
Learning Dynamics using Hamiltonian Inspired Neural Networks

Emma Hayes1, Mathias Heider 2, Carrie Vanty3,
1Carnegie Mellon University, 2 University of Delaware, 3 Middlebury College

Learning Dynamics using Hamiltonian Inspired Neural Networks

Emma Hayes1, Mathias Heider 2, Carrie Vanty3,
1Carnegie Mellon University, 2 University of Delaware, 3 Middlebury College

Motivation

• We wish to further extend Ruthotto et al ’s Hamiltonian Inspired
Neural Networks (HINN) [3] to predict the value of the Hamiltonian

• We build this framework using the fundamental relationships of a
Hamiltonian Ordinary Differential Equation:

dp

dt
=

∂H
∂q

,
dq

dt
= −∂H

∂p

• The Verlet method can be used with these relationships to gather
information about the dynamics of our problems [1]

• Learning the Hamiltonian would give more insight into the dynamics
of the given data set, allowing us to see how well our Neural Network
conserves a quantity analogous to total energy

Learning Problem

• Our neural network approximates the Hamiltonian

[t, pt, qt]
ResNet−−−−→ Hθ

Where θ are the network parameters we wish to optimize

• We use the autograd feature from the hessQuik package to calculate
the partials [4]

• These partials are used for our Verlet discretization in forward prop-
agation:

pθ+1 = pθ + h
∂Hθ

∂q
, qθ+1 = qθ − h

∂Hθ

∂p

• We can use the pθ, qθ to learn the parameters θ by minimizing:

min
θ

∫ T

0

[
|pθ − ptrue|2 + |qθ − qtrue|2

]
dt

Experiments

Fig. 1: Simple Spring-Mass System

The two body problem is another
Hamiltonian system that predicts the
motion between two masses, where
the only the forces acting on the
masses are the gravitational forces
from the other mass

To test our neural network, we first
began with the ideal spring mass sys-
tem, a Hamiltonian system which
simulates the movement of a mass at-
tached to a spring

Fig. 2: Two Body Problem

Results

To do the time stepping, we take input t0, pt0, qt0 and use the neural network with optimal parameters θ∗ to get Hθ∗.
Then use the Verlet method to find the p and q values at the next time step. Repeat this process until we reach our
final time step, giving us the entire p and q.

Spring Mass System

• In our approach we use a residual neural network structure created using the hessQuik [4] and PyTorch [5] packages.
The residual neural network has a depth of 20 layers and width of 3

• Sample Size: 2000 || Train Size: 2000 || Test Size: 300 || Validation Size: 300

• Epoch: 1500 || Optimizer: Gradient Descent || Learning Rate: 1 ∗ 10−3

Fig. 3: Spring Mass System

Two-Body Problem

• We then approached the two-body problem with our Hamiltonian Inspired Neural Network. We used the same
residual neural network structure with 20 layers and a width of 3

• Sample Size: 4000 || Train Size: 4000 || Test Size: 2900 || Validation Size: 900

• Epoch: 1500 || Optimizer: Gradient Descent || Learning Rate: 1 ∗ 10−3

Fig. 4: Two Body Problem

Comparison

In order to evaluate how our method performs, we want to compare
to a similar method by Greydanus et al that also found the value of a
Hamiltonian for a given data set [2]. However, our method differs greatly
from theirs in that they:

• Implement L2 loss for training and test losses. Hθ is again the
predicted Hamiltonian from the network

LHNN =

∥∥∥∥∂Hθ

∂p
− ∂q

∂t

∥∥∥∥
2
+

∥∥∥∥∂Hθ

∂q
+
∂p

∂t

∥∥∥∥
2

• Then they use the RK4 method to predict position and velocity

Conclusion

• We extended the HINN to approximate the value of the Hamiltonian

• The Verlet method was implemented to discretize the ODE that
results from a Hamiltonian system

• We used our network to learn the Hamiltonian for a spring mass
system and the two-body problem, and found that our system learns
the dynamics of the given Hamiltonian data

• Moving forward, we hope to further apply our method on more com-
plicated Hamiltonian systems, for example the three body problem

Acknowledgements

This work is supported in part by the US National Science Foundation
award DMS-2051019. We would like to thank our mentor Deepanshu
Verma and all other mentors for their guidance and support. We would
also like to thank the other 2022 REU/RET participants for their com-
pany, conversation, and constant encouragement.

References

[1] Uri M. Ascher. Numerical methods for evolutionary differential equations.
Vol. 5. Computational Science & Engineering. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2008, pp. xiv+395. isbn: 978-0-898716-52-
8. doi: 10.1137/1.9780898718911. url: https://doi.org/10.1137/1.
9780898718911.

[2] Sam Greydanus, Misko Dzamba, and Jason Yosinski. “Hamiltonian Neural Net-
works”. In: ArXiv abs/1906.01563 (2019).

[3] Eldad Haber and Lars Ruthotto. “Stable architectures for deep neural networks”.
In: Inverse Problems 34.1 (2018), pp. 014004, 22. issn: 0266-5611. doi: 10.1088/
1361-6420/aa9a90. url: https://doi.org/10.1088/1361-6420/aa9a90.

[4] Elizabeth Newman and Lars Ruthotto. “‘hessQuik‘: Fast Hessian computation of
composite functions”. In: Journal of Open Source Software 7.72 (2022), p. 4171.
doi: 10.21105/joss.04171. url: https://doi.org/10.21105/joss.04171.

[5] Adam Paszke et al.“PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library”. In: Advances in Neural Information Processing Systems 32. Ed.
by H. Wallach et al. Curran Associates, Inc., 2019, pp. 8024–8035. url: http:
//papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-

performance-deep-learning-library.pdf.

