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Introduction

Valuation theory is one of the main tools for studying higher level orders and
the reduced theory of forms over fields, see, for example [BR]. In [MW], the theory
of higher level orders and reduced forms was generalized to rings with many units
and many of the results for fields carried over to this setting. While it seems
desirable to extend these results further, the techniques used for rings with many
units will not work for general commutative rings. At the same time, there is
a general theory of valuations in commutative rings (see [LM], [M], and [G]),
which in [Ma] was used to study orders and the reduced theory of quadratic forms
over general commutative rings. Thus it seems natural to ask if the connections
between valuations and higher level orders in fields exist in commutative rings. In
this paper we use valuation theory to study the space of orders and the reduced
Witt ring relative to a higher level preorder in a commutative ring. As in [Ma], we
first localize our ring at a multiplicative set, without changing the space of orders,
in order to make the valuation theory work better. This is a standard idea from
real algebraic geometry.

Remarkably, many of the notions, methods, and results for fields carry over
to this new setting. We define compatiblity between valuations and orders and
preorders, and the ring A(T ) associated to a preorder T , which turns out to be
Prüfer ring as in the field case. We define the relation of dependency on the set
of valuations associated to a preorder and we use this to prove a decomposition
theorem for the space of orders. We can then apply this to show that, under a
certain finiteness condition, the space of orders is equivalent to the space of orders
of a preordered field.
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§1. Preliminaries

Let R be a commutative ring with 1 and R∗ the units of R. For any subset
S ⊆ R, S∗ denotes S ∩R∗. For a prime ideal p ⊆ R, let R(p) denote the quotient
field of R/p and αp the canonical map R → R/p →֒ R(p). We will frequently use
the following fact: If S is a multiplicative set in R and k ∈ N, then any element of
R localized at S can be written in the form as−k, where a ∈ R and s ∈ S, since
as−1 = (ask−1)s−k.

Valuations in commutative rings. Details on valuations in commutative rings
can be found in [M] and [G]. Let Γ be an ordered abelian group, written additively,
and set Γ∞ = Γ ∪ {∞}, where α + ∞ = ∞ + α = ∞ and α < ∞ for all α ∈ Γ.
A mapping v : R → Γ∞ is a valuation on R if v(0) = ∞, v(1) = 0, and for all
x, y ∈ R, v(x + y) ≥ min{v(x), v(y)} and v(xy) = v(x) + v(y). We always assume
that Γ is the group generated by {v(r) | r ∈ R}. (If not we replace Γ by this
group.) Γ is called the value group of v. If v is surjective, we say v is a Manis

valuation.
Suppose v : R → Γ∞ is a valuation. Then it is easy to check that v−1(∞) is a

prime ideal in R, called the support of v and denoted supp(v). Let q := supp(v),
then there exists a unique valuation v̂ : R(q) → Γ∞ with v = v̂◦αq. Conversely,
if q is a prime ideal in R and v̂ : R(q) → Γ∞ is a valuation, then v := v̂◦αq is
a valuation on R. Since v̂(x) = ∞ iff x = 0, it follows that q = supp(v). Two
valuations v and w are equivalent if supp(v) = supp(w) and v̂ = ŵ. Note that if
v and w are equivalent and v is Manis, then w is Manis. We identify equivalent
valuations, thus there is a 1-1 correspondence between valuations v and pairs
(q, Â), where q is a prime ideal in R and Â is a valuation ring in R(q). We write

v = (q, Â), where q = supp(v) and Â is the valuation ring of v̂.

Given a valuation v = (p, Â), let A = α−1
p (Â) and I = α−1

p (Î), where Î denotes

the maximal ideal of Â. Then A is the called the valuation ring of v and I the
prime ideal of A. It follows easily from the definitions that A = {r ∈ R | v(r) ≥ 0}
and I = {r ∈ R | v(r) > 0}. Also note that if v is a Manis valuation, then A
determines v, since in this case I = {r ∈ R | xr ∈ A for some x ∈ R \ A}, see [G].

If Γ = {0}, then we say v is a trivial valuation. In this case we have A = R,

I = q = supp(v) and Â = R(q). Note each prime ideal in R gives rise to a trivial
valuation and that trivial valuations are clearly Manis.

Suppose A is a subring of R and I is a prime ideal in A. Then (A, I) is called a
valuation pair if given any r ∈ R \A there exists some x ∈ I such that xr ∈ A \ I.
We collect some facts about Manis valuations and valuation pairs:

Proposition 1.1.

(i) Given v = (p, Â) a Manis valuation in R with valuation ring A and prime
ideal I. Then (A, I) is a valuation pair. Conversely, given a valuation pair

(A, I) then there exists a unique Manis valuation v = (p, Â) such that A =

α−1
p (Â) and I = α−1

p (Î), where Î is the maximal ideal of Â. In this case,

Â = {αp(a)/αp(b) | a, b ∈ A and b 6∈ I} and Î = {αp(a)/αp(b) | a, b ∈ A
and b 6∈ I}.
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(ii) Suppose v = (q, Â) is a Manis valuation with prime ideal I. Then q =
{r ∈ R | xr ∈ I for all x ∈ R}.

(iii) Suppose v and w are valuations with w Manis and both have valuation
ring A and prime ideal I. Then supp(v) ⊆ supp(w).

Proof. (i) and (ii) follow from [M, Proposition 1].
(iii): Since supp(v) is an ideal in R and is contained in I, supp(v) ⊆ {r ∈ R | xr ∈ I
for all x ∈ R} = supp(w), by (ii). �

Higher Level Preorders and Orders. For details on higher level orders and
preorders in commutative rings, see [MW, §1].

A subset T ⊆ R is a preorder of level n if T + T ⊆ T , T · T ⊆ T , −1 6∈ T , and
R2n ⊆ T . If F is a field, then a preorder P of level n in F is an order of level n if
F ∗/P ∗ is cyclic. In general, a preorder P of level n in R is an order of level n if
there exists a prime ideal p in R and an order P̄ on R(p) such that P = α−1

p (P̄ ).

In this case we will write P = (p, P̄ ). Note p = P ∩ −P . In this paper, “order”
will always mean an order of some level n. For a preorder T in R, let OT denotes
the set of orders P such that T ⊆ P . (We reserve XT for the T -signatures of R,
see §4.)

