of
tree code [2] (for H matrices) and fast multipole method [30, 57] (for H2 matrices).

The matrix-vector multiplication for an H2 matrix A follows first a bottom-up and then a top-
down traversal of T [13, 34], which is a succinct algebraic generalization of the fast multipole method
(cf.[57]). Suppose T has L levels, the node-wise version of this algorithm to evaluate z = Aq can be
summarized as follows:

1. from level l = L to level l = 2, for each node i at level l, compute q̂i := V T
i q|icol if l = L;

otherwise, compute q̂i :=
∑

c∈children(i)W
T
c q̂c;

2. for each nonroot node i ∈ T , compute ẑi =
∑

j:(i,j)∈L Bi,j q̂j ;
3. from level l = 2 to level l = L, for each node i at level l, if l < L, for each child c of i,

compute ẑc = ẑc +Rcẑi; otherwise, compute z|irow = Uiẑi +
∑

j:(i,j)∈L−
Bi,jq|jcol .

When X and Y are uniformly distributed in [0, 1]d, the resulting tree T is a perfect 2d-tree
(each parent has 2d children and all leaf nodes are at the same level). If, in addition we assume the
ordering of points to be consistent with the postordering of tree T , i.e., for two siblings i, j ∈ T , if
i < j then the index of any point in box i must be smaller than point in box j, then an H2 matrix
A has a telescoping representation:

A =B(L)+

U (L)

(
U (L−1)

(
. . .

(
U (2)B(1)

(
V (2)

)T
+B(2)

)
. . .

)(
V (L−1)

)T
+B(L−1)

)(
V (L)

)T
,

(3.23)

where U (l), V (l) are block diagonal matrices:

(3.24) U (l) =






diag(Ui)lv(i)=l if l = L,

diag







Rc1

...

Rck







lv(i)=l

if l < L,
V (l) =






diag(Vi)lv(i)=l if l = L,

diag







Wc1

...

Wck







lv(i)=l

if l < L,

and B(l) has a block structure. B(L) has #{i ∈ T : lv(i) = L} ×#{i ∈ T : lv(i) = L} blocks where
each nonzero block corresponds to a nearfield block, while for l < L, there are #{i ∈ T : lv(i) =
l + 1} ×#{i ∈ T : lv(i) = l + 1} blocks in B(l) and each nonzero block corresponds to a coupling
matrix. That is, in B(L), for lv(i) = lv(j) = L, block (li, lj) is equal to Bi,j if (i, j) ∈ L−; in B(l)

with l < L, for lv(i) = lv(j) = l + 1, block (li, lj) is equal to Bi,j if (i, j) ∈ L. Here li denotes the

14

location of node i at level l enumerated from left to right. If A is an HSS matrix associated with a
perfect binary tree T , the structures of U (l) and V (l) are identical to those in (3.24) with k = 2 but
B(l) has a much simpler block diagonal structure:

(3.25) B(l) =





diag(Di)i is a leaf node if l = L,

diag

([
0 Bc1

Bc2 0

])

lv(i)=l

if l < L,

where c1 and c2 are the children of node i.
Based on the explicit representation (3.23) of an H2 matrix associated with a perfect 2d-tree,

we can write down a levelwise version of the matrix-vector multiplication:
1. at level l(2 ≤ l ≤ L), compute

(3.26) q̂(l) =
(
V (l)

)T
. . .
(
V (L)

)T
q;

2. at level l(2 ≤ l ≤ L), compute

(3.27) ẑ(l) = B(l−1)q̂(l);

3.

(3.28) z = B(L)q + U (L)
(
. . .
(
U (3)(U (2)ẑ(2) + ẑ(3)) + ẑ(4)

)
+ . . . ẑ(L)

)
.

Notice that when X,Y are not uniformly distributed, T is not necessarily a perfect tree. Under
this condition, the nodes i, j corresponding to a coupling matrix Bi,j may not be at the same level
of T and the telescoping expansion (3.23) does not exist.

As for linear system solutions, H2 and HSS matrices take completely different approaches to
directly solve the resulting system. Linear complexity H2 matrix solvers ([13, 34]) heavily depend on
recursion to reduce the number of floating point operations while HSS matrices could benefit from
highly parallelizable ULV-type algorithms (cf.[23], [24]) due to the special structure of HSS. However,
as mentioned before, since the requirement of an HSS structure is too strong, the application of HSS
matrices is limited as compared to H2 matrices.

4. Error analysis. In this section, we analyze the approximation error of SMASH. Since the
HSS construction is more complicated than H2 construction due to the factorization of nearfield
blocks, the corresponding error analysis is more involved. Here we first present error analysis for
the HSS construction associated with a perfect binary tree and then an error bound for the H2

construction associated with a perfect 2d-tree can be easily derived.
For a perfect 2d-tree, it is natural and easy to interpret the levelwise construction in Section 3.3

in the following recursive manner:

(4.1) A(l) = U (l)A(l−1)
(
V (l)

)T
+B(l) + E(l), ∀l ≥ 3,

where A(L) = A and A(l) (l < L) is a submatrix of A with the following block structure:

(4.2) (li, lj)−block of A(l) =

{
A|̄i×j̄ if lv(i) = lv(j) = l and (i, j) is admissible,

0 if lv(i) = lv(j) = l and (i, j) is not admissible,

U (l), V (l), B(l) follow the definition in Section 3.4 and E(l) denotes the factorization error at level
l. The superscripts row and col used in (3.6) are dropped in (4.2) in order to simplify the notation

15

used in the proof. Here, we assume that the items involving the index i refer to rows and the items
involving the index j refer to columns. In addition, we introduce the notation

I(l) := ∪lv(i)=l ī and J(l) := ∪lv(j)=l j̄.

Then the size of A(l) is equal to |I(l)| × |J(l)|.
We also assume there exists a constant r(l) associated with each level such that

(4.3) |̂i| ≤ r(l), |̂j| ≤ r(l), i, j at level l, and r(l+1) ≤ r(l).

This constant r(l) is actually an upper bound for the numerical ranks in the admissible blocks at
level l.

Expanding the recursion (4.1) leads to

A =U (L)

(
U (L−1)

(
. . .

(
U (2)B(1)

(
V (2)

)T
+B(2) + E(2)

)
. . .

)(
V (L−1)

)T

+B(L−1) + E(L−1)
)(

V (L)
)T

+B(L) + E(L).

(4.4)

Now we focus on the analysis of HSS approximation error. To estimate the norm of each diagonal
block in U (l) and V (l), the following lemma is needed, which is a simple consequence of SRRQR in
Theorem 2.4 and thus holds for both H2 and HSS construction.

Lemma 4.1. Let s > 1 be the prescribed elementwise bound in SRRQR in Theorem 2.4, then
the norms of the H2 generators in (3.19) or of the HSS generators in (3.12) and (3.15) satisfy the
following estimate

(4.5) ‖Pi

[
I
Gi

]
‖F ≤ s

√
|̄i|r(l) and ‖Fj

[
I
Hj

]
‖F ≤ s

√
|̄j|r(l),

for any nodes i, j at level l.

Proof. Under the assumption (4.3), we know that the column size of

[
I
Gi

]
is |̂i| ≤ r(l). Since

the row size of

[
I
Gi

]
is equal to |̄i| and the entries of Gi are bounded by s, we get

‖Pi

[
I
Gi

]
‖F ≤ s

√
|̂i|+ (|̄i| − |̂i|)|̂i| ≤ s

√
|̄i|r(l).

The same argument applies to ‖Fj

[
I
Hj

]
‖F .

In the following two lemmas, Lemma 4.2 and Lemma 4.3, we investigate the local error generated
in farfield approximation and nearfield approximation, respectively. Lemma 4.2 applies to both H2

and HSS construction, while Lemma 4.3 is only necessary for HSS construction because there is no
nearfield approximation in H2 construction.

Lemma 4.2. Suppose i and j are two nodes at level l and (i, j) ∈ Sep. Denote the farfield
approximation tolerance by ǫfar as in (2.9). Then the H2 generators computed in (3.19) or the HSS
generators computed in (3.12) and (3.15) produce the following factorization

A|̄i×j̄ = Pi

[
I
Gi

]
A|̂

i×ĵ

(
Fj

[
I
Hj

])T

+ E(i,j),

16

where the approximation error E(i,j) satisfies

‖E(i,j)‖F ≤ 2s2
√
|̄i||̄j|r(l)ǫfar‖A|̄i×j̄‖F .

