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Abstract

In recent years, reinforcement learning (RL) methods have shown success in solving
optimal control (OC) problems. RL approaches differ drastically from traditional op-
timal control methods. Where optimal control methods rely on the ODE models, RL
tries to learn the optimal control simply by observations (data). There is tremen-
dous activity in the sciences and engineering utilizing both methods. However, RL
and optimal control theory is rarely compared on the same problem. We wish to fill
that gap and tries to investigate the trade-off between data-driven RL methods and
model-driven optimal control methods on the continuous mountain car problem.

Model

The continuous mountain car problem [1] involves getting an under-powered car out
of a sinusoidal valley and has been well-studied with reinforcement learning. It also
has a 2-D state space, which allows for easy visualizations. More importantly, while
being a RL problem, it can be modeled as a finite-horizon optimal control problem
with continuous state and motion.

Fig. 1: Continuous mountain car scenario where the car (black) must reach the goal (flag)

In particular, we model the scenario as the following system:

⎧⎪⎪⎨⎪⎪⎩

∂sz(s) = f(z(s)) +Bu(s) for s ∈ (t, T ]
z(0) = zt,

(1)

where

f(s,z) = ( z2
−µ cos(3z1)

) , B = (0
γ
)

with the constants µ = 0.0025 and γ = 0.0015 and z(s) = (z1, z2). Here, the control
u ∶ [t, T ] → [−1, 1] is the acceleration of the car, z ∶ [t, T ] ↦ R2 encapsulates the
position and velocity of the car, f ∶ [t, T ] ×R2 ↦ R2 describes the evolution of the
state, and B describes the how the control impacts the dynamics. Our goal is to
minimize the objective function

Js,z[u] = ∫
T

t
L(s,z, u)ds + g(z(T )), (2)

where L(s,z, u) = 0.01∥u(s)∥2 penalizes excessive acceleration and g(z) = relu(0.45−
z1) gives feedback for not reaching the goal. We also define the value function
Φ ∶ [t, T ] ×R2 ↦ R with

Φ(s, zs) = min
u
Js,z[u] subject to (1). (3)

Local method (LM) with numerical solvers

We first obtain a local solution uh to serve as a baseline to determine the optimality of our global
solutions. We formulate an optimization problem by first discretizing the control, state and the

Lagrangian using a forward Euler scheme
⎛
⎝
z
(i+1)
h

ℓ
(i+1)
h

⎞
⎠
. We now can approximate our objective

function (2) as

Js,z[u] ≈ Jzh(uh) = ℓN + g(z
(N)
h
)

Then we have the optimization problem

min
uh,zh

ℓN + g(z
(N)
h
),

which we solve using gradient descent.

Global method with Reinforcement Learning

RL utilizes only observations and rewards to learn the optimal control. We adapt the continu-
ous mountain car problem for RL exploration by making the initial position and action space
stochastic. We estimate a stochastic optimal control policy in the form of a normal distribution
ψ(u ∣ µu, σ) = N(u ∣ µu, σ) via

min
ψ

Ex∼ρ (Js,z[ψ]) subject to (1).

where ρ = U(−0.6,−0.4). We use the actor-critic architecture and more specifically the TD-
advantage algorithm to train our model. Our actor πW

ψ
≈ ψ(u ∣ µu, σ) with weights W is a

neural network (NN) that estimates the optimal policy. The critic V θ
ψ
≈ Ex∼ρ (Js,z[ψ]) with

weights θ is an NN estimate analogous to our value function (3). More specifically, we use the
TD-advantage actor-critic algorithm, where actor and critic train based on the TD-error

δsk = csk + V
θ
ψ(sk+1,zsk+1) − V

θ
ψ(sk,zsk)

where csk is the cost of following policy πW
ψ

at time sk.

Global method with Optimal Control

We adapt the method from [2] and approximate the value function Φ using NNs. We first
compute the Hamiltonian

H(s, z, p) = sup
u
−p⊺ (f(s,z) +Bu) −L(s,z, u)

= sup
u
H(s,z, p, u)

= −p⊺f(s,z, u∗(s,z, p))

where u∗(s,z, p) = 50⋅p⊺B. Note that Φ satisfies the Hamilton-Jacobi-Bellman (HJB) equation:

−∂sΦ(s, z) +H(s, z, p) = 0, Φ(T, z) = g(z). (4)

Then global optimal policy ψ ∶ [t, T ]×R2 ↦ R can be obtained through Pontryagin’s maximum
principle (PMP):

ψ(s,z) = argmax
u
H (s,z,∇zΦ(s, z), u) . (5)

Hence, we need only find Φ to obtain the optimal solution. So we parameterize Φ using a residual
neural network and train using the feedback form (4) and (5).

Results

1.00 0.75 0.50 0.25 0.00 0.25 0.50
Position

0.02

0.00

0.02

0.04

Ve
lo

cit
y

Cost=0.168

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Co
nt

ro
l

Fig. 2: Local
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Fig. 3: Reinforcement Learning
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Fig. 4: Optimal Control

Conclusion

We found that there is a substantial trade-off for not using the model in solving the
continuous mountain car problem. For one, RL struggles to find an optimal solution
when the control problem is finite horizon. In addition, the solutions found are
very suboptimal. Small changes in the tradition continuous mountain car problem
resulted in substantial differences in results using RL. Thus, we find RL to be a fragile
method for optimal control problems. In contrast, the hybrid approach incorporating
the model with OC theory resulted in more consistent and optimal solutions.
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