A prime ideal p in R is a real prime if R(p) has an order, iff there exists an order
P in R with P ∩ −P = p. Given a preorder T in R of level n and a prime ideal
p, let T (p) = {αp(t)αp(s)

−2n | t ∈ T and s ∈ R \ p}. We say p is T -compatible if
T (p) is a preorder in R(p). It is easy to see that p is T -compatible iff −1 6∈ T (p).

We fix a preorder T of level n. Let S = 1 + T , a multiplicative set in R, then
S−1R is a nonzero ring. It is easy to check that S−1T is a preorder in S−1R and
there is a 1-1 correspondence between OT and OS−1T given by P 7→ {xs−2n | x ∈ P
and s ∈ S}. Under this bijection we have (p, P̄ ) ↔ (p′, P̄ ) where p′ denotes the
image of p in S−1R. For the rest of this paper we replace RRR by S−1RS−1RS−1R and

TTT by S−1TS−1TS−1T , i.e., we assume throughout that 1 + T ⊆ R∗1 + T ⊆ R∗1 + T ⊆ R∗.

Lemma 1.2.

(i) Given r ∈ R such that r 6∈ P ∩ −P for all P ∈ OT . Then r ∈ R∗.
(ii) T ∗ =

⋂

P∈OT
P ∗.

(iii) R = T ∗ − T ∗.

Proof. (i): Given P ∈ OT , if r 6∈ P ∩ −P , then r2n ∈ P \ −P . Thus, by [Be,
Theorem 6], if r 6∈ P ∩ −P for all P ∈ OT , there exist t, t′ ∈ T such that
tr2n = 1 + t′. Hence r ∈ R∗ since 1 + t′ ∈ R∗.
(ii): T ∗ ⊆

⋂

P∈OT
P ∗ is clear. The reverse inclusion follows from [Be, Theorem 6].

(iii): By a standard argument we have R = ΣR2n − ΣR2n since Q ⊆ R. Hence
R = T − T = (1 + T ) − (1 + T ) = T ∗ − T ∗. �

Lemma 1.3. If v is a valuation in R with valuation ring A and prime ideal I,
then (A, I) is a valuation pair.

Proof. Set k = 2n. Then 1 + x ∈ 1 + T ∈ R∗ for all x ∈ Rk. Given r ∈ R \ A,

let r̄ = αp(r) ∈ R(p). Then r̄ 6∈ Â, hence 1 + r̄k 6∈ Â, since a valuation ring in a
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field is integrally closed. Thus 1
1+r̄k ∈ Î and hence r̄k

1+r̄k = 1− 1
1+r̄k ∈ Â \ Î. Thus

r̄k−1

1+r̄k = r̄−1 · r̄k

1+r̄k ∈ Î. We have xr ∈ A \ I, where x = rk−1

1+rk ∈ I. Therefore (A, I)
is a valuation pair. �

Definition. Given an order P = (p, P̄ ) ∈ OT , then by [B1, 3.4], A(P̄ ) = {x ∈
R(p) | s± x ∈ P̄ for some s ∈ Q+} is a valuation ring in R(p) with maximal ideal
I(P̄ ) = {x ∈ R(p) | s±x ∈ P̄ for all s ∈ Q+}. Thus we have a valuation (p, A(P̄ )),
with valuation ring A(P ) := {r ∈ R | s± r ∈ P for some s ∈ Q+} and prime ideal
I(P ) := {r ∈ R | s ± r ∈ P for all s ∈ Q+}. We denote this valuation by vP . If
vP is trivial, we say P is archimedean. In this case, since A(P̄ ) = R(p), P̄ is an
archimedean (level 1) order on R(p). Thus archimedean orders on R correspond
to (p, P̄ ) where P̄ is an archimedean order on R(p).

The following useful fact about Manis valuations will be used frequently in later
sections:

Lemma 1.4. Suppose v = (q, Â) is a Manis valuation in R with valuation ring
A and prime ideal I. If r ∈ R \ q, then there exists x ∈ R such that xr ∈ A \ I. If
r ∈ T we can choose x ∈ T ∗.

Proof. Since r 6∈ q = v−1(∞), we have v(r) = γ for some γ in the value group of
v. Since v is onto, there is some x ∈ R such that v(x) = −γ. Then v(xr) = 0 and
thus xr ∈ A \ I. If r ∈ T then we have (x2nr2n−1)(r) = (xr)2n ∈ A \ I, hence we
can replace x by x2nr2n−1 ∈ T .

We need some results on Prüfer rings in R. For details on Prüfer rings in
commutative rings, see [LM] and [G].

Definition. Suppose A is a subring of R and p a prime ideal in A. Define A[p] =

{r ∈ R | xr ∈ A for some x ∈ A \ p} and p♯ = {r ∈ R | xr ∈ p for some x ∈ A \ p}.
Then A[p] is a subring of R and p♯ is a prime ideal in A[p].

Lemma 1.5. Suppose A is a subring of R.

(i) Given prime ideals p, q in A, then p ⊆ q implies A[q] ⊆ A[p].

(ii) If p1, . . . , pk, q are prime ideals in A such that
⋂k

i=1 pi ⊆ q, then A[q] ⊆
A[p1] ∪ · · · ∪ A[pk].

(iii) If v is a valuation on R with valuation ring A and prime ideal I, then
A[I] = A and I♯ = I.

Proof. (i) follows from A \ q ⊆ A \ p.
(ii) follows from the fact that r ∈ A \ q implies r ∈ A \ pi for some i.
(iii): It is clear that A ⊆ A[I] and I ⊆ I♯. Given r ∈ A[I], say x ∈ A \ I with
xr ∈ A. If r 6∈ A then there is some y ∈ I such that yr ∈ A \ I. But then
x(yr) ∈ (A \ I) · (A \ I) = A \ I while (xr)y ∈ I · A ⊆ I, a contradiction. Hence
A[I] = A. Given r ∈ I♯, then xr ∈ I for some x ∈ A \ I. Since r ∈ A this implies

r ∈ I and thus I = I♯. �

Definition. We say A is a Prüfer ring in R if (A[p], p
♯) is a valuation pair for all

prime ideals p in A.
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Proposition 1.6. Suppose A is a Prüfer ring in R.

(i) If (B, J) is a valuation pair such that A ⊆ B, then (B, J) = (A[p], p
♯)

where p = A ∩ J .
(ii) A =

⋂

B, the intersection over all overrings B of A such that (B, J) is a
valuation pair for some prime ideal J in B.