Proof. According to (2.7) and (2.11), we know that for each (i, j) ∈ Sep

A|̄i×j̄ = ÛīB̂i,j V̂
T
j̄

+ EF |̄i×j̄ = Pi

[
I
Gi

]
Û
î
B̂i,j V̂

T
ĵ

(
Fj

[
I
Hj

])T

+ EF |̄i×j̄

= Pi

[
I
Gi

]
A|̂

i×ĵ

(
Fj

[
I
Hj

])T

+ E(i,j),

where

(4.6) E(i,j) := −Pi

[
I
Gi

]
EF |̂i×ĵ

(
Fj

[
I
Hj

])T

+ EF |̄i×j̄.

Based on (2.9) and Lemma 4.1, we deduce that

‖E(i,j)‖F ≤ ‖Pi

[
I
Gi

]
‖F ‖EF |̂i×ĵ

‖F ‖Fj

[
I
Hj

]
‖F + ‖EF |̄i×j̄‖F

≤ 2s
√
|̄i|r(l)ǫfar‖A|̄i×j̄‖F s

√
|̄j|r(l) = 2s2

√
|̄i||̄j|r(l)ǫfar‖A|̄i×j̄‖F .

Lemma 4.3. Suppose i and j are two nodes at level l of the HSS tree and (i, j) /∈ Sep. Then
in the HSS construction, the application of the truncated SVD with relative tolerance ǫSVD in (3.9)
and (3.13) produces the following factorization

A|̄i×j̄ = SiΣ
−
i S̃j + E(i,j),

where

‖E(i,j)‖F ≤ s2 |̄j|
√
|̄i|r(l)r(l)ǫSVD‖A|

j‖F + s|̄i|
√

|̄j|r(l)ǫSVD‖A−
i ‖F .

Proof. According to (3.11), we know that

Si = Pi

[
I
Gi

]
Si |̂i.

Therefore,

SiΣ
−
i S̃j = Pi

[
I
Gi

]
Si |̂iΣ−

i S̃j

= Pi

[
I
Gi

] (
A|̂

i×j̄
− E−

Σ |̂
i×j̄

)
.

Based on (3.13), we further have:

A|̂
i×j̄

= T̃ T
i |̂

i
(Σ

|
j)

TT T
j + E

|
Σ |̂i×j̄

.

17

Since

T T
j = (Tj |̂j)T

(
Fj

[
I
Hj

])T

,

we obtain

A|̂
i×j̄

=
(
A|̂

i×ĵ
− E

|
Σ |̂i×ĵ

)(
Fj

[
I
Hj

])T

+ E
|
Σ |̂i×j̄

.

Therefore, we get

A|̄i×j̄ = Pi

[
I
Gi

]
A|̂

i×ĵ

(
Fj

[
I
Hj

])T

+ E(i,j),

where

(4.7) E(i,j) :=− Pi

[
I
Gi

]
E

|
Σ |̂i×ĵ

(
Fj

[
I
Hj

])T

+ Pi

[
I
Gi

](
E

|
Σ |̂i×j̄ − E−

Σ |̂i×j̄

)
+ E−

Σ |̄i×j̄.

Introduce the notation

ǐ := ī \ î and ǰ := j̄ \ ĵ,

we then have

E
|
Σ |̂i×j̄

= E
|
Σ |̂i×ĵ

(
Fj

[
I
0

])
+ E

|
Σ |̂i×ǰ

(
Fj

[
0
I

])
and E−

Σ |̄i×j̄ = Pi

[
I
0

]
E−

Σ |̂
i×j̄

+ Pi

[
0
I

]
E−

Σ |̌i×j̄.

Substituting the above identities into (4.7), we obtain

(4.8)

E(i,j) =− Pi

[
I
Gi

]
E

|
Σ |̂i×ĵ

(
Fj

[
0
Hj

])T

+ Pi

[
I
Gi

]
E

|
Σ |̂i×ǰ

(
Fj

[
0
I

])T

− Pi

[
0
Gi

]
E−

Σ |̂
i×j̄

+ Pi

[
0
I

]
E−

Σ |̌i×j̄.

Based on (3.10), (3.14) and Lemma 4.1, we have the estimate

‖E(i,j)‖F ≤ ‖
[
I
Gi

]
‖F
(
‖Hj‖F ‖E|

Σ |̂i×ĵ
‖F + ‖E|

Σ |̂i×ǰ
‖F
)
+ ‖Gi‖F ‖E−

Σ |̂
i×j̄

‖F + ‖E−
Σ |̌i×j̄‖F

≤ ‖
[
I
Gi

]
‖F
√
‖Hj‖2F + 1‖E|

Σ |̂i×j̄
‖F +

√
‖Gi‖2F + 1‖E−

Σ |̄i×j̄‖F

≤ s2 |̄j|
√
|̄i|r(l)r(l)ǫSVD‖A|

j‖F + s|̄i|
√
|̄j|r(l)ǫSVD‖A−

i ‖F .

Based on Lemmas 4.2–4.3, we can estimate the total approximation error at level l in HSS
construction.

Lemma 4.4. Assume ǫSVD and ǫfar are the approximation tolerances used in the approximation
of nearfield and farfield blocks in the HSS construction. Then the approximation error E(l) in (4.1)
satisfies the following bound

‖E(l)‖F ≤ s22l/2+2
(
r(l+1)

)3/2 (
r(l)
)3/2

ǫSVD‖A(l)‖F + 4s2r(l)r(l+1)ǫfar‖A(l)‖F ,
18

where we have set r(L+1) := r(L).
Proof. Based on Lemma 4.3, we know that the approximation error from the nearfield compres-

sion at level l can be estimated as follows:

∑

(i,j)/∈Sep

‖E(i,j)‖2F ≤ 2
∑

(i,j)/∈Sep

(
s4 |̄j|2 |̄i|

(
r(l)
)3
ǫ2SVD‖A|

j‖2F + s2 |̄i|2 |̄j|r(l)ǫ2SVD‖A−
i ‖2F

)

≤ 2
∑

i,j at level l

(
s4 |̄j|2 |̄i|

(
r(l)
)3
ǫ2SVD‖A|

j‖2F + s2 |̄i|2 |̄j|r(l)ǫ2SVD‖A−
i ‖2F

)
.

Since |̄i| ≤ 2r(l+1), |̄j| ≤ 2r(l+1) for nodes i, j at level l and there are 2l−1 nodes at this level, we
further have

∑

(i,j)/∈Sep

‖E(i,j)‖2F ≤
∑

i,j at level l

(
2s4

(
2r(l+1)

)3 (
r(l)
)3
ǫ2SVD‖A|

j‖2F + 2s2
(
2r(l+1)

)3
r(l)ǫ2SVD‖A−

i ‖2F
)

=
∑

lv(i)=l



∑

lv(j)=l

2s4
(
2r(l+1)

)3 (
r(l)
)3
ǫ2SVD‖A|

j‖2F




+
∑

lv(j)=l



∑

lv(i)=l

2s2
(
2r(l+1)

)3
r(l)ǫ2SVD‖A−

i ‖2F




≤
∑

lv(i)=l

2s4
(
2r(l+1)

)3 (
r(l)
)3
ǫ2SVD‖A(l)‖2F

+
∑

lv(j)=l

2s2
(
2r(l+1)

)3
r(l)ǫ2SVD‖A(l)‖2F

≤ 2l
(
s4
(
2r(l+1)

)3 (
r(l)
)3

+ s2
(
2r(l+1)

)3
r(l)
)
ǫ2SVD‖A(l)‖2F

≤ s42l+4
(
r(l+1)

)3 (
r(l)
)3
ǫ2SVD‖A(l)‖2F .

Based on Lemma 4.2, we know that the approximation error for the farfield compression at level l
satisfies:

∑

(i,j)∈Sep

‖E(i,j)‖2F ≤
∑

(i,j)∈Sep

(2s2
√
|̄i||̄j|r(l))2ǫ2far‖Aī×j̄‖2F .

