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Abstract

In [1] we have introduced an augmented formulation for the Bingham fluid
flow problem. The resulting solver based on this formulation has been proven
to be more effective than the one in primitive variables with respect to the
regularization parameter which is usually introduced for the numerical solution
of the equations. In addition it converges even in absence of regularization
without a significant degradation of the performance. However, the discretized
augmented problem requires the solution of large and sparse linear systems
with a twofold saddle point structure. For large scale applications, the set
up of an efficient and robust preconditioner is mandatory. In this paper we
suggest using the regularized Bingham problem as a preconditioner for the non-
regularized problem. For effectively solving the regularized linear system, we
introduce a geometric multigrid approach that involves recursive calls to coarse
levels within a flexible GMRES method inspired by multilevel preconditioners
considered in [27]. Numerical experiments demonstrate the effectiveness of
this preconditioning technique.

1 Introduction

Many fluids of industrial, geophysical and medical interest exhibit a shear-dependent
viscosity. In particular, visco-plastic materials show properties of a rigid continuum
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as long as the applied stress remains below a certain threshold and become incom-
pressible fluids if this critical value is exceeded [7]. A common example of a visco-
plastic material is the Bingham fluid [25]. If u denotes the velocity field of an incom-
pressible fluid in the domain Ω, p is the pressure, we denote by Du = 1

2
(∇u+∇uT )

the strain rate tensor and consider the Frobenius norm |Du| =
√

tr(DuTDu). In
Bingham fluids, for

τ = 2µDu+ τs
Du

|Du|
, (1.1)

we solve the system ρ

[
∂u

∂t
+ (u · ∇)u

]
−∇ · τ +∇p = f

∇ · u = 0
in Ω, (1.2)

when |τ | > τs. Here, µ > 0 (plastic viscosity), ρ > 0 (fluid density) and τs ≥ 0 (yield
stress) are assumed to be constant. When |τ | ≤ τs, we set

Du = 0.

The region of Ω where the latter equation holds is called rigid or plug region, as
opposed to the fluid region, where (1.2) is assumed to hold. The constitutive relation
reads therefore

Du =

{
0 if |τ | ≤ τs (plug region),(

1− τs
|τ |

)
τ
2µ

if |τ | > τs (fluid region).
(1.3)

Equations (1.1), (1.2) can be viewed as a generalization of the Navier-Stokes
equations with shear-dependent viscosity µ̂ = 2µ+ τs

|Du| in the fluid region, reducing
to the classical Navier-Stokes equations with constant viscosity if τs = 0. A major
difficulty associated with solving the Bingham equations is that the flow and plug
regions are unknown a priori. Notice that µ̂ is singular in the plug region where
|Du| vanishes. These difficulties can be addressed by regularizing µ̂. The most
common types of regularization are the Bercovier-Engelmann regularization [6], in
which |Du| is replaced by |Du|ε =

√
|Du|2 + ε2, and the Papanastasiou variant [21].

In practice, regularization techniques replace the plug region by a high viscosity flow
region. Other methods are based on different formulations of the problem, such
as the method introduced by Duvaut and Lions [13, 14]. This solver is based on a
variational inequality and Uzawa-like iterative methods. In this paper, we consider
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the mixed formulation of the Bingham fluid flow introduced in [1]. An auxiliary
symmetric tensor W = Du

|Du| is defined and (1.2)-(1.3) are reformulated into
ρ

[
∂u

∂t
+ (u · ∇)u

]
−∇ · (2µDu+ τsW ) +∇p = f

∇ · u = 0
Du− |Du|W = 0

(1.4)

Note that in this formulation contains no division by |Du| and hence no singularity
occurs. In this respect, (1.4) is more regular than the primitive formulation (1.1),
(1.2). The idea of circumventing a singularity by adding an unknown was inspired
by [8], where a similar approach has been successfully applied to a total-variation
based image processing problem.
A regularized formulation is obtained when |Du| is replaced by |Du|ε =

√
|Du|2 + ε2.