Proof. (i): Let p = J ∩A, clearly a prime ideal in A. Then (A[p], p
♯) is a valuation

pair since A is a Prüfer ring. It follows from the definitions that A[p] ⊆ B[J ] and

p♯ ⊆ J ♯. This implies A[p] ⊆ B and p♯ ⊆ J by 1.5,(iii). Suppose a ∈ B and

a 6∈ A[p], then there exists x ∈ p♯ such that ax ∈ A[p] \ p♯. Since ax ∈ A[p], by

definition there exists y ∈ A \ p such that yax ∈ A, and yax 6∈ p since ax 6∈ p♯.
Also, there exists z ∈ A \ p such that zx ∈ p. Then we have y, z, x, a ∈ B and
zx ∈ J , hence yzax ∈ J ∩A = p. But yax ∈ A \ p and z ∈ A \ p implies yzax 6∈ p,
a contradiction. Hence B ⊆ A[p] and thus B = A[p]. A similar argument shows

J = p♯.
(ii): Let C be the intersection of all valuation overrings of A, then clearly A ⊆ C.
By (i), C =

⋂

A[p], the intersection over all prime ideals p in A. By [G, Proposition
9], A = ∩A[m], where the intersection is over all maximal ideals m in A, hence
A = ∩A[m] ⊇ ∩A[p] = C and thus A = C. �

Theorem 1.7. Suppose A is a subring of R such that 1
1+x

∈ A for each x ∈ ΣR2n.
Then A is a Prüfer ring in R.

Proof. Given p ⊆ A a prime ideal. Let Ã be the integral closure of A in R and p̃
a prime ideal in Ã with p̃ ∩ A = p. Set B := {r ∈ R | yr ∈ Ã for some y ∈ A \ p}
and q := {r ∈ R | yr ∈ p̃ for some y ∈ A \ p}. It is easy to see that B is a subring
of R and q is a prime ideal in B. It follows from the definitions that A[p] ⊆ B and

p♯ ⊆ q.

Claim 1: If rm ∈ B for some m ∈ N, then r ∈ B.
Proof: If rm ∈ B, then there exists some y ∈ A\p with yrm ∈ Ã. Hence (yr)m ∈ Ã

and thus yr ∈ Ã. It follows that r ∈ B.

Claim 2: q ∩ A[p] = p♯

Proof: p♯ ⊆ q ∩ A[p] is clear. If r ∈ q ∩ A[p] then there exists some y ∈ A \ p with

yr ∈ A and x ∈ A \ p with xr ∈ p̃. Hence xyr ∈ A ∩ p̃ = p, and thus r ∈ p♯.

Claim 3: Suppose r ∈ R with r2n 6∈ A[p]. Then there is some x ∈ p with

xr2n ∈ B \ q.
Proof: Let x = 1

1+r2n ∈ A ⊆ A[p] then xr2n = 1− x ∈ A. If x 6∈ p then r2n ∈ A[p],

a contradiction. Thus x ∈ p ⊆ q. Since xr2n ∈ A[p] ⊆ B and xr2n = 1 − x, it

follows that xr2n ∈ B \ q.

Claim 4: Given r ∈ R \ B. Suppose m ∈ N and x ∈ q with xrm ∈ B \ q, then
there exists x′ ∈ q with x′r ∈ B \ q.
Proof: We proceed by induction on m. If m = 1 let x′ = x. Suppose m > 1 and
x ∈ q with xrm ∈ B \ q, then (xr)m ∈ q. Thus xr ∈ B by claim 1, hence xr ∈ q.
Since xrm = (xr)rm−1 we are done by induction.
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Claim 5: (B, q) is a valuation pair in R.
Proof: Given r ∈ R \ B, then r2n 6∈ B by claim 1. Hence r2n 6∈ A[p]. Thus there

exists x′ ∈ p ⊆ q with x′r2n ∈ B \ q by claim 3. Hence, by claim 4, there exists
x ∈ q with xr ∈ B \ q. Therefore (B, q) is a valuation pair.

By claim 5, it is enough to show A[p] = B and p♯ = q. Given r ∈ B with

r2n 6∈ A[p], then there exists, by claim 3, y ∈ p with yr2n ∈ B \ q. But then y ∈ q,

r2n ∈ B, and yr2n ∈ B \ q, a contradiction. Hence r2n ∈ A[p] for each r ∈ B.

Since B = ΣB2n − ΣB2n, it follows that A[p] = B. Hence p♯ = q by claim 2.

Thus (A[p], p
♯) is a valuation in R for each prime ideal p in A, and therefore A is

a Prüfer ring in R. �

Remark. When R is a field and n = 1, Theorem 1.7 is a result of Dress [D, 9].
Becker proved Theorem 1.7 for R a field and general n [B2, 3.3].

Definition. Let A(T ) = {r ∈ R | s ± r ∈ T for some s ∈ Q}.

Proposition 1.8. A(T ) is a Prüfer ring in R. In particular, for any P ∈ OT

(A(P ), I(P )) = (A(T )[p], p
♯), where p = A(T ) ∩ I(P ).

Proof. A(T ) is a Prüfer ring by 1.7. The second statement then follows from
1.6,(i). �

§2. Compatible valuations

One of the key notions in studying higher level orders and forms in fields is
that of compatibility between orders and valuations. For a field F , a valuation
ring A with maximal ideal I, and an order P on F , we say A is compatible with
P if 1 + I ⊆ P . In this case the “pushdown of P along A”, the image of P ∩ A
in the field A/I, is an order. For details, see [BR, §2]. In our case the situation is
a bit more complicated since in general a given order and a given valuation will
come from different residue fields of R.

Definition. Suppose v = (q, Â) is a valuation with valuation pair (A, I) and P ∈
OT . We say v is compatible with P if P ∩ −P ⊆ q and P ∩ (A \ I) + I ⊆ P . We
denote this by v ∼ P . We say v is compatible with T if v is compatible with some
P ∈ OT , written v ∼ T . If v is compatible with all P ∈ OT then we say v is fully

compatible with T , written v ∼f T .

Remark. If R is a field then P ∩(A\I)+I ⊆ P iff 1+I ⊆ P . Hence our definitions
agree with the usual definitions for fields, cf. [BR, §2].

Lemma 2.1.