Following the construction procedure (3.16) and the assumption (4.3), we have

|̄i| ≤ 2r(l+1), |̄j| ≤ 2r(l+1).(4.9)

Thus, we obtain the following estimation:

∑

(i,j)∈Sep

‖E(i,j)‖2F ≤
∑

(i,j)∈Sep

(4s2r(l+1)r(l))2ǫ2far‖Aī×j̄‖2F

= 16s4(r(l+1)r(l))2ǫ2far
∑

(i,j)∈Sep

‖Aī×j̄‖2F

≤ 16s4(r(l+1)r(l))2ǫ2far‖A(l)‖2F .
19

To sum up both farfield and nearfield approximation errors, we obtain the estimate for the overall
approximation error introduced at level l:

‖E(l)‖F =




∑

(i,j)/∈Sep

‖E(i,j)‖2F +
∑

(i,j)∈Sep

‖E(i,j)‖2F




1

2

≤ s22l/2+2
(
r(l+1)

)3/2 (
r(l)
)3/2

ǫSVD‖A(l)‖F + 4s2r(l)r(l+1)ǫfar‖A(l)‖F .

The overall HSS approximation error in the Frobenius norm can then be derived in the following
theorem.

Theorem 4.5. Suppose the HSS tree has L levels. With the assumptions in Lemma 4.4, SMASH
produces the following factorization

A =U (L)

(
U (L−1)

(
. . .

(
U (2)B(1)

(
V (2)

)T
+B(2)

)
. . .

)(
V (L−1)

)T

+B(L−1)
)(

V (L)
)T

+B(L) + E,

(4.10)

where the approximation error E satisfies the estimate

‖E‖F ≤ C1ǫSVD‖A‖F + C2ǫfar‖A‖F ,

with

C1 =
L−1∑

l=2

2L+l/2+2s2L−2l+2
(
r(l+1) . . . r(L)

)2 (
r(l+1)

)3/2 (
r(l)
)5/2

C2 =
L∑

l=2

2L+2s2L−2l+2
(
r(l)r(l+1) . . . r(L)

)2
r(l+1).

Proof. According to (4.4), we know that the overall HSS approximation error E has the expres-
sion

(4.11) E =
(
U (L) . . . U (3)

)
E(2)

(
V (L)) . . . V (3)

)T
+ · · ·+ U (L)E(L−1)

(
V (L)

)T
+ E(L).

Note that the column size of
(
U (L) . . . U (l+1)

)
is bounded by r(l)2l. Thus we have

(4.12) ‖U (L) . . . U (l+1)‖F ≤
√
r(l)2l‖U (L) . . . U (l+1)‖2 ≤ 2L/2sL−l

√
r(l)r(l+1) . . . r(L),

20

and same upper bound holds for ‖V (L) . . . V (l+1)‖F . It follows from (4.11) that

(4.13)

‖E‖F ≤
L−1∑

l=2

‖U (L) . . . U (l+1)‖F ‖E(l)‖F ‖V (L) . . . V (l+1)‖F + ‖E(L)‖F

≤
L−1∑

l=2

2Ls2L−2lr(l)
(
r(l+1) . . . r(L)

)2
s22l/2+2

(
r(l+1)

)3/2 (
r(l)
)3/2

ǫSVD‖A(l)‖F

+

L−1∑

l=2

2Ls2L−2lr(l)
(
r(l+1) . . . r(L)

)2
4s2r(l+1)r(l)ǫfar‖A(l)‖F + ‖E(L)‖F

≤
L−1∑

l=2

2L+l/2+2s2L−2l+2
(
r(l+1) . . . r(L)

)2 (
r(l+1)

)3/2 (
r(l)
)5/2

ǫSVD‖A‖F

+

L∑

l=2

2L+2s2L−2l+2
(
r(l)r(l+1) . . . r(L)

)2
r(l+1)ǫfar‖A‖F .

It is easy to see that the bound in (4.13) is quite pessimistic because we bound ‖A(l)‖F from
above by ‖A‖F , where A(l) (defined in (4.2)) is a submatrix of A of size |I(l)| × |J(l)|.

Corollary 4.6. Besides the assumptions in Theorem 4.5, if there also exists a constant r ≥ 2
such that r(l) ≤ r for each l > 1, then the approximation error E in SMASH satisfies the estimate:

‖E‖F ≤ (2r2s2)L(16ǫSVD + 8rǫfar)‖A‖F .

Next we estimate the error in H2 approximation. Note that, by setting ǫSVD = 0, the error
estimate in Theorem 4.5 also holds for the H2 construction with a possibly different constant C2

depending on dimension d. In fact, analogous to Lemma 4.4, we first have the following estimate
for the H2 construction:

‖E(l)‖F ≤ 4s2r(l)r(l+1)ǫfar‖A(l)‖F ,

where E(l) denotes the approximation error introduced at level l, as defined in (4.1). Assume the
H2 matrix is associated with a perfect 2d-tree T (d ∈ {1, 2, 3}), i.e., each nonleaf node of T has 2d

children and all leaves are at the same level. For a node i at level l, since |̄i| ≤ 2dr(l+1) ≤ 2dr(l), it
follows from (3.24), (3.19) and Lemma 4.1 that

‖U (l)‖2 ≤ s2d/2r(l).

Notice that the column size of
(
U (L) . . . U (l+1)

)
is bounded by r(l)2dl. Then the counterpart of (4.12)

can be obtained for the H2 construction as:

‖U (L) . . . U (l+1)‖F ≤
√
r(l)2dl‖U (L) . . . U (l+1)‖2 ≤ 2dL/2sL−l

√
r(l)r(l+1) . . . r(L),

and the same upper bound holds for ‖V (L) . . . V (l+1)‖F . The total approximation error can now be

21

obtained by means of (4.11):

‖E‖F ≤
L−1∑

l=2

‖U (L) . . . U (l+1)‖F ‖E(l)‖F ‖V (L) . . . V (l+1)‖F + ‖E(L)‖F

≤
L−1∑

l=2

2dLs2L−2lr(l)
(
r(l+1) . . . r(L)

)2
4s2r(l+1)r(l)ǫfar‖A(l)‖F + 4s2(r(L))2ǫfar‖A‖F

≤
L−1∑

l=2

2dL+2s2L−2l+2
(
r(l)r(l+1) . . . r(L)

)2
r(l+1)ǫfar‖A‖F + 4s2(r(L))2ǫfar‖A‖F

≤
L∑

l=2

2dL+2s2L−2l+2
(
r(l)r(l+1) . . . r(L)

)2
r(l+1)ǫfar‖A‖F .

The above error analysis yields the following theorem.
Theorem 4.7. Suppose T is a perfect 2d-tree with L levels, associated with the H2 approxima-

tion of A. Under the assumptions in (4.3), SMASH produces the following factorization

A =U (L)

(
U (L−1)

(
. . .

(
U (2)B(1)

(
V (2)

)T
+B(2)

)
. . .

)(
V (L−1)

)T

+B(L−1)
)(

V (L)
)T

+B(L) + E,

(4.14)

where the approximation error E satisfies the estimate

‖E‖F ≤ Cǫfar‖A‖F ,

with

C =

L∑

l=2

2dL+2s2L−2l+2
(
r(l)r(l+1) . . . r(L)

)2
r(l+1).

Corollary 4.8. Besides the assumptions in Theorem 4.7, if there also exists a constant r ≥ 2
such that r(l) ≤ r for each l > 1, then the approximation error E in SMASH satisfies the estimate:

‖E‖F ≤ (2dr2s2)L8rǫfar‖A‖F .

Finally, we will show that the term (2dr2s2)L in Corollaries 4.6-4.8 can be bounded by functions
of n which are independent of ǫfar and ǫsvd under certain assumptions.

Proposition 4.9. Given r, let T be a perfect 2d-tree of L levels such that r2dL ≤ n. Assume
without loss of generality that s ≤ 2. Then the constants in Corollary 4.6 and Corollary 4.8 satisfy
the following estimation:

(4.15)
(
2dr2s2

)L ≤ n
2

d
+1+ 1

2d
log

2
n.

