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Abstract

We present a patch-based equilibrated flux recovery procedure for the

conforming finite element approximation to diffusion problems. The recov-

ered flux is computed as the solution to a local constraint-free minimization

problem on each patch. The approach is valid for higher order conform-

ing elements in both two and three dimensions. The resulting estimator

admits guaranteed reliability and the robust local efficiency is proved un-

der the quasi-monotonicity condition of the diffusion coefficient. Numerical

experiments are given to confirm the theoretical results.

1 Introduction

A posteriori error estimators based on equilibrated flux recovery have been popular
recently, since they usually yield guaranteed upper bounds of the true error as a
result of the Prager-Synge Theorem [22, 6]. Estimators of this type are perfect for
discretization error control on both fine and coarse meshes, and error control on
pre-asymptotic meshes is important in practice but very difficult. The intial work
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in this direction by Ladeveze and Leguillon [17], used a partition of unity to reduce
the construction of an equilibrated flux to vertex patch based local computations.
Hence this approach is computationally more efficient compared to global flux
recovery procedures.

Driven by the advantage of such a local procedure, a vast number of approaches
on equilibrated flux recovery for diffusion problems have been proposed (cf. [1, 6],
etc.). In particular, for the conforming linear finite element approximation to
the Poisson equation in two dimensions, an equilibrated flux in the lowest order
Raviart-Thomas space was explicitly constructed by Braess and Schöberl [8]. Their
procedure starts with a decomposition of the error flux into local error fluxes by
a partition of unity, local error fluxes are then approximated by vertex patch
problems, and finally each vertex patch problem is solved explicitly by computing
the normal components of the recovered local error flux on each edge through
circling elements around the vertex at the center.

Extensions of this simple procedure to three dimensions and to higher order
elements are non-trivial. Nevertheless, there are many efforts in this regards re-
cently. An attempt was made in [13] on extension to higher order elements, but the
resulting admissible flux (constructed in [13, p.157]) is actually not equilibrated in
general. The newest result on extension to three dimensions for the linear elements
is reported in an unpublished manuscript by Ern and Vohralik [16] using techniques
from the polytopes [26]. Their method is based on a specific enumeration of all
faces in a vertex patch. However, it is not easy to obtain such an enumeration in
practice even though it exists theoretically. One aim of this paper is to introduce
a new approach to efficiently compute an admissible equilibrated flux for higher
order finite elements in both two and three dimensions.

For singularly-perturbed diffusion-reaction and elliptic interface problems, the
resulting equilibrated indicator in [8] is not robust with respect to parameters
of the underlying problem (see [24, 13]). To guarantee the robustness, Cai and
Zhang [13] followed the ideas in [8, 24] and introduced an additional minimization
procedure on each vertex patch for higher order finite element approximations to
the elliptic interface problem. Moreover, it was shown that the equilibrated esti-
mator introduced in [13] is robust under the quasi-monotonicity condition [21] of
the diffusion coefficient. Apart from the equilibrated flux recovery, other types of
recovery-based estimators are available, including the Zienkiewicz-Zhu (ZZ) esti-
mator [27, 28], the derivative recovery [3], the polynomial-preserving recovery [20],
the global projection [12], the hybrid estimator [10], etc. Those methods do not
impose equilibrium condition on the recovered flux and hence the corresponding
estimator can not provide a guaranteed upper bound of the true error on coarse
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meshes.
In this paper, we focus on the computation of the equilibrated flux directly

(instead of the error flux as in [6, 8, 13]) in H(div)-conforming Raviart-Thomas
spaces. A simple procedure is presented to compute an admissible equilibrated
flux. In order to obtain a robust estimator, similar to [13], a local minimization is
imposed to generate the desired equilibrated flux. Thanks to the construction of an
admissible equilibrated flux, the local minimization problem can be solved easily by
a simple projection. It should be emphasized that the proposed approach is valid
for higher order conforming finite elements in both two and three dimensions,
while the procedures presented in [6, 8] based on circling elements around the
center vertex in a vertex patch only work for the lowest order discretizations in
two dimensions. A complete algorithm is given in Section 4.

Theoretically, the proposed estimator is shown to be efficient, where the effi-
ciency bound is independent of the coefficient jump under the quasi-monotonicity
condition [21]. Similar to [13], the proof relies on the mixed formulation of the
local minimization problem. However, due to the direct recovery of the exact flux
in H(div; Ω) instead of the error flux in a broken space (not in H(div; Ω)), the con-
straint of normal component across inter-element faces is removed and the proof
(presented in Section 6.3) is much simpler than that in [13].

The rest of the paper is organized as follows. In Section 2, we introduce the
model problem and its finite element approximation. In Section 3, the equilibrated
flux recovery based on minimization on vertex patches is formulated, and Section 4
presents a complete procedure on solving the patch-based constrained minimization
problem efficiently. The resulting error estimator is defined in Section 5. The
robust local efficiency bound is proved in Section 6. Numerical experiments are
presented in Section 7 to illustrate the performance of the proposed estimator for
both P1 and P2 elements.

2 Problem and Finite Element Approximation

Let Ω be a bounded polygonal domain in R
d (d = 2, 3) with Lipschitz boundary

∂Ω, where ∂Ω = ΓD∪ΓN and ΓD∩ΓN = ∅. For simplicity, assume that meas(ΓD) >
0. Consider the following diffusion problem:






−div(A∇u) = f, in Ω,

u = 0, on ΓD,

(−A∇u) · n = g
N
, on ΓN ,

(2.1)
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where for almost all x ∈ Ω, A(x) is a symmetric, positive definite matrix whose
smallest eigenvalue is no less than a positive constant independent of x, f ∈
L2(Ω), g

N
∈ L2(ΓN), and n is the unit outward vector normal to ΓN .

