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Abstract

Motivation: NO2 is one combustion byproduct associated with multiple adverse
health outcomes

Data: Air Quality System (AQS) NO2 monitoring networks over the contiguous
United States of the Environmental Protection Agency (EPA) [1] from 2000–2016

Goals:
• predict average daily NO2 concentration for contiguous US

• find potential correlations between NO2 concentration and socioeconomic status

Model-Driven Approach

• Mathematical model of NO2 average daily concentration

• Exponential decay and seasonal oscillation

ymodel(t;p) = p1 + p2e
−p3(t−p4) + p5 cos(2πp6(t + p7))

p1: average NO2 concentration in US before 2000 p5: oscillation amplitude

p2: scale factor p6: oscillation frequency

p3: decay rate p7: shift

p4: initial time

Data Fitting Approach

Nonlinear least squares problem

argmin
p
∣∣W(ymodel(p) − ydata)∣∣

2
2

W: diagonal weight matrix (standard deviation (std)−1) ydata: original data

ymodel: data predicted from the model

Optimization via Nelder-Mead method (MATLAB fminsearch)

Bayesian Approach

Use Bayes’ Theorem [2]

πpost(p ∣ ydata) =
πlike(ydata ∣ p)πprior(p)

πmarg(ydata)

• Generate random samples from posterior distribution using Adaptive Metropolis
(fixed p4 = 2000 and p6 = 1) with maximum a-posteriori estimate (MAP)

pMAP = argmax
p

πpost(p∣ydata)

Projections of Posterior Distribution: Model Predictions:

Hybrid Model and Data-Driven Approach

Goal: Train a Long-Term Short-Term Memory Model (LSTM)[3] to predict the residual
r = ymodel − ydata of the “Model-Driven Approach”

Computational Approach:

• 60 time points used to predict the next time point

• Train on the first 5000 time points, test on the last 1000

min
θ
∥Φ(r;θ) − r∥22

where Φ is an LSTM network with network parameters θ

• 50 epochs for the training via
‘Adam’ optimizer

Observations:

• Hybrid approach captures
oscillation trend

• Large deviations still exist

• Data-driven approaches require
larger datasets
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2D NO2 Maps Analysis

• Averaged NO2 values over each census tract for years 2000, 2010, 2014, and
2016

• Combined geographical data of census tracts with their Social Vulnerability
Indexes (SVI)

Regression Table: Average NO2 explained by SVI

estimate std p val lower CI upper CI
intercept 17.387 0.073 0 17.245 17.530
slope 4.507 0.126 0 4.260 4.754

Conclusions

• A model-driven approach with appropriately selected parameters can provide
good predictions of average daily NO2 concentrations. Including a weight matrix
in the objective function resulted in a better data fit.

• Posterior MCMC samples suggest high levels of agreement and demonstrate
little uncertainty in their predictions.

• The LSTM model was not ideal for our small data set. A future step is to
analyze the frequency of oscillations in the residuals.

• Although weak for some years, we observe correlations between the SVI and
NO2 concentration, most noticeable in 2010.


