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ABSTRACT. We describe an algorithm for deciding whether or not a real poly-
nomial is positive semidefinite. The question is reduced to deciding whether
or not a certain zero-dimensional system of polynomial equations has a real
root.

1. Introduction

A real polynomial f € R[X,...,X,] is positive semi-definite, or psd, if
f(z) > 0for all x = (x1,...,2,) € R™. In this note we give an algorithm for the
following problem: Given a particular polynomial f, how can one decide if f is psd
or not?

Psd polynomials have been studied extensively by many researchers (see, for
example, [5]), mainly in the context of finding examples of psd polynomials that are
not sums of squares. For all but a few isolated examples, the psd polynomials given
in these papers come from monomial substitution into the arithmetic-geometric
inequality so one knows a priori that the polynomial in question is psd.

The question of deciding the positivity or non-negativity of a real polynomial
arises in many problems in Engineering, for example in Control Theory. Algorithms
for special types of polynomials have been given, and a test for positivity of arbitrary
binary forms in described in [2]. In [3], a general algorithm for deciding positivity is
given. The main idea is to treat all but one of the variables as parameters and apply
the Sturm-Habicht algorithm for real root counting in the univariate case. This
technique is not practical for any but very small cases since it involves calculation
of determinants of large matrices with polynomial entries. The example computed
in [3] is a sparse polynomial of degree 4 in 3 variables, and in this example some
ad-hoc methods are used. Furthermore, part of the procedure involves calculation
of real roots of very large degree univariate polynomials, thus some floating point
approximations would be needed. Our algorithm has the advantage of being able
to handle somewhat larger examples, and uses only purely symbolic methods.

2. Real Root Counting

We fix n € N and let R[X] denote R[X;,...,X,]. Suppose f(X) € R[X]. We
first note that f(z) < 0 for some z € R" if and only if the polynomial

t? + f(X) € RX, ]
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has a real root. Thus our problem can be reduced to the problem of deciding
whether or not a polynomial in one more variable has a real root.

More generally, suppose we have a finite number of multivariate real polynomi-
als fi,..., fr and we want to decide if the system of equations f; =0,..., fr =0
has a solution or not. If we are interested in solutions over C, then there are
well-known methods for finding them, e.g., Groebner Basis techniques. However,
if we are only interested in real solutions, then the problem becomes much harder.
(Groebner Basis techniques can not, in general, tell us whether or not there are
real solutions.) However, there is one case where algorithms exist for finding real
roots, namely, the case where there are only finitely many complex solutions to the
polynomial system.

More precisely, given f1,..., fr € R[X], let V =V (f1,..., fr) denote the vari-
ety in C" of common zeros of the f;’s, and let Ve (f1,..., fx) =V (f1,..., fr) NR".
If V(f1,..., fr) is finite, then there exists an algorithm for counting the number
of points in Vk(f1,..., fr). In particular, we can decide if Vi(fi1,..., fr) is empty
or not. Furthermore, there exists software implementing this algorithm: The Real-
Solving package, written by F. Rouillier.

Now consider the problem of deciding, for a single f € R[X], whether or not
Ve(f) is empty. Of course, V(f) will not be zero-dimensional for n > 1, hence
we cannot apply RealSolving directly. We need a way to reduce to the case of a
zero-dimensional system of polynomials. If f is smooth over R, i.e., the partial
derivatives of f do not simultaneously vanish at any point of Vg(f), then a way
to do this is to look for critical points of some other polynomial on V(f), using
Lagrange multipliers. The set of critical points will be zero-dimensional almost
always. (This will be made more precise below).

DEFINITION. Suppose f, ¢ € R[X] and A is a new indeterminate. For g € R[X],
0
let gx, denote 6—)? The ideal of Lagrange multipliers of f with respect to ¢, denoted
L(f} (ls)ﬂ iS
(f: A fx, — dxy5- - AMx, — 9x,.),
the ideal in R[X1,..., X,,, A] generated by f and the partial derivatives of A\f — ¢.