The steady Stokes-type equations for the Bingham flow is obtained when the La-
grangian or material derivative in square brackets in the momentum equation (1.4)1

(or (1.2)1) is dropped.
Results in [1] indicate that the iterative solution of the mixed formulation con-

verges within a small number of iterations and is robust with respect to both mesh
size and ε. In addition, the method efficiently solves the non-regularized Bingham
problem (ε = 0). However, the price of the mixed formulation is that additional un-
knowns augment the system, resulting in larger linear systems to be solved at each
nonlinear iteration. Numerical experiments in [1] are performed on two dimensional
test problems and use a direct method for solving the linear systems. Direct meth-
ods are in general unsuitable for large scale problems. The purpose of the present
paper is to introduce an efficient and robust preconditioner for solving the mixed
formulation for large problems, including three dimensional problems. We propose
a preconditioning procedure which is based on two steps:

1. The regularized Bingham problem is used as a preconditioner for solving the
non-regularized problem. In this respect, the Bercovier-Engelman regulariza-
tion parameter ε serves as a control parameter driving the performance of the
preconditioner rather than as a perturbation of the problem.

2. The regularized problem is then approximated using a multilevel technique.
In particular, we introduce a geometric multilevel preconditioner for which the
smoothing is performed by a flexible GMRES (FGMRES) scheme preconditioned by
an overlapping additive Schwarz domain decomposition method. The multigrid
iterations are performed again by an FGMRES scheme on different grids. The
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overall scheme gives rise to a nonlinear method. We use a direct solver on the
coarsest level.

Numerical results exhibit robustness of the linear solver with respect to the mesh
size, confirming that the proposed method can be used for the accurate simulation
of (non-regularized) Bingham fluids in real-life cases.

The paper is organized as follows. In Section 2 the problem setting, including the
linearization and discretization of the problem, will be explained. The first part of
Section 3 introduces the preconditioner based on the regularized Bingham problem.
In the second part we describe the multilevel algorithm used to solve the regularized
problem. Numerical results on two benchmark problems in two and three dimensions
for several values of the mesh size, as well as a test case on a more complex geometry
are shown in Section 4. Conclusions are drawn in Section 5.

2 Problem setting

We denote by Hs(Ω) the Sobolev space of functions with s distributional derivatives
with summable square (H1

0 denotes the set of H1 functions with null trace on the
boundary). In addition, Lr(0, T ;Hs) denotes the vector space of functions whose Hs

norm for the spatial dependence is r-power summable in the time interval (0, T ). We
use H1

0 for vector functions with components in H1
0 and L2 for tensor functions with

components in L2. If we assume for simplicity that the boundary conditions prescribe
u = 0 on ∂Ω (for t > 0), the weak formulation of (1.4) reads: for f ∈ L2(0, T, L2(Ω)),
find u ∈ L2(0, T ; H1

0(Ω)), p ∈ L2(0, T ;L2(Ω)), W ∈ L2(0, T ;L∞(Ω)) s.t.

ρ

∫
Ω

∂u

∂t
v + ρ

∫
Ω

(u · ∇u)v + µ

∫
Ω

Duv −
∫

Ω

p∇ · v + τs

∫
Ω

∇ ·Wv =

∫
Ω

fv

−
∫

Ω

q∇ · u = 0∫
Ω

Z : ∇u−
∫

Ω

(
|Du|2 + ε2

)1/2
W : Z = 0

(2.1)
with u(x, 0) = u0(x) a given initial condition in L2(Ω), for all v ∈ H1

0(Ω), q ∈ L2(Ω),
and Z ∈ L2(Ω). For the time discretization, we refer to a classical Backward Euler
method. Different, more accurate time advancing schemes can be considered as
well. For the space discretization, we resort to finite elements. Again, different
discretization techniques may be considered, such as finite difference schemes on
staggered grids [18, 20] and finite volume discretizations [24]. In [1] we have proven
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that for ε > 0 no inf-sup constraint needs to be fulfilled in the selection of finite
dimensional space of W for the well posedness of the discrete problem. The existence
of an inf-sup contraint if ε = 0 is still an open problem.