The corresponding weak formulation for the problem in (2.1) is to find u ∈
H1

D(Ω) := {v ∈ H1(Ω) : v|ΓD
= 0} such that

a(u, v) :=

∫

Ω

A∇u · ∇vdx =

∫

Ω

fvdx−
∫

ΓN

g
N
vds, ∀ v ∈ H1

D(Ω). (2.2)

It can be verified that the bilinear form a(·, ·) defines an inner product in H1
D(Ω).

Thus the well-posedness of (2.2) follows from the Riesz Representation Theorem.
Let T = {K} be a regular triangular (d = 2) / tetrahedral (d = 3) partition of

Ω. We define the following sets associated with the mesh T :

N : set of all vertices,

E : set of all edges (d = 2) /faces (d = 3),

EI : set of all interior (inter-element) edges (d = 2)/faces (d = 3),

ED : set of edges (d = 2) /faces (d = 3) on ΓD,

EN : set of edges (d = 2) /faces (d = 3) on ΓN ,

ES : set of edges (d = 2) /faces (d = 3) contained in the closure of S.

Denote by hK and he the diameters of K ∈ T and e ∈ E , respectively. We use n

to denote a unit outward vector normal to the boundary of an element or to the
boundary of the domain Ω. For each e ∈ E , we associate a unit vector normal to
e, denoted by ne, where ne is an outward vector if e ⊂ ∂Ω. For e ∈ EI , let K+

e

and K−
e denote the two elements adjacent to e such that the unit outward normal

for K+
e on e coincides with ne. For any K ∈ T and e ∈ EK , define the following

sign function in L2(∂K) associated with K:

s
K
: ∂K → {−1, 1} , s

K
|e =

{
1, if ne is outward,

−1, if ne is inward.
(2.3)

Then s
K
|ene is outward. For e ∈ EI and a piecewise continuous function φ, we

define JφKe := φ+−φ−, where φ+ and φ− denote the limits of φ on e from K+
e and

K−
e , respectively.
Assume that for each K ∈ T , A|K is a symmetric, positive definite, constant

matrix. Let Pk(K) and Pk(e) denote the sets of polynomials of degree less than or
equal to k ≥ 0 on K and e, respectively. Correspondingly, let Πk

K and Πk
e denote
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the L2 projections from L2(K) to Pk(K) and from L2(e) to Pk(e), respectively.
Let (·, ·)S and ‖·‖S denote the L2 inner product and the L2 norm over a set S,
respectively. The subscript is omitted when S = Ω.

We define the continuous finite element space of order k (k ≥ 1) by

V k
T
= {v ∈ H1

D(Ω) : v|K ∈ Pk(K), ∀K ∈ T }.
To simplify the presentation, as in [7, 13], we assume that f ∈ L2(Ω) and g

N
∈

L2(ΓN) are piecewise polynomials such that

f |K ∈ Pk−1(K), ∀K ∈ T and g
N
|e ∈ Pk−1(e), ∀ e ∈ EN .

Otherwise, the piecewise polynomial approximation of the data is used and the
data oscillation is regarded as a higher order term (cf. [4, 8, 10]). The finite
element solution u

T
∈ V k

T
satisfies

a(u
T
, v

T
) =

∫

Ω

fv
T
dx−

∫

ΓN

g
N
v
T
ds, ∀ v

T
∈ V k

T
. (2.4)

The well-posedness of problem (2.4) follows from the Riesz Representation Theo-
rem.

3 Equilibrated Flux Recovery

The idea of an equilibrated flux recovery is to construct a flux with certain prop-
erties that are satisfied by the true flux, σ = −A∇u. Specifically, we notice that
the true flux enjoys the following properties:

σ ∈ H(div; Ω), divσ = f in Ω, and σ · n = g
N
on ΓN , (3.1)

where H(div; Ω) is the space of all square-integrable vector fields whose divergence
is also square-integrable over Ω. The Prager-Synge Theorem (cf. [22] or [6, p.148])
states that, for any τ satisfing the conditions in (3.1), the following identity holds

‖A1/2∇(u
T
− u)‖+ ‖A1/2∇u+ A−1/2τ‖ = ‖A1/2∇u

T
+ A−1/2τ‖,

which immediately implies

‖A1/2∇(u
T
− u)‖ ≤ ‖A1/2∇u

T
+ A−1/2τ‖. (3.2)

Thus we aim to find a flux that fulfills (3.1) and that minimizes the right-hand side
of (3.2). However, it would be expensive to solve a global constraint minimization
problem, so a local procedure is usually preferred (see, e.g., [8, 13]).
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3.1 Localization

Let φz be the nodal basis function associated with vertex z, i.e., φz is continuous
and piecewise linear over mesh T with φz(z) = 1 and φz(z

′) = 0, ∀ z′ ∈ N\{z}.
Consider a partition of unity via φz:

∑

z∈N
φz(x) = 1, ∀ x ∈ Ω. (3.3)

The vertex patch associated to a vertex z is given by

ωz := supp φz.

The partition of unity in (3.3) produces a decomposition of σ:

σ =
∑

z∈N
φzσ =

∑

z∈N
σz,

where σz vanishes outside ωz. Thus we try to construct an approximation of σz

such that its sum over all vertices satisfies (3.1).

3.2 Conditions at Continuous Level

To derive conditions on approximations to σz, let us look at necessary conditions
for the true flux. Note that σz = −φzA∇u and that

divσz = ∇φz · σ + φzf.

