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1 Introduction and notation

Given a semialgebraic set K C RY determined by a finite set of polynomial in-
equalities {g; > 0,...,gx > 0}, we want to characterize a polynomial f which is
positive (or non-negative) on K in terms of sums of squares and the polynomials
g; used to describe K. Such a representation of f is an immediate witness to the
positivity condition. Theorems about the existence of such representations also
have various applications, notably in problems of optimizing polynomial functions
on semialgebraic sets.

In case K is compact, Schmiidgen has proved that any polynomial which is
positive on K is in the preorder generated by the g;’s, i.e., the set of finite sums of
elements of the form s.g7" ... g%, e; € {0,1}, where each s, is a sum of squares of
polynomials. Putinar has proved that, under certain conditions, the preorder can
be replaced by the quadratic module, which is the set of sums {so+s191+- - -+5kgx },
where each s; is a sum of squares. Using this result, Lasserre has developed
algorithms for finding the minimum of a polynomial on such compact K, which
transforms this into a semidefinite programming problem.

What happens when K is not compact? Scheiderer has shown that if K is
not compact and dim K > 3, then Schmiidgen’s characterization can never hold,
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regardless of the g;’s chosen to describe K. Kuhlman and Marshall settled the case
where K is not compact and contained in R; the answer here depends on chosing
the “right” set of generators for K. In this paper we consider some variations
on these themes: we look at some canonical non-compact sets in R? which are
products of intervals and at some stronger and weaker versions of positivity.

We introduce some basic notation. Let S = {g1,...,¢s} denote a finite set of
polynomials in R, := R[zy,...,z,], and let

K =Ks=({aeR"| f(a) > 0}.

J

Write Y R? for the set of finite sums of squares of elements of R,; clearly, any
o € Y R? takes only non-negative values on R". We shall say that an element of
3" R? is sos. The preorder generated by S, denoted T, is the set of finite sums of
the type Y ogi'... g% where o is sos and ¢; € {0,1}. That is, a typical element

of T's has the shape
Yo (Hgf) ,
I

iel
where the sum is taken over all non-empty I C {1,...,s}, and each o_ is sos. An
important subset of the preorder is the quadratic module, Mg, which consists of
sums in which ) .¢; <1 for each summand. That is, a typical element of Mg has

the shape
(o)) + Z OG-
k=1

Clearly, Mg C Ts, and if s > 2, then inclusion is formally strict. However, there
can be non-trivial equality. For example, if S = {1 — x,1 + z}, then the identity

(1+2)(1—z) = (@) (1+2) + (“zJ) (1-2) (1)

shows that (1 + z)(1 — z) is already in Mg, so Mg = Ts for this case.

Various notions of positivity. For K C R" and f € R,,, we write f > 0 on K
if f(z) >0forall z € K and f > 0 on K if f(z) > 0 for all z € K. We consider
a stronger version of positivity which considers positivity at “points at infinity”.
(This definition appeared in [13, Ch. 7|, in the context of moment and quadrature
problems.)

For z = (z1,...,x,) € R, write (z,1) for (z1,...,7,,1) € R*™ and let

1
Tt = (z,1) € S" Cc R*M,

|(z,1)]
Suppose K C R" is a closed set. Let K* = {z* | + € K} and let K* be the closure
of {z* | + € K}. For example, if K = R?, then K* consists of the Northern
Hemisphere, and K* is the Northern Hemisphere plus the equator.




Suppose p € R, of degree d and let p* € R, 1 be the homogenization of p, i.e.,

T x

* e d n

p(xl,...,xn+1).—xn+1p( yeens )
:L.VH—I .Tn_|_1

For z € R*, let @, 4(z1,...,20) == (1 + Y0, 22)%? = |(z,1)|% It follows from
homogeneity that

p(z) = p*(z,1) = Pna(z)p”(z7). (2)
We say p is projectively positive on K if p* is positive on K*, and write p > 0 on
K. Clearly,p > 0on K = p > 0on K. A simple example shows that the converse
is false: Let K = R? and p(z,y) = 2°y? + 1, so that p*(z,y, z) = 2°y* + 2*. Then
p > 0 on K; but p*(1,0,0) = 0, so p is not projectively positive on K. Observe
that K* is compact, and so if p > 0 on K, then p* achieves a positive minimum
on K*.