The discrete Picard linearized associated problem reads: find uh ∈ L2(0, T ; Vh),
ph ∈ L2(0, T ;Qh), Wh ∈ L2(0, T ;Zh) such that

1

∆t
ρ

∫
Ω

un+1,k
h vh + ρ

∫
Ω

(un+1,k−1
h · ∇)un+1,k

h vh

+µ

∫
Ω

Dun+1,k
h vh −

∫
Ω

pn+1,k
h ∇ · vh

+τs

∫
Ω

W n+1,k
h : ∇vh =

1

∆t
ρ

∫
Ω

un,kh v +

∫
Ω

fn+1vh

−
∫

Ω

qh∇ · un+1,k
h + α

∫
Ω

pn+1,kqh = 0∫
Ω

Zh : ∇un+1,k
h −

∫
Ω

(|Dun+1,k−1
h |2 + ε2)1/2W n+1,k

h : Zh = 0

(2.2)
for all vh ∈ Vh, qh ∈ Qh, and Zh ∈ Zh. Here n, n+ 1 refer to the time step, ∆t is the
time step size, k, k − 1 refer to the Picard iteration. The index h indicates the size
of the space discretization mesh. Notice the pressure stabilizing term introduced in
the mass conservation equation. The parameter α will be taken as small as 10−10.
The matrix formulation of the problem reads (we drop the time index for easiness of
notation) Aεw = b with

Aε(u(k−1)) =

 A(u(k−1)) BT CT

B −αQ 0
C 0 −Nε(u

(k−1))

 ,
w = w(k) =

 u(k)

p(k)

W (k)

 , b =

 f
0
0

 (2.3)

for k = 1, 2, ... until convergence. The block Nε(u
(k−1)) is obtained by discretizing

|Du(k−1)|εW . This block is symmetric positive definite provided that ε > 0.
The efficient solution of this system with complex geometries or a large number

of degrees of freedom can be obtained either with an approximate factorization of
Aε, resorting to a sequential computation of velocity, pressure and the tensor W , or
with an efficient preconditioner. In the latter case, we could take advantage of the
twofold saddle point-structure of the problem. As a matter of fact, notice that there
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are two different ways to recognize the saddle-point structure of (2.3). Letting

B =

[
B
C

]
and Nε =

[
−αQ 0

0 −Nε(u
k−1)

]
gives a saddle-problem of the form

Aε =

[
A BT
B Nε

]
with a positive definite (1,1)-block, which is also symmetric in the case of the Stokes-
type problem. On the other hand, one may define

F =

[
A BT

B −αQ

]
and G =

[
C 0

]
.

In this case, the problem becomes[
F GT
G −Nε(u

k−1)

]
and the (1,1)-block of the saddle-point problem is indefinite and represents in turn
a saddle-point problem. Many preconditioners have been suggested for saddle-point
problems either when the matrix (1,1)-block of the system is s.p.d (symmetric pos-
tive definite), or its symmetric part is s.p.d. A broad spectrum of preconditioners
relies on inexact factorizations of the system and an approximation of the Schur
complement, such as the least square commutator preconditioner or the pressure
convection diffusion preconditioner [15, 16]. Other preconditioning techniques for
saddle-point problems include augmented Lagrangian preconditioners [4, 5] or pre-
conditioners based on a dimensional splitting [2,3]. Here, we propose a preconditioner
for A0 (the non-regularized problem) based on a multilevel monolithic approximation
of Aε to achieve a method with potentially optimal complexity.

3 The multilevel preconditioner

3.1 Approximating the non-regularized problem

As we have pointed out in the introduction, one of the main advantages of the
mixed formulation from [1] is the treatment of the singularity represented by the
plug regions. The numerical solver based on this formulation is more robust with
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Figure 3.1:

respect to the regularization parameter. Numerical results show that the mixed
formulation can be used for the non-regularized case. The idea we pursue here is to
regard the regularized mixed formulation of the Bingham problem as a preconditioner
for the non-regularized case. In other terms, we use a preconditioner built up for
the regularized problem for solving the case ε = 0. To support this idea, in Figure
3.1 we report the eigenvalues of the non-regularized Bingham matrix A for the case
of the Stokes-type equations computed for one of our test cases, the flow between
parallel plates (see Section 4.3) with a number of degrees of freedom small enough
to use MATLAB’s eig, namely h = 1/16 in a 2D unit square. The Figure also displays
the eigenvalues of A when preconditioned by the regularized problem Aε, i.e. the
eigenvalues of A−1

ε A with ε = 10−2. Clustering of the eigenvalues around λ = 1 is
evident.