(i) For all P ∈ OT , vP ∼ P .
(ii) Let v be the Manis valuation with valuation pair (A(P ), I(P )), which

exists by 1.1. Then v ∼ P .

Proof. (i): Suppose P = (p, P̄ ) ∈ OT . By [BHR, 2.7] we have A(P̄ ) ∼ P̄ . Given
x ∈ P∩(A\I) and y ∈ I, then αp(x) ∈ P̄∩(A(P̄ )\I(P̄ )). Hence αp(x)+αp(y) ∈ P̄
and thus x + y ∈ P . Therefore vP ∼ P .
(ii): By 1.1,(iii), p = supp(vP ) ⊆ supp(v), hence v ∼ P follows from (i). �
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Proposition 2.2. Suppose v = (q, Â) is a Manis valuation with valuation ring A
and prime ideal I. Given P = (p, P̄ ) ∈ OT , then the following are equivalent:

(i) v ∼ P

(ii) P (q) is an order in R(q), Â is compatible with P (q), and α−1
q (P (q)) = P∪q.

Proof. Assume v ∼ P , we first show that α−1
q (P (q)) = P ∪ q. It is clear that

P ∪ q ⊆ α−1
q (P (q)). Suppose r ∈ R with αq(r) ∈ P (q). Assume r 6∈ q, then

there exist x ∈ P and s ∈ R \ q such that αq(r) = αq(x)αq(s)
−2n

. Thus there
is some y ∈ q such that s2nr = x + y. Since s2nr 6∈ q, we have x 6∈ q. By 1.4
(applied to P ), there exists t ∈ P ∗ such that tx ∈ A \ I. Then ts2nr = tx + ty ∈
P ∩ (A \ I) + I ⊆ P . Thus s2nr ∈ P since t ∈ P ∗. Since p ⊆ q, αp(s) 6= 0, hence
in R(p) we have αp(s)

2nαp(r), αq(s)
2n ∈ P̄ \ {0}. Thus αp(r) ∈ P̄ and so r ∈ P .

Hence α−1
q (P (q)) ⊆ P ∪ q.

We have shown α−1
q (P (q)) = P ∪ q. It follows that −1 6∈ P (q), hence q is a

P -compatible prime ideal. Define θ : R(q)∗/P (q)∗ → R(p)∗/P̄ ∗ by

θ
(

αq(a)αq(b)
−2nP (q)∗

)

= αp(a)αp(b)
−2nP̄ ∗.

Note that since p ⊆ q, if αq(b) 6= 0, then αp(b) 6= 0. We have αq(a)αq(b)
−2n ∈

P (q)∗ iff αq(a) ∈ P (q)∗ iff a ∈ P iff αp(a) ∈ P̄ ∗ iff αp(a)αp(b)
−2n ∈ P̄ ∗. Hence θ

is well-defined and 1-1. Thus R(q)∗/P (q)∗ is cyclic, since R(p)∗/P̄ ∗ is cyclic, and
hence P (q) is an order.

Given i ∈ Î, say i = αq(x)αq(a)−2n. By 1.4, we can assume a ∈ A \ I, hence
v̂(i) = v(x) and thus x ∈ I. Then 1 + i = αq(a

2n + x)αq(a)−2n and a2n + x ∈ P

by (i), thus 1 + i ∈ P (q). Therefore Â is compatible with P (q).

Suppose (ii) holds, then p ⊆ q follows from −1 6∈ P (q). Given a ∈ P∩(A\I) and

x ∈ I, then αq(a+x) ∈ P (q) since Â is compatible with P (q). Thus a+x ∈ P ∪q,
which, together with a 6∈ I, x ∈ I, implies a + x ∈ P . Hence v ∼ P . �

Proposition 2.3. Suppose Q ⊇ T is a preorder in R. A Manis valuation v =
(q, Â) is compatible with Q iff q is a Q-compatible prime ideal and Â ∼ Q(q) in
R(q).

Proof. Suppose v ∼ T , then there is some P ∈ OQ ⊆ OT such that v ∼ P .
By 2.2, q is a P -compatible prime ideal, hence it must be Q-compatible. Then
Â ∼ P (q) ∈ OQ(q) and thus Â ∼ Q(q).

Suppose q is a Q-compatible prime ideal and Â ∼ Q(q), then there is some

P̄ ∈ OQ(q) such that Â ∼ P̄ . Let P = αq
−1(P̄ ) ∈ OQ. Then P ∩ −P = q and for

any x ∈ P ∩ (A \ I) and y ∈ I we have αq(x + y) ∈ P̄ , hence x + y ∈ P . Thus
v ∼ P . �

Definition. Given a valuation v with valuation ring A and prime ideal I, let Ã
denote the domain A/I and Kv the quotient field of Ã. We define the pushdown

of T along v to be the image of T ∩ A in Ã, denoted T̃ .
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Lemma 2.4. Suppose v is a valuation with valuation ring A and prime ideal I
which is compatible with T . Then T̃ is a preorder in Ã.

Proof. Suppose −1 ∈ T̃ , then there exist t ∈ T ∩A and x ∈ I such that −1 = t+x.
Pick P ∈ OT such that v ∼ P , then we have t ∈ T ∩ (A \ I) ⊆ P ∩ (A \ I), hence

−1 = t + x ∈ P , a contradiction. Thus −1 6∈ T̃ and it follows that T̃ is a preorder
in Ã. �

Lemma 2.5. Suppose v = (q, Â) is a Manis valuation with valuation ring A and
prime ideal I which is fully compatible with T . Then

(i) R \ q = R∗

(ii) 1 + I ⊆ T ∗

Proof. (i): R∗ ⊆ R\q is clear. Given r ∈ R\q, since p ⊆ q for all P = (p, P̄ ) ∈ OT ,
we have r 6∈ P ∩−P for all P ∈ OT . Thus r ∈ R∗ by 1.2,(i).
(ii): Given x ∈ I, then for any P ∈ OT , we have 1 + x ∈ P since (A, I) ∼ P . Also
1 + x 6∈ q since q ⊆ I and thus 1 + x ∈ R∗ by (i). Hence 1 + x ∈

⋂

P∈OT
P ∗ = T ∗

by 1.2,(ii). �

Proposition 2.6. Suppose v = (q, Â) is a Manis valuation which is fully com-
patible with T . Then the map θ : R∗/T ∗ → R(q)∗/T (q)∗ given by θ(rT ∗) =
αq(r)T (q)∗ is an isomorphism.