Proposition 1. Suppose K C R" is closed and p € R of degree d.
(i) There exists ¢ >0 so that p — c®, 4 >0 on K iff p> 0 on K.
(1) If K is compact, then p >0 on K iff p >0 on K.
(ii3) If (x1,...,%ns1) € K*\ K*, then 1,41 = 0.
Proof. By (2), we have p* > ¢ > 0 on K* if and only if
P(3) = Bal@)p' (2°) > € B a(z).

for x € K, proving (i). For (ii), it suffices to show that p > 0 on K implies p > 0
on K. Since ®,,4 is bounded (say, by M) on the compact set K, p > c on K
implies that p* > ¢/M on K*. Finally, suppose

. N N

(T1y ey Tpyr) = A}l_)ﬂ(l)o(xg ). ,xgH_)l),
where (:cgN), e ,:vgi)l) € K* and 2,41 > 0. Then ac,(ﬁ)l > (0 for N > Ny, and for
each such N,

—N’ ceey —N
x%ﬁl $£z+)1
belongs to K. Since K is closed, the limit is in K, and by retracing the definition,

we see that (zq,...,2,41) € K*. O
Fix S, and let K = K5, M = Mg and T' = T's. We consider six properties of S:



x) f>0omnK=feT
v [f>0on K= feM
xx) f>0onK=feT
xx)y f>0on K= feM
xxkk) f>0on K= feT

xxx)yy f>0on K= feM

*
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There is an immediate diagram of implications:

f f f

(k%) = (k%) = (¥)u

In case s = 1, the two rows of properties coalesce; if K is compact, then the last
two columns coalesce.

We summarize what is known about these properties: Schmiidgen’s Theorem
[16] says that if K is compact, then (x*) holds, regardless of the choice of S. Also,
when K is compact, Putinar [12] has shown that (xx), holds iff M contains a
polynomial of the form r — > z? for some non-negative 7.

On the other hand, Scheiderer [15] has shown that if K is not compact and
dim K > 3, or if dim K = 2 and K contains a two-dimensional cone, then (xx)
fails. (Observe that K contains a two-dimensional cone iff K* contains an arc
on the equator of the unit sphere.) The proof is non-constructive. The case of
non-compact semialgebraic subsets of R has been settled completely by Kuhlmann
and Marshall [3]. They show that in this case, (x*) and (#**) are equivalent and
hold iff S contains a specific set of polynomials which generate S (what they
call the “natural set of generators”). They also show that (x*),, and (xxx),, are
equivalent, and only hold in a few special cases.

In general, (x**) will not hold, even in the compact case. An easy example is
given by S = {(1 — z%)?} , in which case Kg = [—1,1] but 1 — z? ¢ Ts. See [17]
for details on this example.

The authors [10] previously considered two special cases in R, in which K =
[—1,1] or [0,00). (It is easily shown via linear changes of variable that the case
of closed intervals in R reduces to one of {[—1,1],[0,00), R}.) For each of these
intervals, (**x),, has been long known, for the “natural set of generators”. Hilbert
knew (and saw no need to prove) that if f(z) > 0 for x € R, then f is a sum
of (two) squares of polynomials; this corresponds precisely to Tj. If we take S =
{14 2,1 -z}, so that K = [—1, 1], then Bernstein proved (x) in 1915. On the
other hand, if S = {1 — 2%}, then Fekete proved (**%) (some time before 1930,
the first reference seems to be [8]). The authors showed as Corollary 14 in [10]
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that if S is given and K = [0, 00), then € + 2 € T for all € iff S contains cz for
some ¢ > 0. In other words, (xx) fails for the (non-compact) set [0, 00) unless the
natural generator is included.

