MATH 175: ELEMENTARY FUNCTIONAL ANALYSIS (WINTER 2019)

Homework 4: due Wednesday, Feb. 6

(1) Let $f \in C([a, b]; \mathbb{R})$ be a continuous function on [a, b]. Show that $f \in \mathcal{L}^1$ and show that its Riemann integral agrees with the Lebesgue integral, namely

$$\int_{a}^{b} f(x)dx = \int f.$$

- (2) Let $x_0 \in [a, b]$ and $Y = \{f \in C([a, b]; \mathbb{R}) : f(a) = f(b) = 0\}$. Show that Y is dense in $L^1([a, b])$.
- (3) Suppose $f \in L^1([-\pi,\pi])$. Show that $\int f(x)e^{-inx} \to 0$ as $n \to \infty$. Here the integral is the Lebesgue integral on $[-\pi,\pi]$.
- (4) Find a sequence $\{f_k\}_{k=1}^{\infty}$ in \mathcal{L}^1 such that $\int |f_k|$ converges to 0 (namely f_k converges to 0 in \mathcal{L}^1) as $k \to \infty$ but f_k does not converge to 0 almost everywhere.
- (5) Consider a series $\sum_{k=1}^{\infty} f_k(x), f_k(x) \in \mathcal{L}^1, f_k \ge 0$. Suppose that $\sum_{k=1}^{\infty} \int f_k$ is finite. Show that $\sum_{k=1}^{\infty} f_k(x)$ converges a.e. and

$$\int \sum_{k=1}^{\infty} f_k = \sum_{k=1}^{\infty} \int f_k$$