MATH 427 MIDTERM, SUMMER 2018 SOLUTION KEY

1. (10 pts) Find $(1+i)^{8}$ in the standard form $z=x+i y$.

Proof. Answer is $16+0 i$
2. ($\mathbf{1 0} \mathbf{p t s}$) Recall that $z^{a}, a \in \mathbb{C}$ is defined using the principal branch of the complex logarithmic function. Consider the function

$$
f(z)=(z+1)^{i} .
$$

For $z=x+i y$, find the real and imaginary parts of $f(z)$, that is $u(x, y), v(x, y)$ in $f(z)=$ $u(x, y)+i v(x, y)$. (You can use the function $\arg _{(-\pi, \pi]}(z)=\arg _{(-\pi, \pi]}(x, y)$ in your answer.) Also, find where $f(z)$ is not continuous.
Proof. By definition of z^{a}, we get

$$
\begin{gathered}
(z+1)^{i}=e^{i \log (z+1)}=e^{i\left(\log |z+1|+i \arg _{(-\pi, \pi]}(z+1)\right)} \\
=e^{i \log |z+1|-\arg _{(-\pi, \pi]}(z+1)} \\
=e^{-\arg _{(-\pi, \pi]}(z+1)}(\cos (\log |z+1|)+i \sin (\log |z+1|))
\end{gathered}
$$

In terms of function of x, y, this is

$$
e^{-\arg _{(-\pi, \pi]}(x+1, y)} \cos \left(\log \sqrt{(x+1)^{2}+y^{2}}\right)+i e^{-\arg _{(-\pi, \pi]}(x+1, y)} \sin \left(\log \sqrt{(x+1)^{2}+y^{2}}\right)
$$

Because the principal branch of $\arg (z)$ is discontinuous at $(-\infty, 0]$, we see that $(z+1)^{i}$ is discontinuous at $(-\infty,-1]$. (More precisely, you should find the jump of the function across $(-\infty,-1])$ to show the function is discontinuous there.)
3. Consider the set $E=\{z \in \mathbb{C}: \operatorname{Re}(z)>0, \operatorname{Im}(z)>0\}$.
(a) (7pts) Show that E is an open set.

Proof. By definition of open sets, we need to show that for any $w \in E$, there is $\delta>0$ such that the open disk $D_{\delta}(w) \subset E$. We can choose $0<\delta<\min (\operatorname{Re}(w), \operatorname{Im}(w))$ because $\operatorname{Re}(w), \operatorname{Im}(w)>0$. Then for any $z \in D_{\delta}(w)$, we get

$$
|z-w|<\delta
$$

So we get

$$
|\operatorname{Re}(z)-\operatorname{Re}(w)|<|z-w|<\delta
$$

and

$$
|\operatorname{Im}(z)-\operatorname{Im}(w)|<|z-w|<\delta
$$

Then we get

$$
-\delta+\operatorname{Re}(w)<\operatorname{Re}(z)<\operatorname{Re}(w)+\delta, \quad-\delta+\operatorname{Im}(w)<\operatorname{Im}(z)<\operatorname{Im}(w)+\delta
$$

so that $\operatorname{Re}(z)>0, \operatorname{Im}(z)>0$. This shows $z \in E$ hence $D_{\delta}(w) \subset E$. This finishes the proof.

Note: for this part, you need to give a rigorous proof using the definition. There is a hw problem similar to this.
(b) (3 pts) Find the boundary of E. (Briefly state why the points are boundary points. No need for rigorous proofs.)
Proof. The boundary is

$$
\partial E=\{z \in \mathbb{C}: \operatorname{Re}(z) \geq 0, \operatorname{Im}(z)=0\} \cup\{z \in \mathbb{C}: \operatorname{Im}(z) \geq 0, \operatorname{Re}(z)=0\}
$$

For any point $z \in \partial E$, we see that any open disk $D_{\delta}(z)$ has points in E and the complement of E. So this is the boundary by the characterization of boundary sets.
(c) (5 pts) Find the pre-image $f^{-1}(E)$ of the set E for $f(z)=e^{z}$. Sketch the pre-image on the complex plane.

Proof. Let $z=x+i y$, we see that

$$
f(z)=e^{x+i y}=e^{x} e^{i y}
$$

To find $f^{-1}(E)$, we need to find $z=x+i y$ such that $f(z) \in E$. By the polar form of $e^{i y}$, we see that

$$
e^{x}>0, \quad y \in[2 k \pi, \pi / 2+2 k \pi], k=0, \pm 1, \pm 2, \cdots
$$

This implies that $x \in \mathbb{R}$ and $y \in[2 k \pi, \pi / 2+2 k \pi]$. So the pre-image is a union of horizontal strips. The graph is omitted.
4. (10 pts) Consider $f(z)=z \operatorname{Re}(z)$ defined on \mathbb{C}. Use Cauchy-Riemann equation to determine where the function is complex differentiable and find the derivative $f^{\prime}(z)$ at those points.

Proof. $f(z)=(x+i y) x=x^{2}+x y i$. So $u(x, y)=x^{2}, v(x, y)=x y$. These two functions are differentiable on \mathbb{R}^{2}. We find

$$
\begin{gathered}
u_{x}=2 x, \quad u_{y}=0 \\
v_{x}=y, \quad v_{y}=x
\end{gathered}
$$

The CR equation holds at $(x, y)=(0,0)$ because

$$
2 x=x, \quad y=0
$$

So the function $f(z)$ has complex derivative at $z=0$. The derivative is

$$
f^{\prime}(0)=\left.(2 x+y i)\right|_{x=y=0}=0 .
$$

5. Let γ be the closed path $\gamma(t)=e^{i t}, t \in[-\pi, 3 \pi]$. Evaluate the following contour integrals. You can use any results you've learned so far.
(a) (10 pts) $\int_{\gamma} \frac{\log (z)}{z} d z$, where $\log (z)$ is the principal branch of the logarithmic function. (Hint: use $\gamma(t)$ to compute and note that $\log (z)$ is not continuous at the cut-line.)

Proof.

$$
\begin{gathered}
\int_{\gamma} \frac{\log (z)}{z} d z=\int_{-\pi}^{3 \pi} \frac{\log \left(e^{i t}\right)}{e^{i t}}\left(e^{i t}\right)^{\prime} d t=\int_{-\pi}^{3 \pi} \log \left(e^{i t}\right) i d t \\
=\int_{-\pi}^{3 \pi}\left[\log \left|e^{i t}\right|+i \arg _{(-\pi, \pi]}\left(e^{i t}\right)\right] i d t \\
=-\int_{-\pi}^{3 \pi} \arg _{(-\pi, \pi]}\left(e^{i t}\right) d t \\
=-\int_{-\pi}^{\pi} \arg _{(-\pi, \pi]}\left(e^{i t}\right) d t-\int_{\pi}^{3 \pi} \arg _{(-\pi, \pi]}\left(e^{i t}\right) d t \\
=-\int_{-\pi}^{\pi} t d t-\int_{\pi}^{3 \pi}(t-2 \pi) d t
\end{gathered}
$$

Then do the integral.
(b) $(5 \mathrm{pts}) \int_{\gamma} \frac{1}{100-z^{2}} d z$.

Proof. We see that the integrand

$$
f(z)=\frac{1}{100-z^{2}}
$$

is analytic in $\mathbb{C} \backslash\{ \pm 10\}$. The path γ is closed and contained in the disk $D_{2}(0)$ which is convex. By Cauchy theorem for convex sets, the integral is 0 .