In view of the foregoing, this paper considers products of intervals in the plane.
There are, up to linear changes and permutation of the variables, six cases of
products of closed intervals in the plane, and we take the natural set of generators:

Ko=[-1,1] x [-1,1] So={1—z,1+z,1-y,1+y};
K, =[-1,1] x [0,00) S1={l—z,1+zy};

K, =[-1,1] X (—o0,0) So={1—-xz,1+z};

K3 = [0,00) x [0, 00) Ss ={=z,y};

K, =10,00) x (—00,00) Sy =A{z};

K5 = (—00,00) X (—00, 00) S5 = 0.

Since Kj is compact, f > 0 and f > 0 are equivalent and (x*) holds. By the
Putinar result, (%), holds in this case as well. Scheiderer recently showed [15]
that (k) holds for K. Thus all but the possibly (x %), hold hold for K.

All properties fail for K5, by classical results of Hilbert and Robinson. K3 and
K, contain two-dimensional cones, so Scheiderer’s work implies that (xx) fails for
them; we shall present simple examples in the next section. In fact, we will show
that (%) does not hold in these cases. Thus all properties fail for K3 and Kj.

Finally, we consider K; and K. We show that (xx)s does not hold for K; and
that (%) holds for K. It is still an open question whether or not (x) holds for K;
or Ks.

Projective positivity and optimization. Recently, there has been interest in
using representation theorems such as those of Schmiidgen and Putinar for devel-
oping algorithms for optimizing polynomials on semialgebraic sets. Lasserre [4] [5]
describes a method for finding a lower bound for the minimum of a polynomial
on a basic closed semialgebraic set and shows that the method produces the exact
minimum in the compact case. Marshall [6] shows that in the presence of a cer-
tain stability condition, the general problem can be reduced to the compact case,
and hence can be handled using Lasserre’s method. It turns out that Marshall’s
stability condition is intimately related to projective positivity.

Definition 1 (Marshall). Suppose S = {¢1,...,9s} C R, and f € R, is bounded
from below on Kg. We say f is stably bounded from below on Kg if for any h € R,
with degh < deg f, there exists € > 0 so that f — eh is also bounded from below
on Ks.

Theorem 1 (Marshall). Suppose S is given as above and f is stably bounded
from below on Ks. Then there is a computable p > 0 so that the minimum of f
on Kg occurs on the (compact) semialgebraic set Ks N {z | p— ||z||* > 0}.



We now interpret Proposition 1 in terms of projective positivity.

Proposition 2. Given S = {g1,...,9s}, f C Ry. Then f > 0 on Kg implies f
1s stably bounded from below by 0 on Kg.

Proof. By Proposition 1, f > 0 iff there is ¢ € R" so that f — e¢®(n,d)(z) > 0 on
Kg. Given h € R,, with deg h = d, then there is some N > 0 and € > 0 such that
ep(z) < ¢®(n,d)(x) for ||z|| > N. Then f —ep > 0on KsN{z | ||z|| > N} and
this implies f — ep is bounded from below on K. O

Thus for applications to optimization, projective positivity is the “right” notion
of positivity to consider. As Marshall remarks in [6]: “In cases where f is not stably
bounded from below on Kg, any procedure for approximating the minimum of f
using floating point computations involving the coefficients is necessarily somewhat
suspect.”

2 The plane, half plane, and quarter plane

In the section we consider the semialgebraic sets K3, K4, and K5 with generators
Ss, S4, and S5. As stated above, it has been shown that (**) holds neither for Kj
(Hilbert) nor for K3 and K, (Scheiderer). In this section, we will construct explicit
examples showing that (%) does not hold, which implies (%) does not hold.

First we consider polynomials f € Ry := R = R[z,y] which are non-negative
in the plane and review some results about when they are in ¥ R2. We shall use
the standard terminology that p is psd if p > 0 on R? and p is pd if p > 0 on R?
In 1888, Hilbert [2] gave a construction of a non-sos polynomial which is psd on
R?. This construction was not explicit, and the first explicit example was found
by Motzkin [7] in 1967. R. M. Robinson simplified Hilbert’s construction [14]; we
will use this example to construct the counterexamples in this section:

Qz,y,2) = 2 + 9y + 20 — (&™) + 2°y* + 2*2% + 22" + ' + 72" + 32772

For a > 0, let Q.(z,y,2) = Q(z,y, 2) + a(x?® + y*> + 2?)3, then since @ is psd,
Q. is also pd for @ > 0. It is shown in [14] (and the observation really goes back
to [2]) that the cone of sos ternary sextic forms is closed. Since () does not belong
to this cone, it follows that for some positive value of a, (), is not sos. In fact, the
methods of [1] can be used to show that @, is pd but not sos for a € (0,1/48);
we omit the details. Let ¢,(z,y) € R[z,y| be the dehomogenization of @,, then
for 0 < a < 1/48, g, is pd and not sos. As already noted, K? is the Northerm
Hemisphere plus the equator, and ¢ = @),, hence g, > 0 on K5 and g, is not in
Ts. Thus (x) does not hold for K.

Note that @ is even in z and so we can consider f(z,y) = ¢.(v/,y), so that
f(@%,y) = qu(z,y). Then f*(z%,y,2) = Qu(x,y, 2), hence f*(z,y,z) > 0 for z > 0.



It is easy to see that K is the quarter sphere plus half the equator; thus f > 0
on K,. But if f € T}, then there exist sos o; so that

f(x,y) = ao(ac,y) + xal(xa y)'

If we replace = by z? above, we obtain

Qa(z,y) = f(2®,y) = 00(2%,y) + 201 (2%, ).

This implies that @), is sos, a contradiction.
A virtually identical argument shows that ¢,(v/z,/y) > 0 on Kj for a > 0,
but does not belong to Ts.

3 Non-compact strips in the plane

Before we discuss K; and K,, we make a detour to K = [—1,1]. There are two
natural sets of generators for K. Let S; = {1 —x,1+x} and S, = {1 —2%}. Then
clearly Kg, = Kg, = K and Mg, = Ts,, because |Sy| = 1. As remarked earlier,
(1) implies that Mg, = Ts,; finally, Ts, C Ts, is immediate and

(1 j;x)Q N (1 —2x2) 3)

shows the converse. Thus it does not matter whether one takes S; or Sy (or M or
T) in discussing [—1, 1].

What do (1) and (3) have to say in the plane? First, for K5, we might take
either S; or S, above as the set of generators, keeping in mind that the set of
possible ¢’s is taken from Y R2 rather than > R? as above. Then, once again
M and T are not affected by the choice of generators and M = T. For K;, we
similarly have from (3) that T{l_IQ’y} = T{1,$71+$7y} and M{l_wz,y} = M{lfw,H—w,y}-
However, in this case, T'# M. In fact, y(1 — z), which evidently is an element of
T{1_¢,1+ey}, does not belong to M{1_¢ 144y} = M52 4.

Theorem 2. Suppose S = {fi(x),..., fm(x),y} is such that Ks = K;. Then for
every f(x) € R[z], we have g(z,y) = f(x) + y(1 — z) & Ms. In particular, (%)
does not hold for S.

1+x=

Proof. We show that that there cannot exist an identity

9(z,y) = f(z) + y(1 — z) = op(z,y) + Zai(w, Y) fi(x) + omii(z,y) -y, (4)

where the o;’s are sos. Suppose (4) holds, and let

I={a€l0,1) | Hfi(a) # 0};
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I is the interval [0, 1) minus a finite set of points. Fix a € I. Since (a,y) € K;, it
follows that f;(a) > 0. Consider (4) when z = a:

m

f(@) +y(1—a) = oo(a,y) + ) oi(a,y) fila) + omsr(a,y) - y. (5)

=1

Each o;(a,y) is sos, and hence psd, and so as a polynomial in y has leading term
c;y*™i, where ¢; > 0. Let M = maxm;. Then the highest power of y occurring
in any term on the right hand side of(5) is y? or y?*1  with positive coefficient
or coefficients, and so no cancellation occurs. In view of the left hand side, this
highest power must be y'. It follows that M = 0, so that each o;(a, y) is a constant.
Writing o3 (z, y) = 3, A7 (2, ), we see that, deg, A;;(a,y) = 0 for a € I. Suppose
now that deg, A; ;(, y) m;; and write

Aij(z,y) = Z Bi,j,k(m)yka

We have seen that B; jx(a) = 0 for a € I'if £ > 1. Any polynomials which vanishes
on I must be identically zero, hence B; ; x(x) = 0 for k£ > 1. Thus m, ; = 0 and each
A; j(z,y) is, in fact, a polynomial in x alone, so that o;(z,y) = o,(z). Therefore,
(5) becomes

flx) +y(1 —z) = op(z +Zo] ) + Yo ().