Proof. Since r2dL ≤ n, we have L ≤ 1
d log2

n
r . It follows that

2dLs2L ≤ 2dL22L ≤
(n
r

) 2

d
+1

≤ n
2

d
+1.

22

Next it remains to bound r2L ≤ r
2

d
log

2

n
r . To this end, we define g(x) = xlog2

n
x for x ≥ 1. Then

r2L ≤ (g(r))
2

d . It can be verified that the global maximum of g is achieved at x =
√
n. Therefore,

r2L ≤ (g(r))
2

d ≤
(
g(
√
n)
) 2

d = n
1

2d
log

2
n,

and (4.15) is proved. Proposition 4.9 also indicates that C1, C2 in Theorem 4.5 and C in The-
orem 4.7 all can be bounded by constants which are independent of ǫfar and ǫsvd under certain
assumptions.

5. Complexity analysis. This section studies the complexity of SMASH for an n×n matrix.
For simplicity, we only consider the case when X = Y and the points are uniformly distributed.
Under this assumption, a perfect tree T will be used for both HSS and H2 structures.

5.1. Complexity for the HSS construction. We start with the HSS construction case.
Since the HSS matrix structure is only efficient for one dimensional problems, we will focus on the
one-dimensional problems in this section. Suppose T has L levels such that n = O(r2L), where r is
a positive integer such that the rank of HSS generators is bounded above by r and

(5.1) |̄irow| ≤ 2r, |̄icol| ≤ 2r, ∀i 6= root.

Notice that in the context of integral equations in potential theory, the assumption (5.1) in general
holds only for integral equations defined on a curve. Since the points are uniformly distributed, for
each nonroot node i, the number of nodes in Ni is very small, which we assume to be bounded above
by 3. Under these assumptions, we have the following complexity estimate.

Theorem 5.1. Let T be a perfect binary tree with L levels and (5.1) hold. Then the complexity
of SMASH for the HSS construction in Section 3.3.1 is O(n).

Proof. Based on (5.1), it is easy to see that, for each nonroot node i, the compression cost for
its nearfield blocks in (3.9) is O(r3). This is because the size of the nearfield block row in (3.9) is no
larger than 2r-by-6r under the above assumption for Ni. Besides, the farfield basis matrix Ûi has
column size at most r, so the cost of an SRRQR procedure in (3.11) is O(r3 logs r). Therefore, the
compression cost associated with each nonroot node i is O(r3 logs r) and the complexity of the HSS
construction is O(2Lr3 logs r) = r2O(n) = O(n).

5.2. Complexity for the H2 construction. For the H2 construction case, we assume that
when X ⊂ Rd, T is a perfect 2d-tree with L levels such that n = O(r2dL) and r is a positive integer
such that the rank of H2 generators is bounded by r and

(5.2) |̄irow| ≤ r2d, |̄icol| ≤ r2d, ∀i 6= root.

The analysis here is simpler than that of the HSS construction in Section 5.1. Since each node
i only involves the compression of farfield basis Ûi |̄irow (as well as V̂i |̄icol), whose size is no larger
than r2d-by-r under the assumption (5.2), we deduce that the compression cost associated with each
node is O(r3). As a result, the complexity of the H2 construction is O(2dLr3) = r2O(n). Thus we
conclude:

Theorem 5.2. Let T be a perfect 2d-tree with L levels and (5.2) hold. Then the complexity of
SMASH for the H2 construction in Section 3.3.2 is O(n).

6. Numerical examples. In this section, we present numerical examples to illustrate the
performance of SMASH. All of the numerical results were performed in MATLAB R2014b on a
macbook air with a 1.6 GHz CPU and 8 GB of RAM. The following notation is used throughout
the section:

• n: the size of A;
• tconstr: wall clock time for constructing Â in seconds;

23

• tmatvec: wall clock time for multiplying Â with a vector in seconds;
• tsol: wall clock time for solving Âx = b in seconds;
• ǫsvd: relative tolerance used in the truncated SVD for the nearfield compression;
• rand([0, 1]): a random number sampled from the uniform distribution in [0, 1].

6.1. Choice of parameters. Since the quality of a degenerate approximation depends on the
underlying kernel function, there is no rule of thumb in general on choosing the parameters to satisfy
a prescribed tolerance. For completeness, here we present a heuristic approach that we use in all
numerical experiments on the choice of parameters.

Given a matrix A and a tolerance ǫ, suppose one wants to construct a hierarchical matrix Â
(H, H2, or HSS) such that ‖A− Â‖max ≈ ǫ. Then the following approach is adopted to determine
parameters τ, r.

The choice of separation ratio τ ∈ (0, 1) only depends on the dimension of the problem, so
it is chosen first. We choose τ such that τ ≤ 0.7 and, in general, a slightly larger τ is preferred
for higher dimensional problems. For example, we choose τ = 0.6 for essentially one-dimensional
problems, such as those in Section 6.3 and Section 6.4; we choose τ = 0.65 for problems in two or
three dimensions in Section 6.2.

Having chosen a separation ratio τ , we use the following function to determine the farfield
approximation rank r used in constructing Ûi, V̂i (before the SRRQR postprocessing):

r =





⌊log ǫ/ log τ − 20⌋, if ǫ < 10−8,

⌊log ǫ/ log τ − 15⌋, if 10−8 ≤ ǫ < 10−6,

max{⌊log ǫ/ log τ − 10⌋, 5} otherwise,

where ⌊x⌋ yields the largest integer less than or equal to x. For example, in Section 6.2.1, ǫ = 10−7,
τ = 0.65, r = 22; in Section 6.3, ǫ = 10−8, τ = 0.6, r = 21; in Section 6.4, ǫ = 10−10, τ = 0.6,
r = 25.

6.2. Construction and matrix-vector multiplication of H2 matrices. In this section,
we perform numerical experiments to test the construction and matrix-vector multiplication of an
H2 approximation associated with kernels in both two and three dimensions. A complicated three-
dimensional geometry (see Figure 6.2) is presented to illustrate the robustness of the algorithm.

6.2.1. Two dimensions. We first consider the kernel in (2.1) with dx = 1. We chose X as
a uniform m × m grid in [0, 1]2 and A = [κ(x, y)]x,y∈X . The computational domain [0, 1]2 was
recursively divided into 4 subdomains until the number of the points inside each domain was less
than or equal to 50. We embedded [0, 1]2 in the complex plane and used the truncated Taylor
expansion (2.4) with r = 22 terms and the separation ratio τ = 0.65 to compress farfield blocks.
The error is measured by the relative error ‖Âu−Au‖/‖Au‖, where u is a random vector of length
n = m2 with entries generated by rand([0, 1]). This is because one of the main applications of
hierarchical matrices is used as an alternative of FMM to perform matrix-vector multiplications.
The numerical results are reported in Table 6.1.

As can be seen from Table 6.1, SMASH for the H2 construction and the matrix-vector multi-
plication described in Section 3.4 scale linearly, which is consistent with the complexity analysis in
Section 5.

6.2.2. Three dimensions. We consider the following point distributions in three dimensions:
• uniform distribution inside the unit cube;
• uniform distribution on the unit sphere;
• random distribution on a complicated triceratops geometry embedded in the cube [−100, 100]3

as shown in Figure 6.2 1,

1The datasets are from the point cloud tools http://www.geo.tuwien.ac.at/downloads/pg/pctools/pctools.html

24

Table 6.1: Numerical results for 2D test in Section 6.2.1

n = m2 ‖Âu−Au‖/‖Au‖ tconstr tmatvec

1600 6.69× 10−13 0.52 0.02
6400 2.00× 10−12 1.97 0.07
25600 3.65× 10−12 9.53 0.30
102400 4.87× 10−12 39.47 1.18

Table 6.2: Numerical results for 3D triceratops example in Section 6.2.2

n ‖Âu−Au‖/‖Au‖ tconstr tmatvec

10000 1.98× 10−6 9.12 0.14
20000 3.83× 10−6 23.20 0.38
40000 5.83× 10−6 50.39 0.74
80000 7.20× 10−6 115.03 1.57

where the kernel function for the first two cases is κ(x, y) = 1
|x−y| (x 6= y) with κ(x, x) = 1 and the

kernel for the third case is taken as κ(x, y) = log |x−y|
|x−y| (x 6= y) with κ(x, x) = 1. Note that the second

kernel function has a stronger singularity than the first one near x = y. The H2 approximation Â is
constructed based on interpolation in three dimensions, where 5 Chebyshev points are used in each
direction.

n ×10
4

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

ti
m

e
/n

×10
-3

0

1

2

3

4

5

6

time per degree of freedom v.s. matrix size

n ×10
4

1 2 3 4 5 6 7 8

ti
m

e
/n

×10
-3

0

0.5

1

1.5

2

2.5

3

time per degree of freedom v.s. matrix size

Fig. 6.1: Time per degree of freedom plot for 3D test: cube (left) and sphere (right)

The numerical results are presented in Figure 6.1 and Table 6.2. It is easily seen from Figure 6.1
that, for each case, the time per degree of freedom roughly remains constant as matrix size increases,
which implies O(n) construction cost. For the highly non-uniform triceratops geometry, Table 6.2
demonstrates nearly linear cost in terms of the matrix size, since the corresponding tree T is no
longer perfect in this case.