Proof. By 2.3, T (q) is a preorder in R(q). Given r ∈ R∗ with αq(r) ∈ T (q)∗,
then by 2.2 for each P ∈ OT there is some s ∈ R \ q such that s2nr ∈ P . By
2.5,(i), s ∈ R∗, hence r ∈ P . Thus r ∈

⋂

P∈OT
P ∗ = T ∗ by 1.2,(ii). Hence θ

is 1-1. Given αq(r)αq(s)
−2n ∈ R(q)

∗
, then r 6∈ q and hence r ∈ R∗ by 2.5,(i).

Then θ(rT ∗) = αq(r)T (q)∗ = αq(r)αq(s)
−2n

T (q)∗. Thus θ is onto and therefore
an isomorphism. �

§3. Dependency Classes

For the rest of this paper, we assume that all valuations are Manis

valuations. Thus we replace vP by the Manis valuation with valuation pair
(A(P ), I(P )), which exists by 1.1. By 2.2, we still have vP ∼ P .

As in the field case (see [BR, §5]), we can define an equivalence relation on OT

using the valuations vP . This allows us to “break up” T into pieces which are
fully compatible with a valuation.

Definition.

(i) Suppose v1 and v2 are nontrivial valuations in R. For i = 1, 2, let Γi

denote the value group, Ai the valuation ring, and Ii the prime ideal of vi.
Following [G], we say v2 is coarser than v1, denoted v2 ≤ v1, if there is an
order homorphism f : Γ1 → Γ2 such that v2 = f◦v1, iff (by [G, Proposition
4]) A1 ⊆ A2 and I2 ⊆ I1.

(ii) Nontrivial valuations v1 and v2 are dependent valuations if there exists a
nontrivial valuation coarser than both. Otherwise, they are independent.
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Proposition 3.1. Suppose v1 = (q1, Â1) and v2 = (q2, Â2) are nontrivial valua-

tions. Then v2 ≤ v1 iff q1 = q2 and Â1 ⊆ Â2 in R(q1).

Proof. Assume v2 ≤ v1, say f : Γ1 → Γ2 with v2 = f◦v1. Since I2 ⊆ I1, it follows
from 1.1,(ii) that q2 ⊆ q1. Given x ∈ q1, suppose x 6∈ q2, then by 1.4 there is some
y ∈ R with yx 6∈ I2. Given any r ∈ R, since q1 is an ideal, ryx ∈ q1 ⊆ A1 ⊆ A2.
We have r(yx) ∈ A2 and yx 6∈ I2 which implies r ∈ A2. This shows A2 = R,
but we assumed not. Hence q1 ⊆ q2 and thus q1 = q2. Let q := q1 = q2. Then
v2 = f◦v1 implies v̂2◦αq = f◦v̂1◦αq, hence Â1 ⊆ Â2.

If q1 = q2 and Â1 ⊆ Â2, then Î2 ⊆ Î1. It follows easily that A1 ⊆ A2 and
I2 ⊆ I1. �

Corollary 3.2. Suppose v is a nontrivial valuation on R. Given valuations v1

and v2 such that v1 ≤ v and v2 ≤ v, then v1 ≤ v2 or v2 ≤ v1.

Proof. The corollary follows from 3.1 and the fact that in a field valuation rings
containing a given valuation ring are linearly ordered by inclusion. �

Definition. We define the relation of dependency, denoted ∼, on OT as follows:
Given P, Q ∈ OT . If P is archimedean, then P ∼ Q iff Q = P . If P is nonar-
chimedean, then P ∼ Q if Q is nonarchimedean and vP and vQ are dependent
valuations.

Lemma 3.3. Given nonarchimedean P, Q ∈ OT , then P ∼ Q iff A(P )·A(Q) 6= R.
In this case, let A := A(P ) ·A(Q), then there is a valuation v with valuation ring
A which is coarser than both vP and vQ.

Proof. Suppose P ∼ Q, then by definition there exists a nontrivial valuation v with
valuation ring A such that A(P ) ⊆ A and A(Q) ⊆ A. Hence A(P )·A(Q) ⊆ A 6= R.

Suppose A := A(P ) · A(Q) 6= R. By 1.7 A(P ) and A(Q) are Prüfer rings,
hence, by [G, Proposition 13], A is the valuation ring of a (Manis) valuation v
with v ≤ vP and v ≤ vQ. Therefore, P ∼ Q. �

Lemma 3.4. Suppose P1, . . . , Pk ∈ OT are nonarchimedean such that P1 ∼ Pi

for all i. Then there exists a nontrivial valuation on R which is coarser than each
vPi

.

Proof. For 2 ≤ i ≤ k, set Ai = A(P1) · A(Pi). Then, by 3.3, for each i, Ai 6= R
and there exists a valuation vi which is coarser than v1 and vPi

. Hence, by 3.2
and induction, there is some k such that vk is coarser than each vPi

. �

Corollary 3.5. The relation of dependency is an equivalence relation on OT .

Definition. For P ∈ OT , let [P ] denote the equivalence class of P , called the
dependency class of P .

Proposition 3.6. Suppose there are only finitely many valuations among {vP |
P ∈ OT} and P ∈ OT is nonarchimedean. Let [P ] denote the dependency class of
P and set S =

⋂

Q∈[P ] Q. Then

(i) OS = [P ].
(ii) There exists a valuation v such that v ≤ vQ for each Q ∈ [P ].
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Furthermore, if P 6∼ Q and v and w are the valuations in (ii) corresponding to [P ]
and [Q], then v and w are independent.

Proof. (i): Since {vQ | Q ∈ [P ]} is finite, there exist Q1, . . . , Qm ∈ [P ] such that
{vQ | Q ∈ [P ]} = {vQj

}m
j=1. We have [P ] ⊆ OS by definition of S. Given P ′ ∈ OS,

then P ′ ∈ OT and S ⊆ P ′. Since
⋂

Q∈[P ] Q ⊆ P ′, we have
⋂

Q∈[P ] I(Q) ⊆ I(P ′).