To quantify the impact of the regularization parameter on the non-regularized
problem, we define

S =

[
A BT

B −αQ

]
, F =

[
B
C

]
and consider the following factorization of the linear system matrix Aε with ε > 0:

Aε =

[
S FT
F Nε

]
=

[
S 0
F Nε −FS−1FT

] [
I S−1FT
0 I

]
.
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Then

A−1
ε =

[
I −S−1FT
0 I

] [
S−1 0(

Nε −FS−1FT
)−1FS−1 −

(
Nε −FS−1FT

)−1

]
and by a direct computation we get

A−1
ε A =

[
I −S−1FT
0 I

] [
I S−1FT
0 −X

]
(3.1)

with the matrix block

X =
(
FS−1FT

)
−N−1

ε

(
FS−1FT −N

)
. (3.2)

Note that S represents the (Newtonian) Stokes (or Navier-Stokes) part of the linear
system and the inverse S−1 is well-defined provided either u and p are discretized
in inf-sup compatible spaces or α > 0. We can see from (3.1) and (3.2) that the
eigenvalues of the preconditioned matrix A−1

ε A cluster around one if the spectrum of(
Nε −FS−1FT

)
is similar to the spectrum of

(
FS−1FT −N

)
. Should the inverses

be computed exactly, this trivially holds true for ε → 0. Figure ?? shows the
residual for the first 30 iterations of GMRES when solving the preconditioned system
A−1
ε Ax = A−1

ε f for different values of ε. To provide this proof of concept, a coarse
grid is used (again unit square domain with h = 1/16) and the inverse of Aε is
applied exactly using a direct method. The smaller ε, the faster the GMRES iterations
reach any given tolerance.

Note that so far in the literature on solving the Bingham fluid flow equations there
has been a strict distinction between solvers for the regularized model and solvers for
the non-regularized model. To the authors’ knowledge, this type of combination of
regularized and non-regularized model presented here has not been advocated before.

3.2 Approximating the regularized problem

Using the exact inverse of Aε as a preconditioner as done in Figure 3.1 is clearly not
practical if the problem is large. The efficient solution of the linear system requires
an approximation of the inverse which can be computed with a relatively low cost
in terms of memory and CPU time and which significantly reduces the number of
iterations of the linear iterative solver. In this paper we use a geometric multigrid
technique for approximating A−1

ε .
Multigrid methods have experienced an increasing popularity for a large range of
problems, including the solution of indefinite problems (see, e.g. [26,28] in the context
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Figure 3.2: Left: absolute values of the eigenvalues of the discrete linearized Bingham
matrix A (blue) and eigenvalues of A−1

ε A (red) in the analytical test case, where Aε
is the regularized Bingham matrix with ε = 10−2. Right: Residual of GMRES for the
first 30 iterations for when solving the non-regularized problem preconditioned by
the regularized one with different values of ε.
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of constrained optimization problems and fluid-structure interaction, respectively).
Let {Ak}Lk=1 be the linear system matrices representing the discretization of (1.4) on a
sequence of L meshes, Ak−1 being on a coarser mesh than Ak. Let further {Pk}L−1

k=1 be
the natural interpolation matrices relating variationally the system matrix Ak to its
coarser counterpart Ak−1, and let y be the generic input vector, x the corresponding
output vector and σ, ν, ` and tol be given constants, where ` represents the current
level and tol the given tolerance. We propose the following recursive preconditioner:

Algorithm 3.1 The Multilevel Algorithm

MLPrecond(x, y, {Ak}k, {Pk}k, σ, ν, `, tol):
smooth ν times on A`x = y;
restrict residual: r = P T

`−1(y−A`x);
if `− 1 = 1 then

xc=(A`−1) \r; //coarsest level: Matlab notation for a direct method
else

xc = 0;
Precond = @MLPrecond(xc, r, {Ak}`−1

k=1, {Pk}`−1
k=1, σ, ν, `− 1, tol);

FGMRES(A`−1, xc, r, tol, σ, Precond);
end if
update x = x + P`−1xc;
smooth ν times on A`x = y;

Algorithm 3.1 is a multigrid W-cycle; the method “MLPrecond” recursively calls
itself σ times as a preconditioner inside an FGMRES scheme [23]). Note that we use
in the smoother a Krylov subspace method, which will also contribute towards the
nonlinear nature of the proposed preconditioner.

