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Dr. Mayo's work focuses on modeling storm surge inundation.

s e m Research has shown that climate change will likely impact storm
Mentor: 1 surge inundation and make modeling this process more difficult.
Sea-level rise caused by climate change plays a part in this
impact. [Camelo et al., 2020].

Glacier Background

m To better model sea-level rise, glaciers can be modeled.

m Our group is collaborating with Dr. Robel from Georgia Tech
and working with his glacier model [Robel et al., 2018].
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Ted Scambos, National Snow and Ice Data Centre [Robel, 2015]
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Glacier Background

Marine-Terminating Glaciers
have a natural flow towards the
ocean, which contributes to sea
level rise [Robel et al., 2019].

m By the year 2300, the Antarctic
ice sheet is projected to cause up
to 3 meters of sea level rise
globally [Robel, 2015].

m Due to the severe impacts of
glacial melting, modeling changes
in ice sheets is an important task.

m There are challenges to modeling
sea level rise, as ice sheet
instability leads to significant
sea-level rise uncertainty
[Robel et al., 2019].

Michael Van Woert, National
Oceanic and Atmospheric
Association (NOAA) NESDIS, ORA
https://nsidc.org/cryosphere/quickfacts/
iceshelves.html
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e M Ice sheet models aim to describe the changes in ice mass of
e marine-terminating glaciers, which may be impacted over time by
climate change [Robel et al., 2018].
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One-Stage Model
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A glacier can be represented with

a simplified box model. \Flj
This model is the best T
approximation for one variable and hl—Q
describes the dominant mode of : 9
the glacial system. l
L
One-Stage Model Equations [Robel, 2022]
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The two-stage model incorporates a nested box into the system
This new box has a thickness, H, and an interior flux, Q

m This interior flux is typically less than the grounding line flux

Two-Stage Model Equations [Robel et al., 2018]

ﬂ—l — P Qe H
dt L hgl



Diagram of the Model Code
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Feed Initial Conditions and Parameters into Model *

| 2-stage. Model |

Forecast at time t

* Hnd, Lnd, bx,
Sillmin, Sillmax, Sillslop67
smbg, smby, smb¢
etc
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Analysing the Model
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m How can we better understand the model?
m Why?
m This model is a simplification of a real-world scenario, so some

uncertainty will always be present. Understanding the model
allows us to know what uncertainty is most significant




What is Sensitivity Analysis?
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Sensitivity analyses study how various sources of uncertainty in a
mathematical model contribute to the model’s overall uncertainty.
[mod, 2005]

tve. H(t: hnd Ind bx
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Time,

Computational method > analytical method
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The uncertain model parameters we considered are:

m Initial conditions
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m Initial conditions : Hnd, Lnd, b,
m Sill parameters
m SMB values
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The uncertain model parameters we considered are:
m Initial conditions
m Sill parameters : sillmin, sillmax, sillslope

m SMB values
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The uncertain model parameters we considered are:
m Initial conditions
m Sill parameters
m SMB values: smb0, smb1l, smbf



Graphs with Parameter Variation
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Height, H()

L L L
0 500 1000 1500 2000 2500
Time, t

Input Values for simulation of H (height)

Parameter Varied Nominal Value Range

initial height 2.18 1.962 - 2.398
initial length 4.44 3.966 - 4.854
slope -0.001 -0.0011 to -0.0009
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Figure: £10% initial

o Figure: £10% sill Figure: £10% SMB
conditions
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tvs. H(Y): sillmin sillmax sillslope

Height, H()

L L L
0 500 1000 1500 2000
Time, t

2500

Input Values for simulation of H (height)
Parameter Varied Nominal Value Range
sill min 430e3 404.625 - 425.375
sill max 440e3 414.37 - 435.625
sill slope 0.01 0.009 - 0.011




Sill Parameter Variation
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Figure: £10% initial

o Figure: £10% sill Figure: £10% SMB
conditions



Data Assimilation
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ety R Data assimilation is a method to move models closer to reality using
real world observations by readjusting the model state at specified
times. [dat, 2022]

time
state

model estimate

Data Assimilation

@ observation



Data Assimilation
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Glacier Modeling The Ensemble Kalman Filter process we use appears as follows:

Initial Conditions

I Data Assimilation |<7| Model }—> Forecast at time t

Data Assimilation CalCU|ate K

| Calculate Analysis I—»I Feed Data into Model I

Note: The forecast is at some steps in fact the output from the Data
Assimilation.
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Data Height Truth Simulation:
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s H((): Different Initial Conditions
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Data Assimilation: An Example

Data Height Truth Simulation with observations:
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tvs. H(t)
25 T ) T

— H(): Truth

s H({): Different Initial Conditions
24r ©  H(): Observations 1
23 3|
22 1

21 . § q

Data Assimilation 1ol
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Data Assimilation: An Example

25

Height Truth Simulation and Ensemble Analysis Simulations:

tvs. H(t)
T

T
— H(): Truth
= H({): Different Initial Conditions

©  H(): Observations 1
= = H(): Ensemble

I I
500 1000 1500 2000



Data Assimilation: An Example

Data Add the Mean of Ensemble Analysis Simulations:
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tvs. H(t)
T

Data Assimilation

— H(): Truth
= H({): Different Initial Conditions

©  H(t): Observations 1
= = H(): Ensemble
— H(): Analysis

500

1000
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m We have found that in our model the sill variables caused a
great degree of variation.

m Data assimilation seems to improve the quality of our forecasts
of Glacier average height and length.

Conclusion
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Going forward, we will focus on data assimilation when making
changes to the model.

We will explore these areas, focusing on recovering the truth
m The frequency at which data needs to be assimilated
m The smallest amount of data needed

m The essential time period of data

The acceptable error bound on parameters

A realistic range of values for the parameters



Overall Goals
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m We will improve the data assimilation process of the glacier
model

m We will integrate the output of the glacier model into the
ADCIRC hurricane storm surge model
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Thank you for your time!
Feel free to contact us with any questions:

Emily Corcoran: efc24@njit.edu
Logan Knudsen: loganpknudsen@tamu.edu
Hannah Park-Kaufmann: hk9622@bard.edu
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Let M be our model, x(to)7x(tl), .. A(N) , be our ensemble at time t,

¥+ an observation at time ¢, ut) N./\/ (O R), W) ~ Ny (0, Q). He is
the observation operator and C; = St where St is the sample
covariance of the current ensemble.

The foIIowing algorithm outlines the assimilation:

Calculate K; = C.H,(H.C:H, + R;)~! and
for i=0, 1,.... , Ndo_

= M) 4wl

=D+ Ky + W) — H5

end for
where 27 is the analysis output
Append Calculate Xy = — Z, Oxt which is the Ensemble Output of the

Ensemble Kalmann Filter.
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