Hence
⋂m

j=1 I(Qj) =
⋂

Q∈[P ] I(Q) ⊆ I(P ′). We want to show Q1 ∼ P ′. By 3.4

there exists a nontrivial valuation v with valuation ring A such that A(Qi) ⊆ A
for all i. Let p = I(P ′) ∩ A(T ) and, for each i, let pi = I(Qi) ∩ A(T ). Then
A(Qi) = A(T )pi

for each i and A(P ′) = A(T )p by 1.6. Thus, since
⋂

pi ⊆ p, we
have A(P ′) ⊆ A(Q1)∪ · · ·∪A(Qm) by 1.5,(ii). Hence A(Q1) ·A(P ′) ⊆ A 6= R and
thus Q1 ∼ P ′ by 3.3. Hence P ′ ∈ [P ] and therefore OS = [P ].
(ii) follows from 3.4.

Suppose P 6∼ Q and v and w are the valuations of (ii) corresponding to [P ] and
[Q]. If v and w are dependent, then there exists a nontrivial valuation coarser than
both, hence coarser than vP and vQ. But this implies P ∼ Q, a contradiction.
Thus v and w are independent valuations. �

Definition. Following [Ma2], we define a V-topology on R to be a triple (F, α, τ)
where F is a field, α : R → F a ring homomorphism such that F is the field
of fractions of α(R), and τ a V-topology on F . For details, see [Ma2]. A V-
topology (F, α, τ) is archimedean if τ is archimedean on F . It is coarse if α(R) is
τ -unbounded.

An approximation theorem for V-topologies on rings is proven in [Ma2]. As
in the field and skew field cases we can apply this to the valuations we have
constructed which correspond to our dependency classes.

We assume that there are only finitely many valuations among {vP | P ∈ OT }.
Then there are only finitely many dependency classes, say [P1], . . . , [Pk]. For each
i, there is a V-topology (Ri, αi, τi) defined as follows: If Pi is nonarchimedean,

we have a valuation vi = (pi, Âi) corresponding to [Pi] defined in 3.6. In this
case, set Ri = R(pi), αi = αpi

, and let τi be the V-topology on Ri induced by

Âi. If Pi is archimedean, set pi = Pi ∩ −Pi, Ri = R(pi), αi = αpi
and let τi

be the (archimedean) V-topology induced by P̄i. By remarks in [Ma2], each of
these V-topologies is coarse. Also, they are all distinct: In the nonarchimedean
case this follows from the independence of the vi’s. In the archimedean case this
follows from the fact the if P1 and P2 are archimedean orders on a field F , then
the V-topologies induced by P1 and P2 are equal iff P1 = P2, see [BR, §4]. Finally,
note that archimedean and nonarchimedean V-topologies are never equal.

Theorem 3.7. Suppose there are only finitely many valuations among {vP | P ∈
OT } and only finitely many archimedean orderings in OT . Let [P1], . . . , [Pk] be the
dependency classes of OT and for each i set Ti =

⋂

P∈[Pi]
P . Also, let (Ri, αi, τi)

be the V-topology defined above and let Si = Ti(pi), by 2.3 a preorder in Ri.
Then the canonical map

θ : R∗/T ∗ → R1
∗/S1

∗ × · · · × R∗

k/Sk
∗
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is an isomorphism.

Proof. By 1.2,(ii) and 3.6,(i), we have

(∗) T ∗ =
⋂

P∈OT

P ∗ =

k
⋂

i=1

(
⋂

P∈[Pi]

P ∗).

Given r ∈ R∗ such that αi(r) ∈ S∗

i for all i. Then for each i we have αi(r) ∈ P̄
for all P̄ ∈ [Pi]. Hence r ∈ P for all P ∈ [Pi] and all i and thus r ∈ T ∗ by (∗).
Hence θ is 1-1.

By the remarks above on the V-topologies (Ri, αi, τi), we can apply [Ma2, 2.3]
to our situation if we show that for each i, S∗

i is a τi-neighborhood of 1. Given
P̄ ∈ OSi

, let P = α−1
i (P̄ ), i.e., P = (pi, P̄ ) ∈ OT . By construction and 3.6,

P ∈ OTi
, hence vi ∼ P . Thus, by 2.2, v̂i ∼ P̄ . Hence we have shown that v̂i ∼f Si

and thus 1+ Îi ⊆ S∗

i . It follows that S∗

i is a τi-neighborhood of 1. Thus, by [Ma2,
2.3], given y = (r1T1

∗, . . . , rkTk
∗) ∈

∏

Ri
∗/Si

∗, there is some r ∈ R \ ∪ ker αi

such that αi(r)S
∗

i = riS
∗

i for all i. By 1.2,(i), r ∈ R∗, hence θ is onto. Therefore
θ is an isomorphism. �

§4. T-Forms and the Reduced Witt Ring

We define signatures, T -forms and the reduced Witt ring of T as in [MW].
For any abelian group G, let G∨ denote Hom(G, µ), where µ denotes the com-

plex roots of unity.
If F is a field and Q a preorder in F then a Q-signature is any χ ∈ (F ∗)∨

such that Q∗ ⊆ ker χ and ker χ is additively closed. Note that if χ is a Q-
signature then ker χ ∪ {0} ∈ OQ. A T -signature in R is a character σ ∈ (R∗)∨

such that there exists a T -compatible prime ideal p and a T (p)-signature χ with
σ = χ◦αp |R∗ , where |R∗ denotes restriction to R∗. In this case we have P =
αp

−1(kerχ ∪ {0}) ∈ OT and P ∗ = kerσ. Conversely, given P = (p, P̄ ) ∈ OT

then there is a T (p)-signature χ with P̄ ∗ = ker χ. Hence there is a T -signature σ,
defined by σ = χ◦αp |R∗ , such that kerσ = P ∗. We write XT to denote the set of
T -signatures.

An r-dimensional form over T is an r-tuple ρ = 〈a1, . . . , ar〉, where ai ∈ R∗.
The sum and product of forms are defined in the usual way: For ρ as above and
τ = 〈b1, . . . , bk〉,

ρ ⊕ τ = 〈a1, . . . , ar, b1, . . . , bk〉

and
ρ ⊗ τ = 〈a1b1, . . . , a1bk, . . . , arb1, . . . , arbk〉.

If ρ = 〈a1, . . . ar〉 and σ is a T -signature, we define σ(ρ) = Σr
i=1σ(ai). Two

forms ρ and τ are T -equivalent, denoted ρ ∼ τ , if σ(ρ) = σ(τ) for all T -signatures
σ. If in addition ρ and τ have the same dimension, they are T -isometric, denoted
ρ ∼= τ . The Witt ring of T , denoted WT (R), consists of T -equivalence classes of
forms with operations induced by ⊕ and ⊗.
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Definition.