3.2.1 Interpolation and Restriction

Starting with a mesh that is sufficiently coarse to allow a fast solution of the discrete
system (e.g. with a direct solver that we have denoted with “\”), we refine the
mesh uniformly L times. With each mesh, we associate a corresponding triple of
finite element spaces, Vk, Qk,Zk, k = 1, . . . , L. By construction, the coarse level
spaces are subspaces of the next fine level spaces. This defines natural embeddings
{Puk }Lk=1, {P p

k }Lk=1 and {PW
k }Lk=1 which transfer (interpolate) the degrees of freedom

of u, p and W , respectively from the coarse mesh to the fine mesh. The (monolithic)
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interpolation operator is then given by

Pk =

 Puk 0 0
0 P p

k 0
0 0 PW

k

 .
The matrix AL is assembled on the finest mesh, and the coarse ones are variationally
related via the Galerkin condition Ak−1 = P T

k AkPk for k = 1, ..., L.

3.2.2 Smoothing

Several types of smoothers may be considered. A classical approach is to perform a
few iterations of a preconditioned iterative method. This has been done in [19, 27])
for a s.p.d. problem, with a fixed number of conjugate gradient iterations used
for smoothing. The iterations can involve the preconditioner defined recursively
on previous coarse levels. This nonlinear preconditioner is used to accelerate the
convergence of a flexible Krylov subspace method.

We will follow a similar idea on the indefinite system (2.3). An efficient smoother
is given by the overlapping additive Schwarz method. For the sake of simplicity, we
will omit the index k indicating the level of discretization for the remainder of this
section. Given the discretized domain Ω on any given level, we may subdivide the
domain into m overlapping subsets {Ωi}mi=1. Then we set up linear mappings {Iui }mi=1,
{Ipi }mi=1 and {IWi }mi=1 restricting the degrees of freedom of u, p and W , respectively,
to the local domain Ωi. The discrete local matrix is then given by

Ai = IiAITi with Ii =

 Iui 0 0
0 Ipi 0
0 0 IWi


and the inverse of the global matrix M is approximated by the formula

A−1 ≈
m∑
i=1

ITi A−1
i Ii.

The size of the subdomains should be chosen sufficiently small so that the inverse of
the local matrices Ai can be computed quickly.
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4 Numerical results

4.1 Implementation

Unless stated otherwise, the computational domain is a unit square or a unit cube.
We discretize in space with P2-P1 finite elements for velocity and pressure. The
auxiliary variable W is discretized with P1 finite elements. We refer to the C++
finite element library MFEM (see http://code.google.com/p/mfem). For the coarsest
grid we choose an h = 1/4 grid in the two dimensional case and an h = 1/2 grid
in three dimensions. As a solver on the coarsest grid we use a direct solver within
the C library SUITESPARSE. More precisely, the coarse level matrix is factorized into
an LDLT factorization (LDLT package) for the Stokes type equations and into an
LU factorization (UMFPACK package [9–12]) for the Navier-Stokes type problem (1.4).
Before computing all factorizations we apply a fill-in reducing reordering provided
by AMD.

To set up the smoother on each level (except for the coarsest), we first generate
an adjacency matrix S = [sij] (with sij = 1 if element i and j share a common face
in three dimensions or a common edge in two dimensions and sij = 0 otherwise).
We then apply a graph partitioner in METIS on S. This procedure results in a
partitioning of the mesh in which the overlap consists of one layer of elements at
the interface. Extra layers of overlap may be included as well. The solves on each
subdomain is again done by the direct solvers provided in SUITESPARSE. Table 4.1
shows the different meshes we use for our experiments and the number of multigrid
levels used for each mesh. Also, the number of subdomains is shown. The number of
overlapping nodes is specified as well. The number of subdomains on each level has a
strong influence on the performance of our preconditioner. The trade-off is between
the size of the local system (not too large) and the overall efficacy of the smoother.
This is achieved by increasing the number of subdomains by a factor of 4 in 2D and
a factor of 6 in 3D for each additional multigrid level, as shown in the table. The
size of the discrete system is shown as well. To produce the results in the following
subsections, we start the nonlinear Picard iterations with the initial guess u = u0,
p ≡ 0, W ≡ 0 where u0 is the solution of −µ∆u0 = f solved with preconditioned CG

iterations. We continue the nonlinear iterations until

‖r‖2

‖r0‖2

≤ 10−2

where r (r0) is the current (initial) residual. We set the absolute tolerance to 5 ·10−6.
By choosing this nonlinear stopping criterion we make sure that the linear solver is
accurate enough to achieve nonlinear convergence. The linear system is solved by
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Experiments on Unit Square
mesh # levels # subd. #overlap. nodes size overl. size lin. syst.
h = 1/8 2 3 34-40 27 902
h = 1/16 3 9 42-50 126 3,334
h = 1/32 4 27 56-72 498 12,806
h = 1/64 5 81 68-85 1,839 50,182
h = 1/128 6 243 89-110 6,751 198,662
h = 1/256 7 729 114-143 24,343 790,534