6.3. Cauchy-like matrices. We consider in this section the numerical solution of Cauchy-like
matrices. It is known that Cauchy-like matrices are related to other types of structured matrices
including Toeplitz matrices, Vandermonde matrices, Hankel matrices and their variants [46, 48, 47,
52, 49, 50]. Consider the kernel κ(x, y) = 1/(x − y), x 6= y ∈ C. Let xi, yj(i, j = 1 : n) be 2n
pairwise distinct points in C. The Cauchy matrix is then given by C = [κ(xi, yj)]i,j=1:n, which is

25

Fig. 6.2: The 3D triceratops geometry used for the numerical experiments in Table 6.2.

known to be invertible [21]. Given two matrices w, v ∈ Cn×p, the (i, j)-entry of a Cauchy-like matrix
A associated with generators w, v is defined by [8]

(6.1) ai,j =
1

xi − yj

p∑

l=1

wi,lvj,l.

For simplicity, we consider the case p = 2, i.e., w (as well as v) is composed of two column vectors.
Denote by ŵ1, ŵ2, v̂1, v̂2 the column vectors in u, v, i.e., w = [ŵ1, ŵ2], v = [v̂1, v̂2]. It can be seen
that A can be written as

(6.2) A = diag(ŵ1)Cdiag(v̂1) + diag(ŵ2)Cdiag(v̂2).

Existing approaches for solving Cauchy or Cauchy-like linear systems associated with points in
R mainly rely on some variants of Gaussian elimination with pivoting techniques. For example, fast
O(n2) algorithms for solving Cauchy linear systems can be found in [18, 19, 25, 32], etc.; a superfast
O(n log3 n) algorithm based on a sequential block Gaussian elimination process was proposed in
[54]. The performance of most existing methods depends on the the distribution of point sets x, y.
As pointed out in [19], if two sets of points x, y can not be separated, for example, when they
are interlaced, existing algorithms (for example, BP-type algorithm of [18]) suffer from backward
stability issues. Moreover, due to the use of pivoting techniques, the accuracy of existing algorithms
heavily depend on the ordering of points [18, 19] and the analysis is limited to the case when the
points are in R.

Therefore, in view of the issues mentioned above, we assume xi, yj are mixed together such that
in adaptive partition (see Section 3.1), each box contains the same number of points from xi and yj .
We also consider that xi, yj are distributed on a curve in R2 as illustrated in Fig. 6.4 to demonstrate
that the algorithm is independent of the ordering of points and is applicable for points in C.

We construct the HSS approximation Â to A using SMASH discussed in Section 3.3.1 and then
solve the linear system associated with Â using a fast ULV factorization solver [24]. Due to the
choice of stable expansion in (2.4), arbitrarily high approximation accuracy can be achieved without
stability issues [20].

Note that the HSS approximation to C can be readily obtained as in Section 3. Consequently,
the HSS approximations to diag(ŵ1)Cdiag(v̂1) and diag(ŵ2)Cdiag(v̂2) can be derived by modifying
U, V,D generators, respectively. The sum of these two HSS representations is also an HSS matrix
whose generators can be easily obtained using the technique presented in [64] by merging the two
sets of HSS generators. Hence the HSS approximation to A is derived.

26

In the first experiment, the point sets {xk}nk=1, {yk}nk=1 are chosen as follows:

(6.3) xk = k/(n+ 1), yk = xk + 10−7 ∗ rand([0, 1]), k = 1, . . . , n.

In the second experiment, the point sets are distributed on the curve illustrated in Fig. 6.3 that is
parametrized by

γ(t) = e−πi/6 ∗ [(0.5 + sin(4πt)) cos(2πt) + i(0.5 + sin(4πt)) sin(2πt)] , t ∈ [0, 1],

and {xk}nk=1, {yk}nk=1 are given by

(6.4) xk = γ(k/(n+ 1)), yk = γ(xk + 10−7 ∗ rand([0, 1])), k = 1, . . . , n.

In the third experiment, the point set {xk}nk=1 is on the snail geometry in C as illustrated in Fig.
6.4 and the point set {yk}nk=1 is given by

(6.5) yk = xk + 10−7 ∗ rand([0, 1]), k = 1, . . . , n.

For generators of this Cauchy-like matrix, i.e., w = [ŵ1, ŵ2], v = [v̂1, v̂2], we chose ŵl, v̂l(l = 1, 2)
such that each entry in those vectors was given by rand([0, 1]). In order to solve the linear system
Au = b, we constructed an HSS approximation Â to A in (6.2) by SMASH. 1D boxes (i.e., intervals)
and 2D boxes (i.e., rectangles) are used in adaptive partition for point sets in (6.3) and (6.5),
respectively. The right subfigures in Fig. 6.4 illustrate the adaptive partition using 2D boxes as
described in Remark 3.1. We chose separation ratio as τ = 0.6 and adaptive partition stopped when
the number of points inside each box was less than or equal 50. The nearfield blocks were compressed
through SVD with truncation tolerance 10−9. The exact solution was set to be a column vector u
of length n with entries generated by rand([0, 1]), and the right-hand side b was formed by b = Au.

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 6.3: Honeybee geometry used for the numerical experiments in Table 6.3. Left: Original curve;
Right: Adaptive partition of the curve for the case when n = 12800 in Table 6.3.

The numerical results for three Cauchy-like matrix problems are reported in Table 6.3. From
Table 6.3, we see that the computational time for both construction and the solution scale linearly,
and SMASH in Section 3.3.1 is quite robust with respect to complex geometries. Moreover, it can
be seen that SMASH is independent of the ordering of points.

6.4. Integral equations. In this section, we solve Laplace boundary value problems via the
integral equation method. Assume Ω is a smooth simply-connected domain in R2 and let Γ = ∂Ω
be the boundary of Ω of class C2. Consider the interior Dirichlet problem: find u ∈ C2(Ω) ∩ C(Ω)
such that

(6.6)
∆u = 0 in Ω,

u = uD on Γ,

27

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

1.5

2

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 6.4: Snail geometry used for the numerical experiments in Table 6.3. Left: Original curve;
Right: Adaptive partition of the curve for the case when n = 12800 in Table 6.3.

Table 6.3: Numerical results for solving the Cauchy-like matrix when {xk}nk=1 are distributed on
three different curves.

curve n ‖u− û‖/‖u‖ ‖Au−Aû‖/‖Au‖ tconstr tsol

[0, 1]

1600 7.69× 10−12 5.56× 10−15 0.33 0.11
3200 1.01× 10−09 3.87× 10−14 0.63 0.19
6400 5.58× 10−11 5.58× 10−14 1.29 0.35
12800 1.47× 10−08 5.87× 10−14 2.58 0.69

honeybee

1600 9.37× 10−11 8.09× 10−14 1.14 0.28
3200 9.78× 10−10 5.60× 10−13 2.22 0.51
6400 1.55× 10−09 9.16× 10−13 4.42 0.96
12800 2.76× 10−09 1.54× 10−12 8.49 1.87

snail

1600 2.65× 10−11 1.51× 10−15 1.58 0.36
3200 7.48× 10−11 1.82× 10−15 3.28 0.73
6400 8.38× 10−11 3.49× 10−15 6.46 1.42
12800 3.86× 10−10 2.59× 10−15 11.82 2.64

where uD ∈ C(Γ) is given. With smooth boundary curves and Dirichlet data, the wellposedness of
this problem is well studied in potential theory [40, 41].

