REMARK ABOUT FOURIER TRANSFORMS

February 18, 2019

In this note, we clarify some notations of Fourier transforms in the book, especially the convolution. The Fourier and inverse Fourier transforms are defined as

$$\mathcal{F}[f](\xi) = F(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ix\xi} f(x) dx,$$
$$\mathcal{F}^{-1}[F](x) = f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ix\xi} F(\xi) d\xi.$$

(Other books may define them differently. You need to be careful about the $\sqrt{2\pi}$ factors.)

In this book, the convolution of two functions f(x), g(x) is defined by

$$f * g(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x - y)g(y)dy$$

with the $\frac{1}{\sqrt{2\pi}}$ factor. Then we should have the property

$$\mathcal{F}[f\ast g]=\mathcal{F}[f]\mathcal{F}[g]$$

This is equation (12.5). The formula #11 of Table A in the appendix is wrong and should be replaced by this one. We give a proof here.

$$\begin{split} \mathcal{F}[f]\mathcal{F}[g] &= (\frac{1}{\sqrt{2\pi}})^2 \int_{-\infty}^{\infty} e^{ix\xi} f(x) dx \int_{-\infty}^{\infty} e^{iy\xi} g(y) dy \\ &= (\frac{1}{\sqrt{2\pi}})^2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(x+y)\xi} f(x) g(y) dx dy \\ &= (\frac{1}{\sqrt{2\pi}})^2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{iz\xi} f(z-y) g(y) dz dy \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{iz\xi} (f*g)(z) dz = \mathcal{F}[f*g]. \end{split}$$

Another common definition of convolution is

$$f * g(x) = \int_{-\infty}^{\infty} f(x - y)g(y)dy$$

without the $\frac{1}{\sqrt{2\pi}}$ factor. Then we should have the property

$$\mathcal{F}[f * g] = \sqrt{2\pi} \mathcal{F}[f] \mathcal{F}[g]$$

by re-examine the above calculation. You can use either definition but should pay attention to where to put the $\sqrt{2\pi}$ factor.