However, the true σ is unknown, so we replace it by its approximation, i.e., the
numerical flux: σ̃

T
= −A∇u

T
, to obtain the first condition

div σ̂z = ∇φz · σ̃T
+ φzf. (3.4)

The boundary conditions for σ̂z ∈ H(div;ωz) can be immediately seen as below:



σ̂z|e · ne = φzgN

, if e ∈ EN ,
σ̂z|e · ne = 0, if e ∈ Ez.

(3.5)

Here Ez is a subset of boundary edges (d = 2)/faces (d = 3) associated with
vertex patch ωz where φz vanishes:

Ez :=
{
{e ∈ E : e ⊂ ∂ωz}, if z /∈ ∂Ω;

{e ∈ E : e ⊂ ∂ωz\∂Ω}, if z ∈ ∂Ω.
(3.6)
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Moreover, σ̂z vanishes outside ωz. It can be verified that the two conditions in
(3.5) are compatible.

Define
σ̂ =

∑

z∈N
σ̂z. (3.7)

Then we we have the following proposition.

Proposition 3.1. For each vertex z, assume that σ̂z satisfies the conditions in
(3.4) and (3.5). Then the flux σ̂ defined in (3.7) satisfies (3.1).

Proof. According to (3.4) and (3.3), we have

div σ̂ =
∑

z∈N
div σ̂z =

∑

z∈N
(∇φz · σ̃T

+ φzf) = f.

From (3.5), it follows immediately that σ̂ ∈ H(div; Ω) and that σ̂ ·n = g
N
on ΓN .

Therefore, we conclude that σ̂ satisfies (3.1).

We next show that the conditions on σ̂z are well-posed. In other words, we
prove the existence of σ̂z with conditions (3.4) and (3.5) at the continuous level.

Theorem 3.1. Suppose that u
T
is the finite element solution defined in (2.4). For

each vertex z ∈ N , there exists a flux σ̂z ∈ H(div; Ω) satisfying (3.4) and (3.5).

Proof. Consider the following Neumann problem:






div (∇v) = ∇φz · σ̃T
+ φzf, in ωz,

∇v · n = 0, on ∂ωz\∂Ω,
∇v · n = φzgN

, on ∂ωz ∩ ΓN ,

∇v · n = C, on ∂ωz ∩ ΓD,

(3.8)

where C is a constant defined by

C := meas(∂ωz ∩ ΓD)
−1

(∫

ωz

∇φz · σ̃T
+ φzfdx−

∫

∂ωz∩ΓN

φzgN
ds

)

if z ∈ ∂Ω and meas(∂ωz ∩ ΓD) > 0; otherwise, C = 0. We show that the com-
patibility condition below for the Neumann problem in (3.8) always holds true:

∫

ωz

∇φz · σ̃T
+ φzfdx =

∫

∂ωz∩ΓD

Cds+

∫

∂ωz∩ΓN

φzgN
ds. (3.9)
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According to the definition of C, it is obvious that (3.9) is true when z ∈ ∂Ω and
meas(∂ωz ∩ ΓD) > 0. Otherwise, we have φz ∈ V 1

T
, and (3.9) follows immediately

from the weak formulation for u
T
in (2.4) by choosing v

T
= φz ∈ V 1

T
. Therefore,

we conclude that the Neumann problem in (3.8) is solvable.
Let v ∈ H1(ωz) be a solution to (3.8). By setting ∇v = 0 outside ωz, we

see that ∇v · n is continuous across ∂ωz ∩ Ω, so ∇v ∈ H(div; Ω). Therefore,
σ̂z := ∇v ∈ H(div; Ω) satisfies (3.4) and (3.5).

3.3 Local Equilibrated Flux Recovery in Raviart-Thomas

Space via Minimization

In this section, we consider conditions (3.4) and (3.5) at the discrete level. To
approximate the flux, we consider the Raviart-Thomas space associated with the
triangulation T = {K}. For each K ∈ T , the Raviart-Thomas space of index k−1
on element K is defined by

RTk−1(K) :=
{
τ ∈ L2(K)d : τ = p+ xq, p ∈ Pk−1(K)d, q ∈ Pk−1(K)

}
.

The H(div; Ω)-conforming and the broken Raviart-Thomas spaces of index k − 1
are then given by

RTk−1 := {τ ∈ H(div; Ω) : τ |K ∈ RTk−1(K), ∀K ∈ T }

and
RT−1

k−1 := {τ ∈ L2(Ω)d : τ |K ∈ RTk−1(K), ∀K ∈ T },
respectively. Corresponding to the conforming finite element space V k

T
, approxi-

mation σ̂
z,T

to σ̂z is required to satisfy

div σ̂
z,T

|K ∈ Pk−1(K), ∀K ∈ T and σ̂
z,T

· ne ∈ Pk−1(e), ∀ e ∈ E .