The fundamental solution and its gradient (in terms of y) for the Laplace equation in R2 are
given by:

Φ(x,y) = − 1

2π
log |x− y|, and ∇yΦ(x,y) = − 1

2π

y − x

|x− y|2 .

Let νy denote the unit outer normal at point y ∈ Γ. The double layer potential with continuous
density σ is given by

(6.7) Kσ(x) :=

∫

Γ

∂Φ(x,y)

∂νy
σ(y)dsy =

∫ 1

0

∂Φ(x, r(t))

∂νy
|r′(t)|σ(r(t))dt, x ∈ Ω,

where we assume Γ is parametrized by r(t) : [0, 1] → R2.
Given Dirichlet data uD ∈ C(Γ) in (6.6), we solve the following integral equation for σ ∈ C(Γ):

(6.8) (K − 1

2
I)σ = uD, on Γ.

28

It is well-known ([41]) that the problem above for σ ∈ C(Γ) is well-posed, and the corresponding
double layer potential u := Kσ solves the interior Dirichlet problem (6.6).

Denote the kernel in the second integral in (6.7) by

(6.9) κ(s, t) :=
∂Φ(r(s), r(t))

∂νy
|r′(t)|.

Several Laplace problems (6.6) with the same exact solution but different domains are con-
sidered here. The first domain Ω is a ram head whose boundary curve Γ is parametrized by
r(t) = (r1(t), r2(t)) for t ∈ [0, 1]:

(6.10)
r1(t) = 2 cos(2πt),

r2(t) = 1 + sin(2πt)− 1.4 cos4(4πt).

The second domain is a sunflower whose boundary curve Γ is parametrized by:

(6.11)
r1(t) = (1.3 + 1.25 cos(40πt)) cos(2πt),

r2(t) = (1.3 + 1.25 cos(40πt)) sin(2πt).

We chose the Dirichlet data uD such that the exact solution of (6.6) is

u(x) = log |x− x0|,

where the source point x0 = (2, 1.5) is in the exterior of Ω. Illustrations for the curves parametrized
in (6.10) and (6.11) are shown in Fig. 6.5 and Fig. 6.6, respectively. We used Nyström method
with trapezoidal rule to discretize (6.8). Since the curve Γ and the kernel are both smooth, Nyström
discretization converges with a convergence rate proportional to that of the quadrature rule.

As in Section 6.3, we applied the HSS matrix techniques to approximate and solve the resulting
matrix from the Nyström discretization of the integral equation in (6.8). The adaptive partition
based on bisection (cf. Remark 3.1) was applied to a box covering the domain Ω in R2 and each box
in leaf level contained no more than 50 quadrature points on Γ. Empty boxes were discarded during
the partition. Illustrations of adaptive partition are shown in the right subfigures of Fig. 6.5 and Fig.
6.6, when 10240 quadrature points are in use. A binary tree T was then generated corresponding
to each adaptive partition. In the construction of the HSS matrix, the bases for the farfield blocks
were approximated by polynomial interpolation (with 25 interpolating points) with respective to the
separation ratio 0.6 and the bases for the nearfield blocks are computed by the truncated SVD with
the tolerance ǫsvd = 10−11. In order to test the convergence of the discretization, for curves in Fig.
6.5, we compared the numerical solution û with the exact solution u by evaluating them at point
x∗ = (0.1, 0.1) inside Ω. For the curve in Fig. 6.6, the evaluation point is chosen as x∗ = (1.5, 0)
inside Ω. The numerical results for the ram head and sunflower problems are shown in Table 6.4
and Table 6.5, respectively.

From Table 6.4 and Table 6.5, it can be seen that the HSS matrix methods achieve linear
complexity at both the construction and solution stages. In addition, it is worth noting that the
numerical solutions for these Laplace Dirichlet problems converge exponentially fast regardless of
the complicated geometries and the solver is quite robust. For example, in view of Table 6.5 which
corresponds to the seemingly complicated geometry in Fig. 6.6, 10 digits of accuracy can be achieved
using only 5120 quadrature points. The ǫ-rank in ram-head geometry is much smaller than the sun-
flower geometry since the former geometry is essentially a 1D geometry while the later one is closer
to a 2D geometry.

29

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-1.5

-1

-0.5

0

0.5

1

1.5

2

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 6.5: Ram head domain for the Dirichlet problem (6.6) with source point and evaluation point
marked as green ‘+’ and red ‘*’, respectively. Left: Original curve; Right: Adaptive partition of the
ram head boundary curve for the case when 10240 quadrature points are used in Table 6.4.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 6.6: Sunflower domain for the Dirichlet problem (6.6) with source point and evaluation point
marked as green ‘+’ and red ‘*’, respectively. Left: Original curve; Right: Adaptive partition of the
sunflower boundary curve for the case when 10240 quadrature points are used in Table 6.5.

6.5. Nearly optimal compression. In this section, we compare the exact numerical rank
of the largest off-diagonal block of A with the approximation rank obtained from SMASH. The
numerical results show that the approximation rank is nearly optimal in the sense that it differs
from the exact numerical rank by a small constant that is roughly independent of the kernel and
the matrix size.

Definition 6.1 (ǫ-rank). Let σ1 ≥ σ2 ≥ · · · ≥ σr be singular values of a nonzero matrix A.
Given a tolerance ǫ ∈ (0, 1), the relative ǫ-rank of a matrix A, denoted by rǫ(A), is the largest number
i such that σi ≥ ǫσ1.

Consider the numerical examples in Section 6.4, where different curves give rise to different
kernels according to (6.9). Let i, j be two children of the root node. We focus on the (largest)
off-diagonal block Airow×jcol .

We consider three tolerances: ǫ = 10−3, 10−6, 10−10. We list the size of Airow×jcol , the exact
ǫ-rank, and the approximation rank characterized by the size of Bi generator with size(Bi) :=
maximum between row size and column size. The results are reported in Table 6.6 .

Note that no a priori information is needed to determine the approximation rank as it is solely
derived from the prescribed tolerance and the construction algorithm. Thus the numerical results
also imply that the proposed method in Section 6.1 for choosing parameters is satisfactory.

6.6. Storage cost. In this section, we demonstrate the benefit of the special structure in the
generators produced by SMASH. We store the HSS generators using the strategy mentioned at the

30

Table 6.4: Numerical results for solving a 2D Laplace Dirichlet problem in a ram head domain as
shown in Fig. 6.5.

n |u(x∗)− û(x∗)| ‖A− Â‖max cond(A) tconstr tsol
160 5.03× 10−08 1.06× 10−10 6.15× 1001 0.42 0.107
320 9.54× 10−11 6.81× 10−10 6.92× 101 1.54 0.042
640 1.91× 10−12 7.98× 10−10 6.00× 101 2.93 0.127
1280 8.22× 10−13 2.26× 10−09 6.02× 101 5.41 0.103
2560 7.78× 10−13 3.90× 10−09 6.02× 101 9.76 0.177
5120 1.50× 10−13 9.63× 10−09 6.02× 101 18.74 0.282
10240 1.96× 10−12 1.01× 10−08 6.02× 1001 34.78 0.591

Table 6.5: Numerical results for solving a 2D Laplace Dirichlet problem in a sunflower domain as
shown in Fig. 6.6.

n |u(x∗)− û(x∗)| ‖A− Â‖max cond(A) tconstr tsol
640 2.96× 10−02 1.20× 10−08 5.65× 103 5.42 0.105
1280 1.25× 10−03 2.65× 10−08 2.23× 103 16.80 0.256
2560 1.88× 10−06 3.56× 10−08 1.85× 103 41.76 0.624
5120 1.02× 10−10 4.27× 10−07 1.72× 104 102.65 1.429
10240 1.66× 10−11 3.80× 10−07 1.12× 104 192.78 2.165
20480 8.03× 10−10 9.55× 10−07 6.86× 103 316.68 3.219

end of Section 2.3. For comparison, we also compute the cost by storing the generators as dense
matrices, denoted by HSS0, as well as the storage cost for the original dense matrix. The test matrix
A of order 10240 is derived from kernels in Section 6.4 and all entries are stored in double precision.
The results are collected in Table 6.7 for different geometries and different approximation accuracy.
The reduction in storage justifies the use of strong rank-revealing QR algorithm in the construction
and we see that SMASH is quite cheap even when a high approximation accuracy is in use.