Experiments on Unit Cube
mesh # levels # subd. size subd. size overl. size lin. syst.
h = 1/4 2 12 24-31 97 3,062
h = 1/8 3 72 27-49 669 19,842
h = 1/16 4 432 34-55 4,697 142,202
h = 1/32 5 2,392 41-70 34,925 1,075,434

Table 4.1: Number of levels of multigrid, number of subdomains, size of each subdo-
main, size of overlap and the size of the linear system to be solved in two and three
dimensions.

FGMRES with geometric multigrid preconditioner and is considered converged if the
quotient of current and inital residual drops below 10−6 in the L2 -norm. All tables
display the number of linear iterations needed for convergence of the first nonlinear
iteration.

4.2 Choosing the regularization parameter

In Section 3.1 we stated that the performance of the preconditioner Aε improves as ε
decreases, provided that the inverseA−1

ε is computed exactly. However, the reduction
of the regularization parameter in general deteriorates the conditioning properties of
the matrix and this may impair the quality of the approximation. In this respect,
finding the optimal value of ε involves finding the right trade-off between numerical
stability and approximating the physical problem to be solved. In our experiments
we empirically found that the optimal choice to be ε = 10−2. However, a rigorous
analysis justifying this choice is still missing. It is worth noticing that the domain
decomposition used in our experiments is based entirely on the mesh and not on the
solution. If a subdomain isentirely contained in a plug region, we may experience
some performance degradation. As a matter of fact, the local representation of the
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Figure 4.1: Condition number of the block Nε for different values of ε and h.

linear system is extremely ill-conditioned for small values of ε and the local (direct)
solves may be very inaccurate, resulting in failure of the smoother. Larger values
of ε yield an improved conditioning of the local system and local solves are more
accurate.

We also noticed that the condition number of the regularized block Nε in (2.3)
grows mildly as ε → 0 except when between 10−2 and 10−3 where the increase is
more evident (see Figure 4.1).

4.3 Flow between two parallel plates

This test case is one of the few examples in which the analytical solution is known
for the steady (Navier) Stokes type Bingham problem. It describes a flow between
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two parallel plates and its solution is given by

u1 =


1
8
[(1− 2τs)

2 + (1− 2τs − 2y)2] if 0 ≤ y < 1
2
− τs,

1
8
(1− 2τs)

2, if 1
2
− τs ≤ y ≤ 1

2
+ τs,

1
8
[(1− 2τs)

2 − (2y − 2τs − 1)2] if 1
2

+ τs < y ≤ 1,

(4.1)

u2 ≡ u3 ≡ 0 and p = −x. The strain rate vanishes in the plug region {(x, y, y)|1
2
−τs ≤

y ≤ 1
2

+ τs}. In our experiment we impose Dirichlet boundary conditions on the unit
square and cube according to (4.1) with τs = 0.3 and µ = 1. To precondition the
flexible GMRES iterations we use the algorithm from Section 3 with two smoothing
steps (ν = 2) in 2D and four smoothings (ν = 4) in 3D as well as two iterations of
FGMRES on each multigrid level (σ = 2). Table 4.2 displays the number of flexible
GMRES iterations needed for convergence for the first Picard step, the total number
of nonlinear iterations needed for convergence as well as the CPU time needed for
solving the linearized system. In the three dimensional case the number of linear
iterations slightly increases with the size of the mesh. However, the parameters
for the preconditioner were chosen to minimize the CPU time as opposed to the
iteration count. By properly tuning the number of smoothings or the number of
subdomains we get mesh independence. Note that for the Stokes-type problem only
the matrix N needs to be updated before each nonlinear iteration. In this respect,
the timings provided in Table 4.2 for setting up the preconditioner are divided into
initial setup time (this includes setting up the interpolations between the different
levels, determining the subdivision of the domains and setting up the restriction
operators for each subdomain) and updating time (this includes the updating of
N in the preconditioner, computing a factorization of the local matrices on each
subdomain and computing a factorization for the direct solve on the coarsest level).
All experiments are implemented in serial code. Timings for the Stokes-type Bingham
problem are obtained on a personal laptop with an Intel Core i7 processor, 2.6 GHz
and 8 GB of memory. Due to a higher memory requirement, experiments involving
the Navier-Stokes type Bingham problems are run on a Sun Microsystems SunFire
X4600, with 20 AMD Opteron(tm) cores and 32 GB of memory.

