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Introduction

Recent efforts in deep learning have turned towards solving inverse problems in imag-
ing. For instance, Deep CNN was proposed for image denoising [12]. Moreover, the
newly proposed implicit deep neural networks [2] are competitive with traditional feed-
forward networks on sequential data [1] and are effective in inverse problems in imaging
[4]. Implicit networks backpropagate through a fixed point, which allows them to main-
tain constant memory costs. However, they are expensive to train since backpropagating
through implicit networks requires the computation of a Jacobian-based linear system for
every gradient evaluation. Recently, a Jacobian-Free Backpropagation (JFB) approach
was proposed to avoid solving the Jacobian-based system [3], which adopts an approxi-
mation of the true gradient.

Implicit Deep Learning

Given a dataset {(di, xi)}Ni=1 ⊂ Rn × Rn, the relation between the ground truths xi’s
and our measurements di’s is represented by the forward model [8]:

di = Axi + ε (1)

where A is a (non)linear measurement operator and ε is random unknown noise.
Our goal is to design a weight-tying neural network NΘ : Rn 7→ Rn with K layers,
where each layer TΘ : Rn 7→ Rn is a (potentially nonlinear) mapping.
Given an input pair (di, xi), we start with an initial guess x

0
i . Mimicking gradient descent

and employing the forward model, we use the following updating rule [4]:

xk+1i = xki − η
(
∇x||Axki − di||2L2 + SΘ(x

k
i )
)

︸ ︷︷ ︸
:=TΘ(x

k
i )

(2)

where η > 0 is the step size and SΘ : Rn 7→ Rn is a trainable network that learns the
gradient of an arbitrary regularizer. This is called the deep unrolling (DU) method.
For implicit networks, we expect the sequence {xki }k∈N to converge to a fix point x∗i of
TΘ, i.e. x∗i = TΘ(x

∗
i ). This is true when TΘ is a contraction mapping with Lipschitz

constant γ ∈ [0, 1).
Then we define

NΘ(di) := x∗i = TΘ(x
∗
i ) (3)

as the output of our neural network, given an input di.
We can also choose other schemes to replace the iteration in Eq. 2, such as proximal
gradient descent and the alternating direction method of multipliers (ADMM) [4].
Implicit neural networks can be trained using gradient descent and a calculated fix point.
Suppose an experimenter chooses loss function ℓ. Then using implicit differentiation and
Eq. 3 we have:

dℓ

dΘ
=

dℓ

dNΘ

dNΘ

dΘ
=

dℓ

dNΘ

dx∗

dΘ
=

dℓ

dNΘ

(
I − dTΘ(x

∗; d)
dx∗

)−1 ∂TΘ(x
∗; d)

∂Θ
(4)

Eq. 4 calculates the true gradient of our neural network parameters Θ with respect to
loss function ℓ. However, calculating the inverse(

I − dTΘ(x
∗)

dx∗

)−1

is highly nontrivial since a Jacobian-based linear system needs to be solved.

Jacobian-Free Backpropagation (JFB)

The goal of JFB is to alleviate memory requirement and avoid high computa-
tional cost in implicit networks. The key idea is to replace the problematic Jacobian(
I − dTΘ(x

∗)
dx∗

)
in Eq. 4 with the identity matrix I . As a result, implicit networks are

trained faster and more easily implemented—all while maintaining competitive results in
image classification tasks [3].

We make the proposed substitution in Eq. 4 to approximate the gradient dℓ
dΘ and obtain:

pΘ =
dℓ

dNΘ

∂TΘ(x
∗)

∂Θ

which is a descent direction for the loss ℓ.
Note: the JFB approach relies on more assumptions to hold:

• TΘ is continuously differentiable w.r.t. Θ

• M := ∂TΘ
∂Θ has full column rank.

• M is well-conditioned, i.e., κ(MTM) < 1
γ , where γ is the Lipschitz constant of TΘ.

Results
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Fig. 1: Plot of Mean Squared Error (MSE) Per Image

step size η = 10−3, learning rate α = 10−4

original image 
 PSNR=+  

 SSIM=1

blurred image 
 PSNR=21.9616 
 SSIM=0.8086

reconstructed image 
 PSNR=27.8308 
 SSIM=0.9276

Fig. 2: Result of Proposed JFB on a Test Image Used by [4]

Note: Two metrics are commonly used for assessing the quality of reconstructed images [5]:
the peak-signal-to-noise ratio (PSNR, a positive number, best at +∞) and the structural
similarity index measure (SSIM, also positive, best at 1).

Comparison

Total Variation [9] Plug-n-Play [10] Deep Equilibrium [4] JFB (Ours)
PSNR 26.79 29.77 32.43 27.83
SSIM 0.86 0.88 0.94 0.9276

The table above records the mean PSNR and SSIM of the dataset for our various models
(statistics from [4]). It can be observed that applying JFB to training models for inverse
problems in imaging is competitive.

Remarks

Our model is currently trained on a subset (8,000 images) of the CelebA dataset [7]
using 1 NVIDIA RTX A6000 GPU.
Future directions include: (i) continuing to train current model until convergence
(ii) training JFB models on other schemes (proximal gradient descent & ADMM) as in
[4] (iii) training JFB models on datasets such as fastMRI [6] [11]
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