Therefore, at the discrete level, the conditions are the discrete equilibrium equa-
tion:

div σ̂
z,T

|K = f̄z|K := Πk−1
K (∇φz · σ̃T

+ φzf) , ∀K ∈ T (3.10)

and the boundary conditions




σ̂

z,T
· ne = Πk−1

e (φzgN
), if e ∈ EN ,

σ̂
z,T

· ne = 0, if e ∈ Ez.
(3.11)
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By incorporating the constraints in (3.11), we define the following subset of RTk−1

associated with vertex z:

RTz,g := {τ ∈ RTk−1 : supp τ ⊆ ωz, τ satisfies (3.11)}. (3.12)

Moreover, we define below the set Σz as the collection of desired flux satisfying
(3.10) and (3.11):

Σz := {τ ∈ RTz,g : div τ = f̄z}. (3.13)

For each vertex z ∈ N , we look for a flux σ̂
z,T

∈ Σz such that σ̂
z,T

solves the
following constrained minimization problem on ωz:

‖A−1/2(σ̂
z,T

− σ̃
z,T

)‖ωz
= min

τ∈Σz

‖A−1/2(τ − σ̃
z,T

)‖ωz
, (3.14)

where
σ̃

z,T
|K = ΠRTk−1(K) (φzσ̃T

) , ∀K ∈ T (3.15)

and ΠRTk−1(K) denotes the interpolation operator from H(div;K) to RTk−1(K) (cf.
[5, Ch.2.5] or [6, Ch.III.5]).

Since Σz is a closed convex subset of RTk−1, the minimization problem in (3.14)
is uniquely solvable whenever Σz is non-empty. As we shall see later in Section 5,
(3.14) will be chosen as the local indicator.

We prove the existence of an equilibrated local flux σ̂
z,T

∈ Σz first in Theorem
3.2, then we construct one σ̂

z,T
∈ Σz in Section 4.

As a discrete version of Theorem 3.1, the existence of an equilibrated local flux
σ̂

z,T
∈ Σz can be easily proved.

Theorem 3.2. Suppose that u
T
∈ V k

T
(k ≥ 1) is the finite element solution defined

in (2.4). For each vertex z ∈ N , there exists a σ̂
z,T

∈ RTk−1 satisfying (3.10) and
(3.11). Hence Σz is non-empty.

Proof. According to Theorem 3.1, there exists a τz ∈ H(div; Ω) satisfying the
conditions in (3.4) and (3.5) at the continuous level. Define σ̂

z,T
by setting

σ̂
z,T

|K := ΠRTk−1(K)τz for all K ∈ T . Then it is easy to see that σ̂
z,T

∈ RTk−1 and
σ̂

z,T
satisfies (3.10) and (3.11).

Remark 3.1. It can be easily verified that there is a relation between σ̂
z,T

∈ Σz in
Section 3.3 and the recovered error flux σ∆

z ∈ RT−1
k−1 in [13] (see also [6, 8] without

imposing the minimization in (3.14)) given by

σ∆
z = σ̂

z,T
− σ̃

z,T
,

where σ̃
z,T

is defined in (3.15).
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4 Solution of the constrained minimization prob-

lem

To compute the recovered local flux on each vertex patch, [6] used an explicit
procedure in two dimensions to compute the recovered flux, which requires an
enumeration of elements in a specific direction around the center vertex. This sim-
ple approach is only valid for the RT0 recovery in the lowest order finite element
discretization and the extension to three dimensions is not straightforward due to
the enumeration issues. Moreover, without imposing any minimization in the re-
covery, the computed estimator in [6, 8] is not robust with respect to the coefficient
jump. To ensure the robustness of the estimator, a constrained minimization as
in (3.14), valid for higher order elements, was introduced in [13]. Since the non-
homogeneous constraint in (3.14) is more difficult to solve than the homogeneous
constraint, following the procedure in [6], an attempt to construct an admissible
equilibrated flux was made in [13], but again the computed flux was equilibrated
only for the lowest order discretization in two dimensions. Recently, for Poisson
equations, Ern and Vohralik [16] extended the idea in [6] to three dimensions based
on a specific enumeration of all faces in a vertex patch, but it is not straightfor-
ward to obtain such an enumeration in practice even though it exists theoretically.
Hence, for interface problems, no simple procedure was presented so far regarding
the robust equilibrated flux recovery for higher order conforming elements in both
two and three dimensions.

In this section, we first present a simple algorithm to construct an admissible
equilibrated flux σ̂f

z,T
∈ Σz, valid for higher order elements in d (d = 2, 3) di-

mensions. Then it suffices to solve the following minimization problem over the
divergence free subspace of RTz,0:

σ̂0
z,T

= argmin
τ∈RTz,0

div τ=0

‖A−1/2(τ + σ̂f
z,T

− σ̃
z,T

)‖ωz
(4.1)

Note that the basis functions of RTz,0 are known explicitly (see (4.4)). Setting

σ̂
z,T

= σ̂f
z,T

+ σ̂0
z,T

gives the minimizer in (3.14).
We define

τe = 0 for e ∈ Ez and τe =

∫

e

φzgN
ds for e ∈ EN ,
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and τe (e ∈ Eωz
\(Ez ∪ EN)) to be a solution of the following linear system

∑

e∈EK\Ez

s
K
τe =

∫

K

f̄zdx, ∀K ∈ Tz, (4.2)

which is indeed solvable according to Proposition 4.1. In practice, it can be solved
via singular value decomposition (SVD).

Once all τe (e ∈ Eωz
) are known, an equilibrated local flux σ̂f

z,T
∈ Σz can be

constructed below by assigning degrees of freedom in RTk−1(K) on each K ∈ Tz:





σ̂f
z,T

· ne = τe/|e|, ∀ e ∈ EK\EN ,

σ̂f
z,T

· ne = Πk−1
e (φzgN

), ∀ e ∈ EK ∩ EN ,
∫

K

σ̂f
z,T

· ∇p dx =
∑

e∈EK
(s

K
σ̂f

z,T
· ne, p)e − (f̄z, p)K , ∀ p ∈ Pk−1(K),

∫

K

σ̂f
z,T

· q dx = 0, ∀ q ∈ Qk−2(K),

(4.3)

where
Qk−2(K) :=

{
q ∈ Pk−2(K)d : (q,∇p) = 0, ∀ p ∈ Pk−1(K)

}
.