(i) We say a form ρ = 〈a1, . . . ar〉 is isotropic if there exist t1, . . . tr ∈ T ∗∪{0},
not all 0, such that a1t1 + · · · + artr = 0. Otherwise, ρ is anisotropic.

(ii) The represented set of ρ, denoted DT (ρ), is Ta1 + · · ·+ Tar.

Lemma 4.1. Suppose u ∈ DT (ρ)∗, then there exist t1, . . . , tr ∈ T ∗ such that
u = a1t1 + · · ·+ artr.

Proof. We have u = Σaisi where si ∈ T . By 1.3,(iii) there exist s, t ∈ T ∗ such
that s− t = u−1(a1 + · · ·+ar). Then su = tu+a1 + · · ·+ar = Σai(1+ tsi). Since
1 + tsi ∈ T ∗, we are done with ti = s−1(1 + tsi). �

Corollary 4.2. (i) Suppose ρ = 〈a1, . . . , ar〉 is isotropic. Then there exist
t1, . . . , tr ∈ T ∗ such that t1a1 + · · · + trar = 0.
(ii) Suppose ρ = 〈1, a2, . . . , ar〉 and −1 ∈ DT (ρ). Then ρ is isotropic.

Proof. (i): Wlog we can assume s1a1 + · · ·+srar = 0, where s1 ∈ T ∗. Then apply
4.1 to the form 〈a2, . . . , ar〉 with u = −s1a1.
(ii): By 4.1 there exist t1, . . . , tr ∈ T ∗ such that −1 = t1 +a2t2 + · · ·+artr, hence
(1 + t1) + a2t2 + · · · + art2 = 0. �

Proposition 4.3. Suppose ρ = 〈a1, . . . , ar〉 is a form, and b ∈ R∗. Then b ∈
DT (ρ)∗ iff αp(b) ∈ DT (p)(αp(ρ)) for all T -compatible primes p, where αp(ρ) =
〈αp(a1), . . . , αp(ar)〉.

Proof. Suppose b ∈ DT (ρ)∗, then given a T -compatible prime p we have b 6∈ p.
Hence αp(b) ∈ DT (p)(αp(ρ)).

Now suppose αp(b) ∈ DT (p)(αp(ρ)) for all T -compatible primes p. Since b ∈
DT (ρ)∗ iff −1 ∈ DT (−b−1ρ)∗, we can assume b = −1. Suppose first that −1 ∈
DT (〈1〉⊕ρ), then −1 = t+c, where t ∈ T and c ∈ DT (ρ). Hence −1 = (1+t)−1c ∈
DT (ρ). Thus it is enough to show −1 ∈ DT (〈1〉⊕ ρ). If not, then DT (〈1〉⊕ ρ) is a
T -module, hence by [MW, 1.6] there exists a DT (〈1〉⊕ρ)-compatible prime p. But
then we have −1 6∈ DT (p)(αp(ρ)), a contradiction. Therefore −1 ∈ DT (ρ). �

Theorem 4.4. Suppose ρ and τ are T -forms such that ρ ∼ τ and dim ρ < dim
τ . Then τ is isotropic.

Proof. Suppose τ = 〈b1, . . . , bk〉. Then b1
−1τ isotropic implies τ isotropic, hence

wlog we can assume b1 = 1. For each T -compatible prime p, dim αp(ρ) < dim
αp(τ), hence αp(τ) is T (p)-isotropic by [BR, 4.9]. This implies −1 ∈ DT (p)(αp(τ))
for all T -compatible primes p, thus −1 ∈ DT (τ) by 4.3. Hence τ is isotropic by
4.2,(i). �

Corollary 4.5. ρ ∼= τ implies DT (ρ) = DT (τ).

Proof. Suppose ρ = 〈a1, . . . , ar〉 and τ = 〈b1, . . . , br〉. Let f = τ ⊕ 〈−ar〉 and
g = 〈a1, . . . , ar−1〉. Then f ∼ g, hence f is isotropic by 4.4. Then by 4.2(ii), there
exist t, t1, . . . , tr ∈ T ∗ such that

∑

tibi − tar = 0. Since t ∈ T ∗ we have αp(t) 6= 0
for all T -compatible primes p. Hence αp(ar) ∈ DT (p)(αp(τ)) for all T -compatible
primes p and thus ar ∈ DT (τ) by 4.3.
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A similar argument shows ai ∈ DT (τ) for all i, hence DT (ρ) ⊆ DT (τ). The
same proof shows DT (ρ) ⊆ DT (τ) and we are done. �

Remark. Theorem 4.4 and Corollary 4.5 are proven for rings with many units in
[MW, 3.5].

Spaces of Signatures Spaces of signatures (hereafter SOS) provide an abstract
setting for studying the reduced theory of higher level forms over fields. For details
and terminology see [Mu] and [MM]. The advantage of this abstract approach is
that once we prove we have a SOS then much of the theory for fields generalizes
immediately to our setting. In [MW] it is shown that a preordered ring with many
units gives rise to a SOS. We cannot prove this in general in our setting, but using
the results of §3 we prove it for preorders T such that there are only finitely many
valuations among {vP | P ∈ OT }.

We generalize some ideas from the theory of SOS’s:

Definition. A signature pair is a pair (X, G) where G is an abelian group of finite
even exponent and X is a subset of G∨. Two signature pairs (X1, G1) and (X2, G2)
are equivalent if there is an isomorphism α : G1 → G2 such that α∨(X2) = X1,
where α∨ is the dual isomorphism.

Given signature pairs {(Xi, Gi)}
k
i=1, let G = G1 × · · · × Gk and let X =

X1∪̇ · · · ∪̇Xk, where Xi is identified with its image in G∨, and ∪̇ denotes disjoint
union. Then (X, G) is a signature pair, called the direct sum of the (Xi, Gi)’s. We

write (X, G) =
⊕k

i=1(Xi, Gi).

Remark.

(i) A SOS is a signature pair which satisfies certain axioms, see [Mu], [MM].
(ii) Given σ ∈ XT , we identify σ with its image in (R∗/T ∗)∨ and thus (XT , R∗/T ∗)

is a signature pair. If R is a field then (XT , R∗/T ∗) is a SOS by [Mu, 1.10].
(iii) If a signature pair is equivalent to a SOS, then it is also a SOS.

