

NO₂ CONCENTRATION ANALYSIS BASED ON MATHEMATICAL AND GEOSPATIAL APPROACHES

Abstract

Motivation: NO_2 is one combustion byproduct associated with multiple adverse health outcomes

Data: Air Quality System (AQS) NO_2 monitoring networks over the contiguous United States of the Environmental Protection Agency (EPA) [1] from 2000–2016

Goals:

- predict average daily NO_2 concentration for contiguous US
- find potential correlations between NO_2 concentration and socioeconomic status

 p_6 : oscillation frequency p_7 : shift p_3 : decay rate p_4 : initial time

Data Fitting Approach

Nonlinear least squares problem

$$\arg\min \|\mathbf{W}(\mathbf{y}_{\text{model}}(\mathbf{p}) - \mathbf{y}_{\text{data}})\|_2^2$$

 \mathbf{y}_{data} : original data **W**: diagonal weight matrix (standard deviation $(std)^{-1}$) $\mathbf{y}_{\text{model}}$: data predicted from the model

Optimization via Nelder-Mead method (MATLAB fminsearch)

Bayesian Approach

Use Bayes' Theorem [2]

$$\pi_{\text{post}}(\mathbf{p} \mid \mathbf{y}_{\text{data}}) = \frac{\pi_{\text{like}}(\mathbf{y}_{\text{data}} \mid \mathbf{p})\pi_{\text{prior}}(\mathbf{p})}{\pi_{\text{marg}}(\mathbf{y}_{\text{data}})}$$

• Generate random samples from posterior distribution using Adaptive Metropolis (fixed $p_4 = 2000$ and $p_6 = 1$) with maximum a-posteriori estimate (MAP)

$$\mathbf{p}_{\text{MAP}} = \underset{\mathbf{p}}{\operatorname{arg\,max}} \pi_{\text{post}}(\mathbf{p}|\mathbf{y}_{\text{data}})$$

Riley Chen¹, Mason Lu², Matilda Slosser³, Aneesh Srinivas⁴ Emory University, ² Murray State University, ³ Smith College, ⁴ University of California, Berkeley

Hybrid Model and Data-Driven Approach

Goal: Train a Long-Term Short-Term Memory Model (LSTM)[3] to predict the residual $\mathbf{r} = \mathbf{y}_{model} - \mathbf{y}_{data}$ of the "Model-Driven Approach"

Computational Approach:

- 60 time points used to predict the next time point
- Train on the first 5000 time points, test on the last 1000

$$\min_{\boldsymbol{\theta}} \| \boldsymbol{\Phi}(\mathbf{r}; \boldsymbol{\theta}) - \mathbf{r} \|_2^2$$

where $\boldsymbol{\Phi}$ is an LSTM network with network parameters $\boldsymbol{\theta}$

• 50 epochs for the training via 'Adam' optimizer

Observations:

- Hybrid approach captures oscillation trend
- Large deviations still exist
- Data-driven approaches require larger datasets

References/Acknowledgement

- [1] Qian Di et al. "Assessing NO2 concentration and model uncertainty with high spatiotemporal resolution across the contiguous United States using ensemble model averaging". In: *Environmental science & technology* 54.3 (2019), pp. 1372–1384.
- [2] Arianna Krinos and Aimee Maurais. "Parameter and Uncertainty Estimation for a Model of Atmospheric CO2 Observations". In: SIAM Undergraduate Research Online (2019).
- [3] Palash Sharma. Keras LSTM Layer Explained for Beginners with Example. MLK Machine Learning Knowledge. Feb. 1, 2021. URL: https://machinelearningknowledge.ai/keras-lstm-layer-explainedfor-beginners-with-example/ (visited on 06/29/2023).
- We would like to thank our amazing mentors, Dr. Matthias Chung and Dr. Julianne Chung for their guidance in this project. This work is supported in part by the US NSF award DMS-2051019.

$2D NO_2$ Maps Analysis

• Averaged NO₂ values over each census tract for years 2000, 2010, 2014, and 2016

Average NO2 Concentration by Census Tract (2010)

• Combined geographical data of census tracts with their Social Vulnerability Indexes (SVI)

> Social Vulnerability Index and Average Nitrogen Dioxide Pollution by census tract, year 2010

Regression Table: Average NO_2 explained by SVI					
	estimate	std	p val	lower CI	upper CI
intercept	17.387	0.073	0	17.245	17.530
slope	4.507	0.126	0	4.260	4.754

Conclusions

- A model-driven approach with appropriately selected parameters can provide good predictions of average daily NO_2 concentrations. Including a weight matrix in the objective function resulted in a better data fit.
- Posterior MCMC samples suggest high levels of agreement and demonstrate little uncertainty in their predictions.
- The LSTM model was not ideal for our small data set. A future step is to analyze the frequency of oscillations in the residuals.
- Although weak for some years, we observe correlations between the SVI and NO_2 concentration, most noticeable in 2010.

