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• There are 6 pages of questions. Make sure your exam contains all these questions.

• This is a closed book, closed note, no calculator exam. You must show your work on all problems.
The correct answer with no supporting work may result in no credit.

• Put a box around your FINAL ANSWER for each problem and cross out any work
that you don’t want to be graded.

• If you need more room, use the backs of the pages and indicate clearly that you have done so.

• Raise your hand if you have a question.

• Remember the Honor Code. Avoid suspicion of cheating by keeping your eyes on your paper
and clearly showing your work on each problem!

• The problems are not ordered according to their difficulties, so please take a look at all problems
and do not waste too much time on one problem. Budget your time wisely.

• You have 75 minutes to complete the exam.
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GOOD LUCK!



1. (20 pts) Determine whether the series are absolutely convergent, conditionally convergent or di-
vergent.

(a)
∞∑
n=1

(−1)n cos(1/n2).

Try divergence test. an = (−1)n cos(1/n2). When n even, an → 1 but when n odd, an → −1
so limit does not exist. The series diverges.

(b)
∞∑
n=1

(−1)n
n

n2 + 4

Here, an = (−1)n n
n2+4

. First, consider absolute convergence, hence we look at |an| = n
n2+4

.
We can use limit comparison theorem with bn = 1/n. We get

lim
n→∞

|an|
bn

= lim
n→∞

n · n
n2 + 4

= 1

Since
∑∞

n=1 1/n is divergent, by comparison theorem, the series
∑∞

n=1 |an| is divergent. Hence
the series is not absolutely convergent. But we see that

∑∞
n=1(−1)n n

n2+4
is alternating. We

can check that the test for alternating series works and the series converges. So the series is
conditionally convergent.

(c)
∞∑
n=1

n2 + 1

5n

We can use ratio test for this one.

lim
n→∞

|an+1

an
| = lim

n→∞

((n+ 1)2 + 1)5n

5n+1(n2 + 1)
=

1

5
< 1.

So the series is absolutely convergent.



2. (10 pts) Use the Maclaurin series sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
to evaluate the integral

∫
sin(x2)dx.

First find the Maclaurin series for sinx2 by substitution, which is

sinx2 =
∞∑
n=0

(−1)n
x2(2n+1)

(2n+ 1)!

Then integrate term by term.

∫
sinx2dx = C +

∞∑
n=0

∫
(−1)n

x2(2n+1)

(2n+ 1)!
dx = C +

∞∑
n=0

(−1)nx4n+3

(4n+ 3) · (2n+ 1)!
.



3. (20 pts) Consider the power series:
∞∑
n=2

(x+ 2)n

2n lnn

(a) Find the radius of convergence.

Use ratio test. Let an = (x+2)n

2n lnn
. We have

lim
n→∞

|an+1

an
| = lim

n→∞

|x+ 2|2n lnn

2n+1 ln(n+ 1)
.

We can use L’Hospital’s rule to get

lim
n→∞

lnn

ln(n+ 1)
= 1

so
lim
n→∞

|an+1

an
| = |x+ 2|/2

The series converges if |x+ 2|/2 < 1 so that |x+ 2| < 2. The convergence radius is 2.

(b) Find the interval of convergence.

From part (a), we get that the series converges in −4 < x < 0. We need to check the
convergence at x = 0, x = −4.

When x = 0, the series is
∞∑
n=2

2n

2n lnn
=
∞∑
n=2

1

lnn

We can use integral test to see the series diverges. Comparison test also works here.

When x = −4, the series is
∞∑
n=2

(−2)n

2n lnn
=
∞∑
n=2

(−1)n

lnn

We can use alternating series test to see this converges. So the interval of convergence is
(0, 4].



4. (20 pts) Use the power series
1

1− x
=
∞∑
n=0

xn, |x| < 1 for this problem.

(a) Find a power series for f(x) =
2

3− 5x
.

We rewrite

f(x) =
2

3
· 1

1− 5
3
x

=
∞∑
n=0

2

3
(
5

3
x)n =

∞∑
n=0

2

3
(
5

3
)nxn

(b) Find the radius of convergence for the power series in part (a).

This converges for |5
3
x| < 1 that is |x| < 3/5. So convergence radius is 3/5.

(c) Find the power series representation of f(x) =
1

(1− x)2
.

Notice that (
1

1− x
)′ =

1

(1− x)2
. We can differentiate the series for 1/(1− x) to get

1

(1− x)2
=
∞∑
n=0

(xn)′ =
∞∑
n=1

nxn−1

(d) Find a power series representation for f(x) = (
x

1− x
)2.

Note that

(
x

1− x
)2 = x2

1

(1− x)2
= x2

∞∑
n=1

nxn−1 =
∞∑
n=1

nxn+1



5. (15 pts) Find a Taylor series for f(x) = x−2 about a = 1.

The Taylor series looks like

f(x) =
∞∑
n=0

f (n)(1)

n!
(x− 1)n

We need to compute all derivatives of f(x) at x = 1.

f(x) = x−2, f(1) = 1

f ′(x) = −2x−3, f ′(1) = −2.

f ′′(x) = (−2)(−3)x−4, f ′′(x) = (−2)(−3).

We continue to see that f (n)(1) = (−2)(−3) · · · (−(n+ 1)) = (−1)n(n+ 1)!. Therefore,

x−2 =
∞∑
n=0

(−1)n(n+ 1)(x− 1)n



6. (15 pts) Consider f(x) = 2 cosx.

(a) Find a 4th degree Taylor polynomial approximation T4(x) for f(x) about a = π/3.

The 4th degree Taylor polynomial for f(x) at a = π/3 is

T4(x) = f(π/3)+f ′(a)(x−π/3)+
f (2)(π/3)

2
(x−π/3)2+

f (3)(π/3)

3!
(x−π/3)3+

f (4)(π/3)

4!
(x−π/3)4

Then we find
f(x) = 2 cosx =⇒ f(π/3) = 1.

f ′(x) = −2 sinx =⇒ f ′(π/3) = −
√

3.

f (2)(x) = −2 cosx =⇒ f (2)(π/3) = −1.

f (3)(x) = 2 sinx =⇒ f (3)(π/3) =
√

3.

f (4)(x) = 2 cosx =⇒ f (4)(π/3) = 1.

Therefore,

T4(x) = 1−
√

3(x− π/3)− 1

2
(x− π/3)2 +

√
3

6
(x− π/3)3 +

1

24
(x− π/3)4

(b) Use Taylor’s inequality to estimate the accuracy of the approximation f(x) ' T4(x) when x
lies in the interval 0 ≤ x ≤ 2π/3.

We apply Taylor’s inequality to f(x) = 2 cosx on 0 ≤ x ≤ 2π/3.

|f(x)− T4(x)| ≤ M

(4 + 1)!
|x− π/3|4+1

where M is such that |f (4+1)(x)| ≤M . We find that

f (5)(x) = −2 sinx

so that
|f (5)(x)| ≤ 2| sinx| ≤ 2

for x on the interval 0 ≤ x ≤ 2π/3. We can take M = 2. Therefore, we get

|f(x)− T4(x)| ≤ 2

5!
|x− π/3|5 ≤ 2

5!
(π/3)5