Proposition 4.6. The direct sum of finitely many SOS’s is a SOS.

Proof. [Mu, 2.6]. �

Proposition 4.7. Suppose v = (q, Â) is a valuation in R which is fully compatible
with T . Then (XT , R∗/T ∗) is equivalent to (XT (q), R(q)∗/T (q)∗). In particular,
(XT , R∗/T ∗) is a SOS.

Proof. The mapping θ : R∗/T ∗ → R(q)∗/T (q)∗ given by θ(rT ∗) = αq(r)T (q)∗ is
an isomorphism by 2.6. Given σ ∈ XT , we can define σ̄ : R(q)∗/T (q)∗ → µ by
σ̄ := σ◦θ−1, then σ̄ ∈ (R(q)∗/T (q)∗)∨. Since σ ∈ XT there is some P = (p, P̄ ) ∈
OT such that σ = χ◦αp |R∗ where χ is a T (p)-signature with kerχ = P̄ .

Given x1, x2 ∈ ker σ̄, then there exists r1, r2 ∈ R∗ such that xiT (q)∗ =
αq(ri)T (q)∗. Since xi ∈ ker σ̄, we have ri ∈ ker σ, hence r1, r2 ∈ P ∗. Then
r1 + r2 ∈ P , thus αq(r1 + r2) ∈ α−1

q (P (q)) = P ∪ q by 2.2. Suppose r1 + r2 ∈ q,
then 0 6= −αq(r1) = αq(r2) ∈ P (q) and also αq(r1) ∈ P (q), a contradiction. Thus
we must have r1 + r2 6∈ q and hence r1 + r2 ∈ R∗ by 2.5. Then r1 + r2 ∈ P ∗
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and so σ̄(x1 + x2) = σ(r1 + r2) = 1 and thus ker σ̄ is additively closed. Hence
σ̄ is a T (q)-signature and clearly θ∨(σ̄) = σ. Thus θ∨(XT (q)) ⊇ XT . It is clear
that θ∨(XT (q)) ⊆ XT and therefore (XT (q), R(q)∗/T (q)∗) and (XT , R∗/T ∗) are
equivalent. �

We would like to combine 4.7 and 3.7 to conclude that in the situation of
3.7 (XT , R∗/T ∗) is a SOS. We cannot apply 4.7 directly, however, since it only
applies to T , not to the Ti of 3.7. (The point is that we do not necessarily have
1 + Ti ⊆ R∗.)

Theorem 4.8. Suppose there are only finitely many valuations among {vP | P ∈
OT } and only finitely many archimedean orders on R. Then (XT , R∗/T ∗) is a
SOS.

Proof. Let Ti, pi, Ri, and Si be as in Theorem 3.7 and let vi = (pi, Âi) be

the valuations defined in 3.6. For each i, define R̃i := (1 + Ti)
−1R and Qi :=

(1 + Ti)
−1Ti, a preorder in R̃i. Fix i and pick P ∈ XTi

. Then vi ∼ P , hence by
2.2, P (pi) is an order in Ri. It follows that (1 + Ti) ∩ pi = ∅, hence we can define

p̃i := (1 + Ti)
−1pi, a prime ideal in R̃i such that R̃i(p̃i) = Ri. Now we define,

for each i, a valuation wi := (p̃i, Âi). We want to show that wi ∼f Qi. There
is a 1-1 correspondence between OTi

and OQi
given by P ↔ (1 + Ti)

−1P . Then

given P̃ = (1 + Ti)
−1P ∈ OQi

, it follows from the definitions that P̃ (p̃i) = P (pi)
(in Ri). Since vi ∼ P , by 2.2 we have P (pi) is an order in Ri, thus, applying 2.2

again, wi ∼ P̃ . Hence wi ∼f Qi. Let α̃i be the canonical map R̃i → Ri.

Let θ : R/T ∗ → R̃∗

1/Q∗

1 × · · · × R̃∗

k/Q∗

k be the canonical map. By 3.7 the
canonical map R∗/T ∗ → R∗

1/S∗

1 × · · · × R∗

k/S∗

k is an isomorphism and by 2.6, for

each i, the map R̃∗

i /Q∗

i → R∗

i /S∗

i given by xQ∗

i 7→ α̃i(x)S∗

i is an isomorphism. It
follows easily that θ is an isomorphism.

Given σ ∈ XT , there is some P = (p, P̄ ) ∈ OT and some χP̄ ∈ XT (p) with

ker χP̄ = P̄ such that σ = χP̄ ◦αp|R∗ . Then P ∈ OTi
for some i. Now define

P̃ := (1 + Ti)
−1P and p̃ := (1 + Ti)

−1p. Since (1 + Ti) ∩ p = ∅, p̃ is a prime ideal

in R̃i and it follows from the definitions that R̃i(p̃) = R(p) and P̃ (p̃) = P (p) = P̄ .

Thus we have P̃ = (p̃, P̄ ) ∈ OQi
and we can define σ̃ := χP̄ ◦αp̃|R̃∗

i
∈ XQi

. Then

σ̃◦θ = σ. Hence XT ⊆ θ∨(XQi
∪̇ · · · ∪̇XQk

). The reverse inclusion is clear and thus

(XT , R∗/T ∗) is equivalent to
⊕k

i=1(XQi
, R̃∗

i /Qi
∗), which is a SOS by 4.6 and 4.7.

Therefore (XT , R∗/T ∗) is a SOS. �

Corollary 4.9. Suppose T satisfies the conditions of 4.8. Then there exists a field
K and a preorder Q ⊆ K such that (XT , R∗/T ∗) and (XQ, K∗/Q∗) are equivalent
SOS’s. In particular, WT (R) is isomorphic to WQ(K).

Proof. This follows from 4.8 and [P, 2.8]. �

Acknowledgements: The author gratefully acknowledges support from the Uni-
versity Research Council of Emory University as well as the Alexander von Hum-
boldt Foundation. The author thanks the referee for many helpful comments and
suggestions.



VALUATIONS AND HIGHER LEVEL ORDERS IN COMMUTATIVE RINGS 15

References

[B1]E. Becker, Partial orders on a field and valuation rings., Comm. Alg. 7 (1979), 1933–1976.

[B2]E. Becker, Valuations and real places in the theory of formally real fields., Géométrie
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