LEMMA 1. Suppose we are given f,¢ € R[X], and suppose f is smooth. If
Ve(f) # 0 and ¢ attains a minimum on Ve (f), then Ve(L(f, ¢)) # 0. If VR(L(f, 9)) #
0, then Ve(f) # 0.

Proor. Set L := L(f,¢). From elementary analysis we know that the real
points of the projection of V(L) contain all locally extremal points of ¢ under the
constraint f = 0. Thus if Vi(f) is not empty and ¢ attains a minimum on Vi(f),
then Vr(L) is not empty. Since the projection of Vi(L) is contained in Vg(f),
VR(L(f, (;5)) 7é @ implies VR(f) 7é @ |:|

It follows from Sard’s Theorem that { ¢(z) | (z,\) € V(L(f,®)) } is finite for
a generic choice of ¢. (For a proof see, e.g., [7], Chap. 3). Thus we can proceed
as follows: Choose a “distance function” ¢ and check if L(f, ¢) is zero-dimensional
as a complex variety. (RealSolving does this automatically, using a Groebner Basis
calculation.) If so, then we can test whether Vi(L(®, f)) is empty. If V(L(f, ¢))
is not zero-dimensional, we can change the distance function ¢ with the aim of
making V (L(f, ¢)) zero-dimensional. In practice, we use ¢ = Y. r; X?, where r; are
small integers.
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REMARK. The assumption that V(f) is smooth is necessary. For example,
consider f(x,y) = (z — 1) — y2, which obviously has real roots. In this case
Ve(L(f,¢)) = 0 for ¢ = 2% + 2. The problem is that the point of minimum
distance from (0,0) is a singular point of Vg(f). On the other hand, we can get
around this problem if f has only finitely many singular points, by first checking
for a real singular point. If V(f) has a real singular point we are done, and if not,
then we know Vi (L(f, ¢)) has no real points iff V(f) has no real points, and the
method works in this case.

3. The Positivity Algorithm

Given f € R[X], we want to decide if f is psd or not. Our method is to reduce
to the case of a zero-dimensional system of polynomial equations as follows: Let ¢
be a new indeterminate, and define F := ft>+1 € R[Xy,..., X,,t]. Then f is psd
iff Vg(F) is empty. Furthermore, F' is always smooth, thus we can use the method
of Lagrange multipliers described in the previous section. If we apply the method
with ¢ = 1 X7 + - +7r, X2 + t?, then we can simplify L(F,¢) and eliminate one
variable:

PROPOSITION 2. Given f € R[X], define F =t*f+1 € R[X1,...,X,,t]. Then
for fivedry,...,rn € RY, fis psd iff Ve (F, t* fx, +2r Xy, ..., t fx, +2r,X,) = 0.

Proor. Let ¢ =r X2+ - +r, X2 and set
Vo= Ve(F,t* fx, + 2 Xy, ..., t fx, +2r,X,),

L := Lg(F, ¢) = Vr(F, /\1‘,2fX1 —2r Xq,. .. /\t2an —2r, X, 2t f — 2t).
From Lemma 1, we have that f is psd iff V(L) = 0, thus we want to show L #
iff V£ 0. Given z € R* and Ag,tg € R such that a = (z, Ag,t0) € L, then since
F(a) = 0 we must have f(z) # 0, and g # 0. Thus F(«) = 0 implies t3 = —1/ f(x)
and 2tg Ao f (z) —2tp = 0 implies 1/ f = Ag. It now follows easily that (z,t9) € V and
so V # (). Conversely, given (x,ty) € V, setting \g = —t3 yields (z, \g,%9) € L. O

ExAMPLE. Let f = 226 + 95 — 32%y? + 22y?> — 6y + 5 and F = t>f + 1. By
Proposition 2, f is psd iff

V= V(F t*(122° — 122%y* + 22y?) + 2z, t*(6y° — 62y + 2’y — 6) + 2y)

has no real point. According to RealSolving, V' is zero-dimensional, there are 128
points in V', and 4 of them are real. Thus f is not psd.
The polynomial f is a special case of the following: For each a € RT, set

fo =225 4+ 4% — 32%9% — 6y + 5 + ax?y>.