Figure 4.2 shows the streamlines and pressure of this flow in two and three di-
mensions.
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Two Dimensional Experiments
mesh # lin. its CPU time (s) setup (s) updating (s) # nonlin. its.
h = 1/8 10 0.01 0.01 0.01 6
h = 1/16 13 0.08 0.02 0.03 6
h = 1/32 14 0.50 0.05 0.09 6
h = 1/64 14 2.19 0.18 0.40 6
h = 1/128 14 9.60 0.86 1.72 7
h = 1/256 12 37.93 5.44 7.25 7

Three Dimensional Experiments
mesh # lin. its CPU time (s) setup (s) updating (s) # nonlin. its.
h = 1/4 6 0.08 0.01 0.07 4
h = 1/8 8 1.51 0.17 0.75 5
h = 1/16 16 27.89 1.81 6.74 6
h = 1/32 11 258.53 25.53 90.46 6

Table 4.2: The flow between two parallel plates, an analytical test case in two and
three dimensions: Number of linear iterations, CPU time for solving the linear sys-
tem, setup and updating time for the preconditioner (all in seconds) and the total
number of Picard iterations.

Figure 4.2: Streamlines and pressure for the two and three dimensional flow between
two parallel plates. The pressure field is indicated by the background color, the
streamlines are colored by the magnitude of the velocity field.
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Two Dimensional Experiments
mesh # lin. its CPU time (s) setup (s) updating (s) # nonlin. its.
h = 1/8 8 0.01 0.01 0.01 4
h = 1/16 11 0.07 0.01 0.02 5
h = 1/32 12 0.42 0.04 0.10 5
h = 1/64 12 1.87 0.17 0.40 5
h = 1/128 12 8.22 0.80 1.71 5
h = 1/256 11 34.91 5.44 7.29 4

Three Dimensional Experiments
mesh # lin. its CPU time (s) setup (s) updating (s) # nonlin. its.
h = 1/4 3 0.04 0.01 0.06 3
h = 1/8 5 0.94 0.17 0.74 4
h = 1/16 8 13.94 1.80 6.63 5
h = 1/32 5 167.21 25.48 89.12 5

Table 4.3: The lid-driven cavity flow in two and three dimensions (Stokes): Number
of linear iterations, CPU time for solving the linear system, setup and updating time
for the preconditioner (all in seconds) and the total number of Picard iterations.

4.4 The lid-driven cavity

This is a standard benchmark problem for CFD codes. The lid is moved at a velocity
of magnitude 1 in the x-direction, i.e.

u =

 1
0
0

 if y = 1

and we impose homogeneous Dirichlet boundary conditions everywhere else. Again
we set τs = 2 and µ = 1. For preconditioning we use the multilevel algorithm with
two smoothings in 2D and four smoothings in 3D as well as two inner GMRES iterations
on each level. Table 4.3 shows the numerical results for this experiment. Streamlines
and pressure distribution of the lid-driven cavity are shown in Figure 4.3.

4.5 The steady Navier-Stokes type problem

We now apply the lid-driven cavity test case to the steady Navier-Stokes type prob-
lem. Here all specifications are the same as in the previous subsection except that
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Figure 4.3: Streamlines and pressure field of the lid-driven cavity (Stokes) in two
(left) and three (right) dimensions.

we now solve (1.4) with ∂u
∂t
≡ 0 and ρ = 1 and the we impose

u =

 50
0
0

 if y = 1

corresponding to a Reynolds number Re = 50. We now tighten the nonlinear toler-
ance to 10−4 to ensure accurate solutions. Numerical results are shown in Table 4.4.
Note the drop in the nonlinear iteration count for h = 1/32 in the three dimensional
case. This is due to the higher Reynolds number in this test case; the relatively high
number of nonlinear iterations for the coarser meshes are due to slight instabilities
of the Picard iterations (the residual reduction was not monotone). We did not see
this effect for lower Reynolds numbers (Re ≈ 10), the effect was even more evident
if we increased the Reynolds number (to approximately Re = 50). Streamlines and
pressure of this flow are shown in Figure 4.4.

