MATH 427: COMPLEX ANALYSIS (SUMMER 2018)

Homework 2: New due date Monday, July 9th.

- Section 1.4: 4, 7, 12, 16, 17
- Section 2.1: 4, 6, 8, 16

Some solutions:

Sec 2.1 \#4

Proof. By the definition of open sets, we need to show that for any $w \in A$, there exists $\delta>0$ such that the open disk $D_{\delta}(w) \subset A$.
Because $w \in A$, we know that $\operatorname{Re}(w)>0$. Choose $\delta<\operatorname{Re}(w)$. Then for any $z \in D_{\delta}(w)$, we have

$$
|z-w|<\delta
$$

But we have

$$
|\operatorname{Re}(z)-\operatorname{Re}(w)| \leq|z-w|
$$

so we derive

$$
-\delta+\operatorname{Re}(w)<\operatorname{Re}(z)<\operatorname{Re}(w)+\delta
$$

Thus $\operatorname{Re}(z)>0$. This proves that $z \in A$ hence $D_{\delta}(w) \subset A$.

Sec $2.1 \# 16$
Proof. " \Longrightarrow ": If f is continuous at a, then for any $\epsilon>0$, there is $\delta>0$ such that

$$
|f(z)-f(a)|<\epsilon, \text { if }|z-a|<\delta
$$

(Here, because the domain of f is open, we can take δ small so that $D_{\delta}(a) \subset U$.) Now for any sequence $z_{n} \rightarrow a$, we can choose N_{0} large so that

$$
\left|z_{n}-a\right|<\delta \text { if } n>N_{0}
$$

Thus for $n>N_{0}$, we have

$$
\left|f\left(z_{n}\right)-f(a)\right|<\epsilon
$$

hence the sequence $f\left(z_{n}\right)$ converge to $f(a)$ by the definition of convergence of complex sequences.
" "": we prove by contradiction. Suppose f is not continuous at a. Then there exists a $\epsilon>0$ such that for any $\delta>0$, there is some $z \in U$ with $|z-a|<\delta$ such that

$$
|f(z)-f(a)| \geq \epsilon
$$

Now we apply this to $\delta=2^{-n}, n=1,2, \cdots$, and find the corresponding z_{n} so that

$$
\left|z_{n}-a\right|<2^{-n}
$$

and $\left|f\left(z_{n}\right)-f(a)\right| \geq \epsilon$. It is clear that z_{n} converges to a but $f\left(z_{n}\right)$ does not converge to $f(a)$. The contradiction shows that f is continuous at a.