Taking the partial derivative of both sides of this equation with respect to y, we
see that 1 — 2 = o,,51(z). This contradicts the assumption that o, is sos.

Let f(z) = e for some € > 0. Then g(z,y) = e+ y(1 — x) is positive on K7, but
g & M, thus (xx)y fails for K. Observe, however, that if we take either of the
standard generators for K, then

(-2  y(-2)

gz, y)=€e+y(l—z)=€+y- 5t 5 € Ts.
This shows that Ts # Mg in this case. (The preceding construction works for any
polynomial f which is positive on [—1,1].) O

Proposition 3. Let K = Ky = [—1,1] xR and suppose f € R[z,y|. The following
are equivalent:

(i) f>0o0onK;
(i) f >0 on K and f*(0,1,0) > 0;

(iii) f > 0 on K and the leading term of f as a polynomial in y is of the
form cy?, where ¢ € R and d = deg f.



Proof. It is not too hard to see that K* consists of the intersection of the unit
sphere with the set of (u,v,w) satisfying |u| < w and w > 0. Then (i) = (ii) is
clear since (0,1,0) € K*. Suppose that (i) holds. Let d = deg f and write f =
Fy+- - -+ Fy, where F; is the homogeneous part of f of degree i, so that f*(z,y, 2) =
Z?:o 2979 Fj(z,y). Then f*(0,1,0) = F4(0,1), which implies F,;(0,1) > 0. Hence
Fy(z,y) must be of the form cy?.

Finally, suppose that (iii) holds. We need to show that f(u,v,w) > 0 for
(u,v,w) € S? with |u] < w. If w = 0, then v = 0 and (u,v,w) = (0,1,0);
recall that f(0,1,0) > 0 by hypothesis. If w > 0, then (u,v,w) is in K*, hence
(u/w,v/w) € K. Since f(u/w,v/w) > 0, we have f*(u,v,w) > 0.

]

Our final result is that (x) holds for K5. The proof uses an idea from [9]: For
g(z,y) > 0 on Ky, fix y = a and look at the one variable polynomial g(x, a). This
is positive on [—1, 1], a compact set, so we have representations of each g(x,a) in
Ti1, C Rjz]. We “glue” these together to form a representation of g(x,y) in Ts.

As in [10], for f(z) € Rz] of degree d, we define f(z), the Goursat transform
of f, by the equation

f@) = 0 (1)

1+z

We collect some easy results from [10] about the Goursat transform:
Lemma 1. If f(z) € R[z] of degree d, then

1. deg f < d with equality iff f(—1) # 0;

2. f=21f;

3. f>0o0on[-1,1] iff f >0 on [0,00) and deg(f) = d.

We also need a quantitative version of an old result, proved as [10, Theorem 6].
This is stated using the improved bound for Pélya’s Theorem from [11].

Proposition 4. Suppose f(z) = 3% @z’ € Rlz] and
A=min{f(z) | -1 <z <1} >0.
Let f(z) =30 ai(1 — 2)i(1 + )% = S50 bia? and let
L(f) := max{|b;| | i=0,...d}.
Finally, let B
d(d—1) L(f)

NIy==773

If N > N(f), then the coefficients of the polynomial (1 + z)N f(z) are positive.



