MATH Seminar

Title: How much can one learn a PDE from its solution?
Seminar: Analysis and Differential Geometry
Speaker: Yimin Zhong of Auburn University
Contact: Yiran Wang,
Date: 2022-12-01 at 4:00PM
Venue: PAIS 230
Download Flyer
In this work we study a few basic questions for PDE learning from observed solution data. Using various types of PDEs, we show 1) how the approximate dimension (richness) of the data space spanned by all snapshots along a solution trajectory depends on the differential operator and initial data, and 2) identifiability of a differential operator from solution data on local patches. Then we propose a consistent and sparse local regression method (CaSLR) for general PDE identification. Our method is data driven and requires minimal amount of local measurements in space and time from a single solution trajectory by enforcing global consistency and sparsity.

See All Seminars