Now in view of the minimization in (4.1) with the homogeneous constraint, the
solution of σ̂0

z,T
in (4.1) has been considered in [13] and we briefly review it here.

According to [13], we know that

Nz := {τ ∈ RTz,0 : div τ = 0} =




∇⊥Sk

z,0, if d = 2,

∇×Ndkz,0, if d = 3,
(4.4)

where

∇⊥v = (−∂v
∂y
,
∂v

∂x
),

Sk
z,0 :=

{
v ∈ H1(ωz) : v|K ∈ Pk(K) ∀K ∈ Tz and v|e = 0 on e ∈ Ez ∪ EN

}
,

Ndkz,0 :=
{
τ ∈ H(curl;ωz) : τ |K ∈ Ndk(K) ∀K ∈ Tz and τ × ne = 0 on e ∈ Ez ∪ EN

}
,

Ndk(K) :=
{
τ ∈ L2(K)d : τ = a+ b,a ∈ Pk(K)d, b ∈ P h

k+1(K)d and b · x = 0
}
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with P h
k (K)d the space of homogeneous polynomials of order k on element K. The

minimizer σ̂0
z,T

∈ Nz of (4.1) is then characterized by

(
A−1σ̂0

z,T
, τ
)
ωz

=
(
A−1(σ̃

z,T
− σ̂f

z,T
), τ
)
ωz

, ∀ τ ∈ Nz. (4.5)

The algorithm for computing the desired flux σ̂
z,T

is summarized below.

1. Solve the linear system of τe in (4.2) for e ∈ Eωz
\(Ez ∪ EN) using SVD.

2. Define σ̂f
z,T

as in (4.3).

3. Solve the linear system associated with (4.5) and then obtain σ̂0
z,T

.

4. Set σ̂
z,T

= σ̂f
z,T

+ σ̂0
z,T

.

Proposition 4.1. The linear system of τe for e ∈ Eωz
\(Ez∪EN) in (4.2) is solvable.

Proof. According to Theorem 3.2, there exists a σ̂∗
z,T

∈ Σz. By applying the

divergence theorem to div σ̂∗
z,T

= f̄z in each element K ∈ Tz, we obtain the linear
system in (4.2) with

τe =

∫

e

σ̂∗
z,T

· neds.

This implies that (4.2) is solvable.

Remark 4.1. As long as the first three equations in (4.3) are satisfied, σ̂f
z,T

∈ Σz.
Hence the last equation in (4.3) can actually be arbitrary.

5 A Posteriori Error Estimate

5.1 Global Error Estimator and Guaranteed Reliability

Consider the global error estimator

ξ := ‖A−1/2(σ̂
T
− σ̃

T
)‖, (5.1)

where σ̂
T
=
∑
z∈N

σ̂
z,T

is the recovered global flux. According to Proposition 3.1

and inequality (3.2), the estimator above has guaranteed reliability, i.e.,

‖A1/2∇(u
T
− u)‖ ≤ ‖A−1/2(σ̂

T
− σ̃

T
)‖.

12



5.2 Local Error Indicator

The local error indicator is given by

ξK := ‖A−1/2(σ̂
T
− σ̃

T
)‖K . (5.2)

Its local efficiency is established through the triangle inequality and the local effi-
ciency of the following indicator

ξz := ‖A−1/2(σ̂
z,T

− σ̃
z,T

)‖. (5.3)

Note that ξz measures the error inside the vertex patch ωz and is needed in the
proof only and that ξK is used in the adaptive mesh refinement.

Remark 5.1. It is tempting for one to choose the local error indicator as

‖A−1/2(σ̂
z,T

− φzσ̃T
)‖ωz

,

where u
T

is the finite element solution in V k
T
(k ≥ 1) and σ̂

z,T
is the recovered

flux in RTk−1. However, this is not correct as it can not guarantee the local ef-
ficiency in general. For example, suppose that A is the identity matrix and the
linear conforming finite element solution coincides with the exact solution such
that ∇u

T
= ∇u 6= 0 in K ⊂ ωz, then the true error is 0, but σ̂

z,T
+ φz∇uT

6= 0
because σ̂

z,T
|K ∈ RT0(K) while φz∇uT

|K /∈ RT0(K).

Remark 5.2. In existing literature, corresponding to the Pk element, both RTk−1

and RTk spaces are considered in the recovery of σ̂
z,T

. One of the earlier work
in this direction, i.e., [8] (see also [6]) performed flux recovery in RT0 space for
P1 element, which is a natural choice as used in most literature on recovery-based
estimators (cf. [1, 18, 14, 11, 12]). A generalization in [13] handles Pk element with
RTk−1 flux recovery. In those cases, as pointed out in Remark 5.1, the mapping
of φzσ̃T

|K to RTk−1(K) (see (3.15)) is necessary in order to guarantee the local
efficiency of the resulting error indicator. On the other hand, the work in [7]
chose to use RTk flux recovery for the Pk element. In that case, the mapping in
(3.15) is not necessary, but due to the increased degrees of freedom, it would be
computationally more expensive.

6 Local Efficiency

We prove local efficiency of the local indicator ξz as well as ξK for the interface
problem. For simplicity, assume that A = αI, where α > 0 is piecewise constant
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with respect to T , i.e., α|
K
= α

K
> 0, ∀K ∈ T . Define

αmax := max
K∈T

α
K

and αmin := min
K∈T

α
K
.