6.7. Storage comparison with H2 recompression algorithm. In this section, we provide
some memory comparison between the SMASH H2 algorithm and the H2 recompression algorithm
implemented in H2Lib [9]. In order to do a fair comparison, we tested both algorithms on the same
machine, the same kernels (Newton, exponential and logarithmic kernels) and the same points. Both
algorithms used the same interpolation method (5 interpolation points per direction) to obtain the
bases for far field blocks. The recompression tolerance was set to be 10−4 in both algorithms, which
resulted in O(10−6) relative error (measured as ‖Âu−Au‖/‖Au‖) for matrix-vector products, using
double precision data types.

It can be seen from Tables 6.8–6.10 that the SMASH H2 algorithm results in less memory in
most experiments except the exponential kernel test with 5× 105 points and the logarithmic kernel
tests with 5×105 and 2×106 points. The other main difference between these two algorithms is that
the SMASH algorithm in general has much smaller peak memory usage. For example, the SMASH
algorithm has the peak memory of 14.75GB for the logarithmic kernel with 4× 106 points while the
H2Lib uses 47.92GB peak memory.

7. Conclusion. We presented a unified framework, called SMASH, to construct either an
n × n HSS or H2 matrix with an O(n) cost. One appealing feature of this scheme is its simple
implementation which only requires a routine to compress far field blocks. In addition, SMASH can

31

Table 6.6: Comparison of exact ǫ-rank and approximation rank of M = Airow×jcol for the ram head
geometry in Fig.6.5, the sunflower geometry in Fig.6.6 with ǫ = 10−3, 10−6, 10−10

geometry n size(M)
ǫ = 10−3 ǫ = 10−6 ǫ = 10−10

rǫ(M) size(Bi) rǫ(M) size(Bi) rǫ(M) size(Bi)

ram
head

1280 640 13 19 25 45 43 70
2560 1280 13 18 25 45 43 71
5120 2560 13 18 25 45 43 72
10240 5120 13 19 25 45 43 72

sun-
flower

1280 640 67 84 111 141 151 185
2560 1280 83 117 159 187 213 251
5120 2560 83 125 182 226 298 347
10240 5120 83 123 187 237 328 380
20480 10240 83 120 187 238 327 382

Table 6.7: A comparison of storage costs (MB) of HSS generators the storage strategy in Section
2.3 (SMASH) and the standard approach by storing dense generators (HSS0) for a square matrix A
of order 10240.

ǫfar ǫSVD geometry storage(A) HSS0 SMASH
10−4 10−5 ram head 800 5.9 4.4
10−4 10−5 sunflower 800 35.2 11.0
10−10 10−11 ram head 800 23.2 8.8
10−10 10−11 sunflower 800 145.7 31.3

Table 6.8: Memory comparison between H2Lib and SMASH on the Newton potential kernel 1
|x−y| ,

where n is the number of 2D points used.

n 2.5× 105 5× 105 1× 106 2× 106 4× 106

H2Lib 919.0MB 1705.8MB 3688.0MB 6841.7MB 14832.4MB
SMASH 802.6MB 1564.8MB 3259.7MB 6332.5MB 13139.2MB

Table 6.9: Memory comparison between H2Lib and SMASH on the exponential kernel e−|(x−y)|,
where n is the number of the 2D points used.

n 2.5× 105 5× 105 1× 106 2× 106 4× 106

H2Lib 767.8MB 1321.6MB 3050.5MB 5305.8MB 12290.9MB
SMASH 726.1MB 1332.4MB 2868.0MB 5116.0MB 11086.5MB

Table 6.10: Memory comparison between H2Lib and SMASH on the logarithmic kernel−0.5∗log(|x−
y|2), where n is the number of 2D points used.

n 2.5× 105 5× 105 1× 106 2× 106 4× 106

H2Lib 806.7MB 1393.2MB 3149.1MB 5534.6MB 12634.6MB
SMASH 766.3MB 1454.2MB 3095.1MB 5843.49MB 12400MB

32

greatly reduce the memory cost relative to existing analytic construction schemes. The numerical
experiments illustrated the efficiency and robustness of SMASH through a few examples with various
point distributions and kernel matrices.

We plan to extend this scheme to highly oscillatory kernels and to develop approximate inverse-
type preconditioners for solving the resulting linear systems with H2 matrix representations.

Acknowledgments. We would like to thank anonymous referees for their useful suggestions
which led to substantial improvements of the original version of this paper. YX would like to thank
Prof. Ming Gu for fruitful discussions about the strong rank revealing QR algorithm and Prof.
Steffen Börm for his kind explanation of the new developments of H2 matrices and providing us
with a kernel matrix interface for his H2Lib package[9].

REFERENCES

[1] C. R. Anderson, An implementation of the fast multipole method without multipoles, SIAM J. Sci. Statist.
Comput., 13 (1992), pp. 923–947.

[2] J. Barnes and P. Hut, A hierarchical O(N log N) force-calculation algorithm, Nature, 324 (1986), pp. 446–449.
[3] M. Bebendorf, Approximation of boundary element matrices, Numer. Math., 86 (2000), pp. 565–589.
[4] , Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems, Lecture Notes

in Computational Science and Engineering, Springer Berlin Heidelberg, 2008.
[5] M. Bebendorf and S. Rjasanow, Adaptive low-rank approximation of collocation matrices, Computing, 70

(2003), pp. 1–24.
[6] M. Bebendorf and R. Venn, Constructing nested bases approximations from the entries of non-local operators,

Numer. Math., 121 (2012), pp. 609–635.
[7] P. Benner and T. Mach, Computing all or some eigenvalues of symmetric Hl-matrices, SIAM J. Sci. Comput.,

34 (2012), pp. A485–A496.
[8] D. A. Bini, B. Meini, and F. Poloni, Fast solution of a certain riccati equation through cauchy-like matrices.,

ETNA. Electronic Transactions on Numerical Analysis [electronic only], 33 (2008), pp. 84–104.
[9] S. Börm, H2lib. http://www.h2lib.org/.

[10] , Approximation of integral operators by H2-matrices with adaptive bases, Computing, 74 (2005), pp. 249–
271.

[11] S. Börm, Data-sparse approximation of non-local operators by h2-matrices, Linear Algebra Appl., 422 (2007),
pp. 380–403.

[12] , Construction of data-sparse H2-matrices by hierarchical compression, SIAM J. Sci. Comput., 31 (2009),
pp. 1820–1839.

[13] S. Börm, Efficient numerical methods for non-local operators : H2 -matrix compression, algorithms and anal-
ysis, EMS Tracts in Mathematics, European Mathematical Society, Zürich, 2010.

[14] S. Börm and S. Christophersen, Approximation of integral operators by green quadrature and nested cross
approximation, Numerische Mathematik, 133 (2016), pp. 409–442.

[15] S. Börm and L. Grasedyck, Hybrid cross approximation of integral operators, Numer. Math., 101 (2005),
pp. 221–249.

[16] S. Börm, L. Grasedyck, and W. Hackbusch, Introduction to hierarchical matrices with applications, ENG.
ANAL. BOUND. ELEM., 27 (2003), pp. 405–422.

[17] S. Le Borne and L. Grasedyck, H-matrix preconditioners in convection-dominated problems, SIAM J. Matrix
Anal. Appl., 27 (2006), pp. 1172–1183.

[18] T. Boros, T. Kailath, and V. Olshevsky, A fast parallel BjörckPereyra-type algorithm for solving Cauchy
linear equations, Linear Algebra Appl., 302 (1999), pp. 265–293.

