MATH 131P: PARTIAL DIFFERENTIAL EQUATIONS (WINTER 2019)

Homework 9: due Wednesday, March 13
(This is the last assignment.)

- Lesson 27: 1, 2, 3.
- Lesson 33: 3, 5, 6, 7, 8.
- Lesson 34: 1.

Additional problem:

(1) Consider the Neumann problem of the Laplace equation on the rectangle

$$
\begin{gathered}
u_{x x}+u_{y y}=0, \quad 0<x<a, 0<y<b \\
u_{x}(0, y)=0, \quad u_{x}(a, y)=f(y), \quad 0<y<b \\
u_{y}(x, 0)=0, \quad u_{y}(x, b)=0, \quad 0 \leq x \leq a
\end{gathered}
$$

Find the solution using separation of variables. From the solution, deduce that if the solution exists, it is necessary that

$$
\int_{0}^{b} f(y) d y=0
$$