Furthermore, for each e ∈ E , define

αe,M := max
K⊆ωe

α
K

and αe,m := min
K⊆ωe

α
K
, (6.1)

where ωe denotes the union of elements adjacent to e.
For each vertex z, let Tz be a subset of T such that Tz is the collection of all

elements contained in the vertex patch ωz. Let Kz be an element in Tz such that

α
Kz

= max
K∈Tz

α
K
. (6.2)

We define
Pz :=

{
v ∈ L2(ωz) : v|K ∈ Pk−1(K), ∀K ∈ Tz

}

and

P z :=




{v ∈ Pz :

∫
Kz
v dx = 0}, if z ∈ N\ΓD,

{v ∈ Pz : v|ΓD
= 0}, if z ∈ N ∩ ΓD.

(6.3)

We justify the local efficiency of ξz via proving the stability of mixed formu-
lations corresponding to the constrained minimization problem in (3.14). The
mixed formulation will be based on the Hilbert spaces: RTz,0 and P z, where RTz,0

is equipped with the H(div; Ω) inner product and P z is equipped with the usual
L2 inner product.

6.1 Mixed Formulation Associated with the Constrained

Minimization Problem

By choosing a σ̂z,g ∈ RTz,g, any τ ∈ RTz,g can be written as

τ = σ̂z,g + τ0, τ0 ∈ RTz,0.

Hence the minimization problem in (3.14) is equivalent to: find σ̂z,0 ∈ RTz,0 such
that

‖A−1/2(σ̂z,0 + σ̂z,g − σ̃
z,T

)‖ = min
τ0∈RTz,0

div τ0=f̄z−div σ̂z,g

‖A−1/2(τ0 + σ̂z,g − σ̃
z,T

)‖. (6.4)
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The corresponding mixed formulation (cf. [6]) is to find (σ̂z,0, uz) ∈ RTz,0 × P z

such that
{(

A−1σ̂z,0, τ
)
+ (div τ , uz) =

(
A−1(σ̃

z,T
− σ̂z,g), τ

)
, ∀ τ ∈ RTz,0,

(div σ̂z,0, v) = (f̄z − div σ̂z,g, v), ∀ v ∈ P z.
(6.5)

σ̂
z,T

= σ̂z,0 + σ̂z,g ∈ RTz,g is then the desired flux that solves (3.14).

6.2 Inf-sup conditions

Given a vertex z ∈ N , we define a mesh-dependent norm on P z:

‖v‖2
Tz

:=
∑

K∈Tz
‖α1/2∇v‖2K +

∑

e∈Eωz\E∂ωz

αe,mh
−1
e ‖JvK‖2e, ∀ v ∈ P z. (6.6)

It is easy to verify that ‖·‖
Tz

is a well-defined norm on P z.
Here and thereafter, we will use C with or without subscripts to denote a generic

positive constant, possibly different at different occurrences, that is independent
of αmax/αmin, but may depend on the shape parameter of the mesh T and the
polynomial degree k. The result below is proved in a similar fashion as [9, Lemma
2.3].

Lemma 6.1. There exists a positive constant C, depending only on polynomial
degree k and the shape parameter of T , such that the following inf-sup condition
holds:

‖v‖
Tz

≤ C sup
τ∈RTz,0

(div τ , v)

‖α−1/2τ‖ , ∀ v ∈ P z. (6.7)

Proof. For any given v ∈ P z, to establish the inf-sup condition in (6.7), it suffices
to construct a τ ∈ RTz,0 such that

‖α−1/2τ‖ ≤ C‖v‖
Tz

and (div τ , v) = ‖v‖2
Tz
. (6.8)

To this end, according to the degrees of freedom for RTk−1(K), there is a unique
vector field τ ∈ RTz,0 such that






τ · ne = αe,mh
−1
e JvKe, on e ∈ Eωz

\E∂ωz
,

τ · ne = 0, on e ∈ E∂ωz
,

(τ , q)K = (−α∇v, q)K , ∀ q ∈ Pk−2(K)d, ∀K ∈ Tz.

(6.9)
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A standard scaling argument implies that (cf. [9])

‖τ‖2K ≤ C
(
‖α∇v‖2K + hK‖τ · n‖2∂K

)
, (6.10)

which, together with (6.1), yields that

‖α−1/2τ‖2K ≤ C


‖α1/2∇v‖2K +

∑

e∈EK\E∂ωz

αe,mh
−1
e ‖JvK‖2e


 .

Summing over K ∈ Tz implies the inequality in (6.8). The equality in (6.8) is a
direct consequence of integration by parts element-wisely. This proves that the τ

defined in (6.9) satisfies (6.8) and, hence, the lemma.

6.3 Proof of Local Efficiency via Mixed Formulation

We prove the local efficiency of ξz via bounding ξz from above by the residual-
based local indicator defined below, which is known to have local efficiency (cf.
[4, 21, 25]):

ηK :=

(
h2K
α

K

‖f − fK‖2K +
1

2

∑

e∈EK∩EI

hK
αe,M

‖je‖2e +
∑

e∈EK∩EN

hK
αe,M

‖je‖2e

)1/2

, (6.11)

where

fK := div σ̃
T
|K and je :=





Jσ̃
T
· neKe, if e ∈ EI ,

σ̃
T
|e · ne − g

N
, if e ∈ EN ,

0, if e ∈ ED.

(6.12)

It is well-known [4, 25] that the local residual indicator has the following robust
efficiency bound:

ηK ≤ C‖α1/2∇(u− u
T
)‖ωK

, (6.13)

where ωK denotes the union of all elements that share an edge (d = 2)/face
(d = 3) with K.