[19] , Special issue on structured and infinite systems of linear equations pivoting and backward stability of
fast algorithms for solving Cauchy linear equations, Linear Algebra Appl., 343 (2002), pp. 63–99.

[20] D. Cai and J. Xia, A stable and efficient matrix version of the fast multipole method, to be submitted.
[21] D. Calvetti and L. Reichel, Factorizations of Cauchy matrices, J. Comput. Appl. Math., 86 (1997), pp. 103–

123.
[22] J. Carrier, L. Greengard, and V. Rokhlin, A fast adaptive multipole algorithm for particle simulations,

SIAM Journal on Scientific and Statistical Computing, 9 (1988), pp. 669–686.
[23] S. Chandrasekaran, M. Gu, and W. Lyons, A fast adaptive solver for hierarchically semiseparable represen-

tations, CALCOLO, 42 (2005), pp. 171–185.
[24] S. Chandrasekaran, M. Gu, and T. Pals, A fast ULV decomposition solver for hierarchically semiseparable

representations, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 603–622.

33

http://www.h2lib.org/

[25] I. Gohbert, T. Kailath, and V. Olshevsky, Fast Gaussian elimination with partial pivoting for matrices
with displacement structure, Math. Comput., 64 (1995), pp. 1557–1576.

[26] S.A. Goreinov, E.E. Tyrtyshnikov, and N.L. Zamarashkin, A theory of pseudoskeleton approximations,
Linear Algebra Appl., 261 (1997), pp. 1–21.

[27] S. A. Goreinov, E. E. Tyrtyshnikov, and A. Yu. Yeremin, Matrix-free iterative solution strategies for large
dense linear systems, Numer. Linear Algebra Appl., 4 (1997), pp. 273–294.

[28] L. Grasedyck, Existence of a low rank or -matrix approximant to the solution of a sylvester equation, Numer.
Linear Algebra Appl., 11 (2004), pp. 371–389.

[29] L. Grasedyck, W. Hackbusch, and N. B. Khoromskij, Solution of large scale algebraic matrix riccati equa-
tions by use of hierarchical matrices, Computing, 70 (2003), pp. 121–165.

[30] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys., 73 (1987),
pp. 325–348.

[31] M. Gu, Subspace iteration randomization and singular value problems, preprint.
[32] M. Gu, Stable and efficient algorithms for structured systems of linear equations, SIAM J. Matrix Anal. Appl.,

19 (1998), pp. 279–306.
[33] M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR factorization, SIAM

J. Sci. Comput., 17 (1996), pp. 848–869.
[34] W. Hackbusch, Hierarchical matrices : algorithms and analysis, Springer, 2015.
[35] W. Hackbusch and S. Börm, Data-sparse approximation by adaptive H2-matrices, Computing, 69 (2002),

pp. 1–35.
[36] , H2-matrix approximation of integral operators by interpolation, Appl. Numer. Math., 43 (2002), pp. 129–

143.
[37] W. Hackbusch, B.N. Khoromskij, and S.A. Sauter, On H2-matrices, in Lectures on applied mathematics,

Hans-Joachim Bungartz, Ronald H. W. Hoppe, and Christoph Zenger, eds., Springer, Berlin, 2000, pp. 9–29.
[38] W. Hackbusch, B. N. Khoromskij, and R. Kriemann, Hierarchical matrices based on a weak admissibility

criterion, Computing, 73 (2004), pp. 207–243.
[39] N. Halko, P. G. Martinsson, and J. Tropp, Finding structure with randomness: Probabilistic algorithms for

constructing approximate matrix decompositions, SIAM Review, 53 (2011).
[40] G. C. Hsiao and W. L. Wendland, Boundary integral equations, Applied Mathematical Sciences, Springer,

Berlin, Heidelberg, 2008.
[41] R. Kress, Linear Integral Equations, Applied Mathematical Sciences, Springer New York, 2013.
[42] L. Lin, J. Lu, and L. Ying, Fast construction of hierarchical matrix representation from matrixvector multi-

plication, J. Comput. Phys., 230 (2011), pp. 4071–4087.
[43] X. Liu, J. Xia, and M. V. de Hoop, Parallel randomized and matrix-free direct solvers for large structured

dense linear systems, SIAM J. Sci. Comput., 38 (2016), pp. S508–S538.
[44] P.G. Martinsson and V. Rokhlin, A fast direct solver for boundary integral equations in two dimensions, J.

Comput. Phys., 205 (2005), pp. 1–23.
[45] P. G. Martinsson, A fast randomized algorithm for computing a hierarchically semiseparable representation of

a matrix, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1251–1274.
[46] V. Y. Pan, Structured Matrices and Polynomials: Unified Superfast Algorithms, Springer-Verlag New York,

Inc., New York, NY, USA, 2001.
[47] , Fast Approximate Computations with Cauchy Matrices, Polynomials and Rational Functions, Springer

International Publishing, Cham, 2014, pp. 287–299.
[48] V. Y. Pan, Transformations of matrix structures work again, Linear Algebra and its Applications, 465 (2015),

pp. 107–138.
[49] , How Bad Are Vandermonde Matrices?, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 676–694.
[50] , Fast approximate computations with cauchy matrices and polynomials, Math. Comput., 86 (2017),

pp. 2799–2826.
[51] V. Y. Pan, Q. Luan, J. Svadlenka, and L. Zhao, Primitive and cynical low rank approximation, preprocessing

and extensions, arXiv, (2016).
[52] V. Y. Pan and X. Wang, Inversion of displacement operators, SIAM Journal on Matrix Analysis and Applica-

tions, 24 (2003), pp. 660–677.
[53] V. Y. Pan and L. Zhao, Low-rank approximation of a matrix: Novel insights, new progress, and extensions,

arXiv, (2015).
[54] V. Y. Pan and A. Zheng, Superfast algorithms for Cauchy-like matrix computations and extensions, Linear

Algebra Appl., 310 (2000), pp. 83–108.
[55] V. Rokhlin, Rapid solution of integral equations of classical potential theory, Journal of Computational Physics,

60 (1985), pp. 187–207.
[56] F.-H. Rouet, X. S. Li, P. Ghysels, and A. Napov, A distributed-memory package for dense hierarchically

semi-separable matrix computations using randomization, submitted to ACM Trans. Math. Softw.
[57] X. Sun and N.P. Pitsianis, A matrix version of the fast multipole method, SIAM Rev., 43 (2001), pp. 289–300.
[58] E. Tyrtyshnikov, Mosaic-skeleton approximations, CALCOLO, 33 (1996), pp. 47–57.

34

[59] , Incomplete cross approximation in the mosaic-skeleton method, Computing, 64 (2000), pp. 367–380.
[60] Y. Xi and J. Xia, On the stability of some hierarchical rank structured matrix alogrithms, SIAM J. Matrix

Anal. Appl., 37 (2016), pp. 1279–1303.
[61] Y. Xi, J. Xia, S. Cauley, and V. Balakrishnan, Superfast and stable structured solvers for toeplitz least

squares via randomized sampling, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 44–72.
[62] Y. Xi, J. Xia, and R. Chan, A fast randomized eigensolver with structured ldl factorization update, SIAM J.

Matrix Anal. Appl., 35 (2014), pp. 974–996.
[63] J. Xia, Multi-layer hierarchical structures and factorizations, submitted to SIAM J. Matrix Anal. Appl.
[64] , On the complexity of some hierarchical structured matrix algorithms, SIAM Journal on Matrix Analysis

and Applications, 33 (2012), pp. 388–410.
[65] , Efficient structured multifrontal factorization for general large sparse matrices, SIAM J. Sci. Comput.,

35 (2013), pp. A832–A860.
[66] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Fast algorithms for hierarchically semiseparable matrices,

Numer. Linear Algebra Appl., 17 (2010), pp. 953–976.
[67] J. Xia, Y. Xi, and M. Gu, A superfast structured solver for Toeplitz linear systems via randomized sampling,

SIAM J. Matrix Anal. Appl., 33 (2012), pp. 837–858.
[68] L. Ying, G. Biros, and D. Zorin, A kernel-independent adaptive fast multipole algorithm in two and three

dimensions, J. Comput. Phys., 196 (2004), pp. 591–626.

35

