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Motivation

Our main goal for this project is to compare Hamiltonian Inspired Neural Networks (HINNs)
and Sparse Identification of Nonlinear Dynamics (SINDy), which are different ways to learn
dynamics of ODEs from data.

One example problem is finding the coordinates of a spring mass system at any given time
value.
This is a special type of differential equation, called a Hamiltonian differential equation,
and has the property that energy is conserved. It is defined as
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∂H
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,
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For the spring mass system, H(t, y , z) = k
2my2 + 1

2z
2
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Machine Learning

Machine Learning is the use of statistical learning and optimization methods that let
computers analyze datasets and identify patterns

Deep learning is a type of machine learning and artificial intelligence (AI) that imitates
the way humans gain certain types of knowledge

Neural Networks are an example of deep learning and are inspired by how the human
brain works as they mimic the way neurons signal.
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Neural Networks

Figure: Residual Neural Network

It creates an adaptive system that computers use to learn from their mistakes and
improve continuously.
In a neural network you have an input layer, output layer, and a varying number of hidden
layers.
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ResNet

Residual Neural Networks (RNN) solve the issue that the deeper you go in neural network the
higher the training and test error (vanishing/exploding gradient) [5]

We can write the forward propagation between Y2 and Y3 as:

Y2 = Y1 + σ(K2Y1 + b2)

Y3 = Y2 + σ(K3Y2 + b3)
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ODEs in Residual Neural Networks

It was discovered that our equations for forward propagation were nearly identical to the
discretization of an ODE [5], except for the step size, denoted h

Y2 = Y1 + hσ(K2Y1 + b2)

Y3 = Y2 + hσ(K3Y2 + b3)

If we think of this a system, we can create the ODE:

Y ′(t) = σ(K (t)Y (t) + b(t))
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ODEs in Residual Neural Networks

Our general forward propagation written as the discretization of an ODE [5]:

Yj+1 = Yj + hσ(YjKj + bj)

Translated into our neural network:

In every layer, we move one step forward in the discretization of the ODE
The weights and biases may be different between layers based on the given ODE
The output of the network creates an ODE that matches the given data set

Figure: Discretization of an ODE
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Hamiltonian Inspired Neural Networks

Let’s again consider the spring mass system. We are going to use a Hamiltonian ODE of the
form:

Y ′′(t) = σ(KT (t)Y (t) + b(t))

Y (0) = Y0 and Y ′(0) = Y ′
0

This can be turned into a system with first order differential equations [5]:

Y ′(t) = σ(K (t)Y (t) + b(t))

Z ′(t) = −σ(KT (t)Y (t) + b(t))

Y (0) = Y0 and Z (0) = 0

To solve this, we are given the t-values and want to find the coordinates, y , z . We would then:

discretize the given network ODE

set the discretization as our forward propagation
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Discretization Techniques

Forward propagation can be thought of as discretization of an ODE, but there are many
different discretization techniques with different strengths which can improve training.

For Hamiltonian ODEs, symplectic methods work the best.

They capture features of Hamiltonian

They are structure preserving [6]
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Implementation

One Input: Time

Two Neural Nets: RNN, HINN

Discretization Methods: Euler’s Method, Runge-Kutta Method, Verlet Method

Two Outputs: y and z
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Euler’s Method

Our initial ResNet was built with forward Euler.

Yj+1 = Yj + hσ(YjKj + bj)

Euler is a first order technique with local truncation error in O(h2). Euler is an explicit method
that is not symplectic, so it has some limitations.

Figure: Simple Euler’s method depiction
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Runge-Kutta Method

RK4 uses a series of slopes at a few points and
takes their weighted average to find the
solution at a future time step ([1], [2]).

Yj+1 = Yj +
h

6
(k1 + 2k2 + 2k3 + k4)

RK4 is an explicit method which is not
symplectic. RK4 uses Euler’s method and is
three orders of magnitude more accurate than

Euler [3]. Figure: RK4 Method on a simple curve, each ki
slope is shown [8].
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Verlet Method

Verlet is symplectic and second order, so it works especially well with our Hamiltonians which
are second order and conserve energy ([1], [2]).

zj+ 1
2
= zj− 1

2
− hσ(KT

j yj + bj)

yj+1 = yj + hσ(Kjzj+ 1
2
+ bj)

The Verlet method allows us to integrate a second order ODE without needing to calculate
the first derivative [5]. Applications from physics may look familiar.

Figure: An object moving through a field of masses.
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Method Comparison

As expected, Euler performs the
worse than RK4, RK4 worse than
Verlet. We have yet to adjust step
sizes and will delve into more
optimizations to improve the
performance of our Verlet method,
which we expect to be the most
accurate [5].
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Method Comparison

Euler Test Loss: 1.4824x10−2, RK4 Test Loss: 9.5902x10−3, Verlet Test Loss: 6.6160x10−4
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Summary and Next Steps

Progress:

We’ve implemented 3 total Neural Networks: 2 Residual and 1 Hamiltonian Networks.

We’ve identified the Verlet method for discretization as the most promising for our
Hamiltonian Network, but clearly more optimizations and regularization are needed.

Next Steps:

We will be working on having our neural nets learn the H of our Hamiltonian, and also
look at chaotic Hamiltonians.

We will implement the other method, SINDy ([4], [7]), and use both methods to examine
more Hamiltonian-based examples.

Questions?
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