To bound ξz from above by ηK , we need the quasi-monotonicity condition on
the distribution of α [21], which is weaker than the Hypothesis 2.7 in [4]. The
quasi-monotonicity condition [21] is cited below.
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Definition 6.1. With Kz given in (6.2) at the beginning of Section 6, α is called
quasi-monotone with respect to the vertex patch ωz if the following conditions are
satisfied:

for each K ∈ Tz, there exists a Lipschitz set ω̃K,z containing only elements from
Tz such that

• if z /∈ ΓD, then K ∪Kz ⊆ ω̃K,z and α
K
≤ α

K′
, ∀K ′ ⊆ ω̃K,z;

• if z ∈ ΓD, then K ⊆ ω̃K,z, meas(∂ω̃K,z∩ΓD) > 0 and α
K
≤ α

K′
, ∀K ′ ⊆ ω̃K,z.

Under the quasi-monotonicity condition, the following result was proved in [13,
Corollary 5.10].

Lemma 6.2. Assume that α is quasi-monotone. For each v ∈ P z, there exists a
constant C > 0 such that

∑

K∈Tz
h−2
K ‖α1/2v‖2K ≤ C ‖v‖2

Tz
.

To show the local efficiency of ξz, the following result is needed.

Proposition 6.1. For each vertex z ∈ N , there exists a vector field τz ∈ RTz,g

such that for each element K ∈ Tz,

div τz = div σ̃
z,T

+ Jz, in K and ‖α−1/2(τz − σ̃
z,T

)‖K ≤ CηK , (6.14)

where

Jz|K =
∑

e∈EK
|K|−1

∫

e

−νz,K,eΠ
k−1
e (φzje)ds (6.15)

and

νz,K,e :=





√
α
K√

α
K

+
e
+
√

α
K

−
e

, if e ∈ Eωz
\E∂ωz

,

1, otherwise.
(6.16)

The construction of a vector field τz ∈ RTz,g satisfying the estimates (6.20) and
(6.14) in Proposition 6.1 is similar to the flux recovery in [10]. Namely, we pose
a boundary value problem for τz in each element in vertex patch ωz and choose a
solution that fulfills the stability estimate.

Let |K| and |e| denote the area (d = 2) / volume (d = 3) of an element K and
length of an edge e (d = 2) / area of a face e (d = 3), respectively.
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Proof of Proposition 6.1. For each vertex z ∈ N , consider the following boundary
value problem for τz ∈ RTz,g on each element K ∈ Tz:

{
div (τz − σ̃

z,T
) = Jz, in K,

(τz − σ̃
z,T

|K) · ne = −s
K
|eνz,K,eΠ

k−1
e (φzje), on e ∈ EK .

(6.17)

It can be verified that the choice of Jz in (6.15) guarantees the solvability of each
local problem in (6.17) and τz ∈ RTz,g.

According to [24, Lemma 3.1], there exists a τz|K ∈ RTk−1(K) such that the
following stability estimate holds

‖τz − σ̃
z,T

‖K ≤ C

(
hK‖Jz‖K + h

1/2
K

∑

e∈EK
νz,K,e‖Πk−1

e (φzje)‖e
)
. (6.18)

Due to the facts that

‖Πk−1
e (φzje)‖e ≤ ‖je‖e and νz,K,e ≤

√
α

K√
αe,M

, (6.19)

by the Cauchy-Schwarz inequality, we have

hKα
−1/2‖Jz‖K ≤

∑

e∈EK

h
1/2
K√
αe,M

‖je‖e ≤ C ηK . (6.20)

Now, the inequality in (6.14) is a direct consequence of (6.18) and (6.19). This
completes the proof of the proposition.

Now we are in a position to state the local efficiency of ξz as well as ξK .

Theorem 6.1. Assume that α is quasi-monotone. With ηK in (6.11), the following
estimates hold true:

ξz ≤ C1

(
∑

K∈Tz
η2K

)1/2

≤ C2 ‖α1/2∇(u− u
T
)‖ω̂z

, (6.21)

ξK ≤
∑

z∈N∩∂K
ξz ≤

∑

z∈N∩∂K
C‖α1/2∇(u− u

T
)‖ω̂z

. (6.22)

where ω̂z denotes the union of elements that share at least one edge (d = 2) or one
face (d = 3) with an element in ωz.
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Proof. Note that (6.22) is an immediate result of the triangle inequality and (6.21),
so it suffices to show (6.21).

The second inequality in (6.21) is a direct consequence of the local efficiency
bound of ηK in (6.13). To prove the first inequality in (6.21), let τz ∈ RTz,g be the
vector field in Proposition 6.1. The Cauchy-Schwarz inequality and (6.14) imply
that

ξ2z =
(
α−1(σ̂

z,T
− σ̃

z,T
), σ̂

z,T
− σ̃

z,T

)

=
(
α−1(σ̂

z,T
− σ̃

z,T
), σ̂

z,T
− τz

)
+
(
α−1(σ̂

z,T
− σ̃

z,T
), τz − σ̃

z,T

)

≤
(
α−1(σ̂

z,T
− σ̃

z,T
), σ̂

z,T
− τz

)
+ C‖α−1/2(σ̂

z,T
− σ̃

z,T
)‖
(
∑

K∈Tz
η2K

)1/2

.