Theorem 3. Given N,d € N, there exist polynomials C; € Rlxg, ..., z4], 0 <
i < N +d, with the following property: If f(z) = Z?:o a;z' € R[z] is positive on
[—1,1] and N > N(f), then C;i(aq,-.-.,aq) >0 and

N+d

Zc ag, - - - aqg) (1 + )} (1 — )N i,

Proof. Write
N+d

(1+0)"F =3 by, Q

where b; > 0 for all j. .
For 0 < j < N +d, let ¢j(to, . .., tq) be the coefficient of 27 in the expansion of

d
1+:cNZt] (1 —2)"(1 + )%
7=0

clearly each ¢; € Rty, ..., t4), and by construction, b; = c¢;(ag, ..., aq)-
Now apply the Goursat transformation to both sides of (6) to obtain

N+d
oVFAf =3 b (1 — 2) (14 z)V
j=0

Setting C; = 2 (W+4¢; we have that Cj(as,...,aq) > 0 for all j and f =
ZCj(ao,...,ad)aﬂ. U

Example 1. For linear polynomials the proposition is easy. Suppose f(z) =
a1z + ag > 0 on [—1,1], then we can find a representation of the form specified
with N = 0. In this case, we have

f(z) = Co(ag,a1) - (1 —x) 4+ Ci(ag, a1) - (1 — x),

with C()(to, tl) 1t() ltl and Cl(to, tl) = %to-l—%tl. Note that f(l‘) > (0 on [—1, 1]
implies 1mmedlately that Cj(ag,a1) > 0.

Suppose we are given g > 0 on Kj. For each r € R, define g,(z) € R[z| by
g-(z) = g(z,r) and note that g,(z) > 0 on [—1,1] for all . Let L, denote L(g,)
and let A\, = min{g,(z) | -1 <z < 1}.

Lemma 2. Suppose g > 0 on K,. Then there is u > 0 such that

- <u

|

for all r.
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Proof. This is similar to [9, Prop. 1]. Let d = deg, g and m = deg, g, and write

g9(z,y) = Zhi(x)yi-

Since g > 0 on K, by Proposition 3, the leading term in ¢ as a polynomial in y,
hm(x), is actually a positive real constant c¢. For each i, 0 < i < m — 1, there is
M; > 0 such that h;(z) < M; for x € [-1,1]. Then, on [—1,1],

m—1
gr(z) > cer™ — Z Mr? > wr™

Jj=

for some positive constant w and |r| sufficiently large. In other words, for suffi-
ciently large |r|, we have A, > wr™.

Now write ¢g(z,y) as a polynomial in z: g = Z?:o ki(y)x'. Then degk;(y) <m
for all 4, by assumption. This means that the coefficients of g,(x) are O(|r|™) as
|r| — oo. The coefficients of g.(z) are linear combinations of the coefficients of
g-(z), so the same is true for g,(x). From this is follows that

L,  wrm
— <
Ar

wrm

for some constant w’ and |r| sufficiently large and the result is clear.

Theorem 4. (x) holds for Ky: If g > 0 on K, then g € Ts.

d(d—1)
2

Proof. Let u be as in the lemma and set N = u, so that we can apply

Proposition 3 to each g, with this V.
For i =0,...,N +d, let C; € Rltg,...,t4] be as in the proposition. Writing

g(z,y) = ZLO ei(y)z', define Py, ..., Pyin € Rly] by P; = Cji(eo(y), - - -,ea(y))-
Then the conclusion of Theorem 3 implies that

9(z,y) = Z Pi(y)(1 — )" (1 +2)"* . (7)

For each 7 € R and each j, we have P;(r) = Cj(eo(r),...,eq(r)) and then, since
{eo(r),...,eq(r)} are the coefficients of g,, it follows from the conclusion of Propo-
sition 3 that P;(r) > 0; that is P; > 0 on R for all j. Thus, each P;(y) is a sum of
two squares of polynomials and, plugging sos representations of the P;’s into (7)
yields a representation of g in 75. O

Example 2. Let g(z,y) = y?> — 2y + y + 1, then for each r € R,
g (@) =—-rz+(*+r+1)>0

11



n [—1,1]. By the above, we have, for each r, the representation
L s L o
gr = 5(7“ +2r+1)(1—2z)+ E(T +1)(1+2x)
Then Co(y) =y*+2y+1= (y+1)? and C;(y) = y* + 1 yields the representation

g,y = S+ 120 —2) + (P + (1 +2) €T,
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