We have just shown that f; is not psd. We can follow the procedure above to
decide if fo is psd or not. In this case, with F' = t>f5 + 1 and V as above, V
has 128 complex roots and none of them are real. Thus f5 is psd. This implies
that there exists b, 1 < b < 2, such that f, is not psd for a < b, and is psd
for a > b. We would like to find b. We cannot follow the exact procedure used
for fi1, fo since the RealSolving software cannot handle parameters. However we
can get rid of the parameter using the following technique, suggested by Reznick:
First note that f,(z,y) > 0 trivially when zy = 0, and also f,(z,y) > f.(z,|yl),
hence it suffices to assume z > 0 and y > 0. Then we have f,(z,y) > 0 iff
(225 +y5 — 32%y? — 6y +5)/2%y? +a > 0. Hence —b is the minimum of the rational
function G(z,y) := 22ty =2 — 322 — 62 2y~ ' + 522y 2 + ¢y 2. Set t := 22, take
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derivatives and clear denominators to get that the critical points of G are V' (g1, g2),
where g1 = —y® — 3t%y% + 6y + 4> — 5 and ¢ = 49% + 6y — 4> — 10. A Groebner
Basis of (g1, g2) in lex order contains a polynomial in ¢ of degree 13, which has a
root at 0, and three other real roots. Solving numerically, we find that G has one
real critical value with x between 1 and 2, and that b is approximately 1.2099.

We note in passing that the above trick works for any family of polynomials of
the form G + aH, where H is psd.

4. Practical Considerations

A program for creating the zero-dimensional system in Proposition 2 is triv-
ial to implement; we used Mathematica for this and to create the file needed for
RealSolving. We start with the distance function ¢ = X? + --- + X2 + 2, and
if the system is not zero-dimensional, we add some randomly chosen small integer
coefficients to the X?’s. For the many examples we computed, it never took more
than two tries to create a zero-dimensional system.

The RealSolving software uses a modern extension of classical ideas of Hermite
et. al. for real root counting in zero-dimensional varieties, which was discovered by
Becker and Wormann, and by Pederson, independently. For details of the theory
behind the algorithm, see [1] or [4]. The first part of the implementation in Re-
alSolving constructs a multiplication table for the finite-dimensional vector space
corresponding to the zero-dimensional ideal; this involves a Groebner Basis calcula-
tion and is the most time-consuming part of the program. Then a certain quadratic
form is computed with the property that its signature gives the number of real roots
of the system. Finally, the signature of the quadratic form is computed. To learn
more about RealSolving, or to use it, go to the URL

http://www.loria.fr/"rouillie/docrs/rs/rs.html

A detailed description of the theory and the implementation can be found here and
in [6].

An obvious question to ask is what size problem can be computed in a rea-
sonable amount of time? If we start with f of degree 2d in n variables, then the
resulting zero-dimensional system (from Proposition 2) has degree at most 2d + 3
in n + 1 variables. For a zero-dimensional system, the amount of time and memory
needed for RealSolving depends only on the degree of the variety, i.e., the number
of (complex) roots, counted with multiplicities. The current version of RealSolving
can, in practice, handle varieties with maximum degree between 200 and 300; a
future version will be able to handle degree 1000 or more.

Our computations were done on a 250 megahertz Ultrasparc computation server.
For the example above, in which the polynomial has degree 6 in 3 variables and the
complex variety has degree 128, the computation took 100 minutes. The problem
computed in [3] is a polynomial of degree 4 in 3 variables. Using our algorithm,
the degree of the variety is 150, and the computation took 2 hours. For several
examples of degree 8 in 2 variables, the degree of the variety was around 250, and
it took about 6 hours of computation time. Examples of degree 4 in 4 variables
were similar. Examples of degree 6 in 4 variables and of degree 4 in 5 variables
had corresponding zero-dimensional varieties of degree around 2000. In these cases,
RealSolving was able to compute the degree of the varieties in a few minutes, but
quickly ran out of memory when attempting to count real solutions.
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