Now it suffices to show that

b ≡
(
α−1(σ̂

z,T
− σ̃

z,T
), σ̂

z,T
− τz

)
≤ C‖α−1/2(σ̂

z,T
− σ̃

z,T
)‖
(
∑

K∈Tz
η2K

)1/2

. (6.23)

To this end, it follows from the first equation in (6.5) with τ = σ̂
z,T

− τz ∈ RTz,0,
(6.14), the Cauchy-Schwarz and the triangle inequalities, (6.20), and Lemma 6.2
that

b =
(
−div (σ̂

z,T
− τz), uz

)
=
∑

K∈Tz

(
Jz − div (σ̂

z,T
− σ̃

z,T
), uz

)
K

=
∑

K∈Tz
(Jz − φz(f − fK), uz)K ≤

∑

K∈Tz
α
−1/2
K (‖Jz‖K + ‖f − fK‖K) ‖α1/2uz‖K

≤ C

(
∑

K∈Tz
η2K

)1/2(∑

K∈Tz
h−2
K ‖α1/2uz‖2K

)1/2

≤ C‖uz‖Tz

(
∑

K∈Tz
η2K

)1/2

.

By Lemma 6.1, the first equation in (6.5), and the Cauchy-Schwarz inequality, we
have

‖uz‖Tz
≤ C sup

τ∈RTz,0

(div τ , uz)

‖α−1/2τ‖ = C sup
τ∈RTz,0

(−α−1(σ̂
z,T

− σ̃
z,T

), τ )

‖α−1/2τ‖

≤ C‖α−1/2(σ̂
z,T

− σ̃
z,T

)‖.
Combining the above two inequalities gives (6.23). This proves the first inequality
in (6.21) and, hence, the theorem.
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7 Numerical Experiments

We consider solving the Kellogg’s example [2] with parameters in [19]. Namely,
Ω = (−1, 1)2 and the diffusion coefficient is α = 161.4476387975881 in the first
and third quadrants, α = 1 in the second and fourth quadrants. For f = 0, a
solution in the polar coordinates is given by u(r, θ) = rβψ(θ) with

ψ(θ) :=





cos((π/2− τ)β) cos((θ − π/4)β), if 0 ≤ θ ≤ π/2,

cos(πβ/4) cos((θ − π + τ)β), if π/2 ≤ θ ≤ π,

cos(τβ) cos((θ − 5π/4)β), if π ≤ θ ≤ 3π/2,

cos((π/2− τ)β) cos((θ − 3π/2− τ)β), if 0 ≤ θ ≤ π/2,

β = 0.1 and τ ≈ 14.92256510455152.

The regularity of u is quite low as u /∈ H1.1(Ω).
We perform numerical tests with conforming P1 and P2 elements. RTk−1 flux

recovery is used for Pk element for k = 1 and 2. The initial mesh consists of
4× 4 congruent squares, each of which is partitioned into two triangles connecting
bottom-left and top-right corners. We use Dörfler’s marking strategy [15] with
θD = 0.5 as in [15, 19]. That is, in the refinement of T , a minimal subset T̂ of T
is constructed such that



∑

K∈T̂

ξ2K




1/2

≥ θD

(
∑

K∈T
ξ2K

)1/2

. (7.1)

The newest-vertex bisection [23] is used in the refinement.
The following notation will be used:

• exact error e := u− u
T
;

• effectivity index: eff-ind;

• degrees of freedom: DOFs;

• stopping criterion: ‖A1/2∇e‖ ≤ ǫrel‖A1/2∇u‖ with

ǫrel =

{
0.05, for P1 element,

0.01, for P2 element.
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Table 1: Kellogg’s example - P1 and P2 discretizations

u
T

ǫrel DOFs ‖A1/2∇e‖/‖A1/2∇u‖ eff-ind
P1 0.05 12410 4.9E-2 1.47
P2 0.01 10237 9.9E-3 1.62

Numerical results are shown in Table 1 and in Figure 1 – Figure 4. First
we notice from the plots in Figure 2 and Figure 4 that the estimator is always
larger than the true error, confirming the guaranteed error control. It can be
seen from Figure 1 and Figure 3 that the mesh refinement is homogeneous with
respect to the singularity regardless of different scales of the diffusion coefficient in
different quadrants, which implies the robustness of the estimator with respect to
the coefficient jump. Optimal convergence rates are observed for both P1 element
in Figure 2 and P2 element in Figure 4. Table 1 shows that the effectivity index is
close to 1, so the estimator is considered accurate.

Figure 1: P1 element - mesh
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Figure 2: P1 element - error
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Figure 3: P2 element - mesh

DOFs
10

1
10

2
10

3
10

4
10

5

ξ
  
a
n
d
  
||
A

1
/2
∇

e
||

10
-3

10
-2

10
-1

10
0

10
1

slope = -1

ξ

||A
1/2

∇e||

Figure 4: P2 element - error

[2] R. B. Kellogg. On the poisson equation with intersecting interfaces. Applicable
Analysis, 4(2):101–129, 1974.

[3] R. Bank, J. Xu, and B. Zheng. Superconvergent derivative recovery for La-
grange triangular elements of degree p on unstructured grids. SIAM Journal
on Numerical Analysis, 45(5):2032–2046, 2007.

[4] C. Bernardi and R. Verfürth. Adaptive finite element methods for elliptic
equations with non-smooth coefficients. Numerische Mathematik, 85(4):579–
608, 2000.

[5] D. Boffi, M. Fortin, and F. Brezzi. Mixed finite element methods and ap-
plications. Springer series in computational mathematics. Springer, Berlin,
Heidelberg, 2013.

[6] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid
Mechanics. Cambridge University Press, 2007.

[7] D. Braess, V. Pillwein, and J. Schöberl. Equilibrated residual error esti-
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