4.6 The unsteady Navier-Stokes type problem on a non-
trivial geometry

This experiment is performed on a cylindrical domain with a sphere attached to
it. It is meant as an idealized geometry that approximates a blood vessel with an
aneurysm. This experiment serves as a first step in understanding the relevance of
Bingham fluids in problems occurring in hemodynamics, see [17, 22]. We discretize
the domain with second order isoparametric elements. Using elements of higher
order has the effect that the “curved” shape of the domain is captured well during
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Two Dimensional Experiments
mesh # lin. its CPU time (s) setup (s) updating (s) # nonlin. its.
h = 1/8 7 0.03 0.01 0.04 9
h = 1/16 10 0.41 0.01 0.19 8
h = 1/32 12 2.50 0.04 0.77 7
h = 1/64 12 11.74 0.23 3.27 6
h = 1/128 12 54.00 1.44 13.39 5
h = 1/256 11 232.63 11.87 53.32 4

Three Dimensional Experiments
mesh # lin. its CPU time (s) setup (s) updating (s) # nonlin. its.
h = 1/4 6 0.59 0.02 0.61 12
h = 1/8 6 9.28 0.12 7.33 17
h = 1/16 8 101.76 1.77 58.29 15
h = 1/32 7 747.84 47.53 440.48 4

Table 4.4: The lid-driven cavity flow for the Navier-Stokes type problem: Number of
linear iterations, CPU time for solving the linear system, setup and updating time
for the preconditioner (all in seconds) and the total number of Picard iterations.

Figure 4.4: Velocity and pressure field of the lid-driven cavity on the Navier-Stokes
type problem.
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Figure 4.5: Idealized blood vessel with aneurysm on three geometric multigrid lev-
els. Left: The coarsest level (280 elements), center: one level of refinement (2,240
elements), right: two levels of refinement (17,920 elements).

Fine level Intermediate level
# subd.: 72 # subd.: 12
size subd.: 100-140 size subd.: 74-98
size overl.: 2,791 size overl.: 342

General Information
# Picard its (per time st.): 5
CPU (s) (per t.s.): 53.41
setup (s): 0.80
updating: 72.36
# linear its: 6

Table 4.5: Numerical results and specifications of the preconditioner for the unsteady
Navier-Stokes experiment.

the refinement process of the geometric multigrid. See Figure 4.5 for the shape of
the geometry on each multigrid level.

We use multigrid preconditioning on three levels in this experiment with four
smoothings and two inner FGMRES iterations. In the Bingham fluid equations we
take µ = 1 and τs = 1. We prescribe parabolic boundary conditions on the inflow, a
no-slip condition on the walls and homogeneous Neumann boundary conditions on
the outflow. Time is discretized on the interval from t = 0 to t = 1.5 and a time
step of ∆t = 0.1. Table 4.5 shows more specifications on the preconditioner as well
as the numerical results for this experiment. Figure 4.6 shows the streamlines and
pressure of this flow after a steady state has been reached.

5 Conclusion

In this paper we have proposed a new way for solving the non-regularized Bingham
fluid flow equations efficiently. We discretize and linearize the Bingham fluid flow
in the mixed formulation proposed in [1] and solve the resulting linear systems by a
flexible Krylov subspace method. Convergence of this iterative method is accelerated
by a geometric multilevel algorithm. The preconditioner is computed for the regu-
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Figure 4.6: Streamlines and pressure field of the unsteady Navier-Stokes type prob-
lem in a cylindrical domain with an attached sphere.

larized problem and applied to the solution of the non-regularized Bingham system.
This utilization of the parameter is novel in the sense that it serves as a precon-
ditioning parameter for solving the non-regularized Bingham model as opposed to
a parameter for regularization purposes. Our numerical experiments indicate mesh
independent convergence in a low number of iterations, a rigorous proof of this be-
ing however missing. Timings are obtained here on serial machines, but may be
significantly improved on a parallel architecture. The application of our method to
large-scale problems on parallel architectures, with particular reference to problems
in computational hemodynamics is the next step of the present research.
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