Pólya's Theorem with Zeros

Mari Castle * Victoria Powers ${ }^{\dagger} \quad$ Bruce Reznick ${ }^{\ddagger}$

February 5, 2011

1 Introduction

Let $\mathbb{R}[X]:=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ and let $\mathbb{R}^{+}[X]$ denote the set of polynomials in $\mathbb{R}[X]$ with nonnegative coefficients. We write Δ_{n} for the standard n-simplex

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{i} \geq 0, \sum x_{i}=1\right\} .
$$

Pólya's Theorem [8] says that if p is a homogeneous polynomial in n variables which is positive on Δ_{n}, then for a sufficiently large exponent $N \in \mathbb{N}$, all of the coefficients of $\left(X_{1}+\cdots+X_{n}\right)^{N} p$ are strictly positive. This elegant and beautiful result has many applications, both in pure and applied mathematics.

In [9], the second and third authors gave an explicit bound for the exponent N in terms of the degree, the size of the coefficients, and the minimum of p on the simplex. The current paper is the culmination of a project, begun in [3] and [10], to characterize forms, possibly with zeros on Δ_{n}, which satisfy a slightly relaxed version of Pólya's Theorem (in which the condition of "strictly positive" is replaced by "nonnegative") and to give a bound for the N needed. In this paper we give such a characterization along with a bound. This is a broad generalization of the results in [3] and [10].

There are recent results by other authors related to the work in this paper. Recently, H.-M. Mok and W.-K. To [7] gave a sufficient condition for a form to satisfy the relaxed version of Pólya's Theorem, along with a bound in this case. In [1], S. Burgdorf, C. Scheiderer, and M. Schweighofer look at more general questions on polynomial identities certifying strict or non-strict positivity of a polynomial on a closed set in \mathbb{R}^{n}. As a corollary to one of their results, they give a sufficient condition for the relaxed Pólya's Theorem to hold for a form, involving the positivity of the partial derivatives of a form on faces of the simplex. For both of these results,

[^0]the condition given is sufficient but not necessary; they can be deduced from our results.

The original Pólya's Theorem with bound from [9] has been used by other authors in applications. For example, in [11] it is used to give an algorithmic proof of Schmüdgen's Positivstellensatz, and in [4] it is used to give results on approximating the stability number of a graph. Also, in [6], an easy generalization of Pólya's Theorem and the bound to a noncommutative setting is given and used to construct relaxations for some semidefinite programming problems which arise in control theory. We believe that the results in this paper should have broad application to these and other areas.

2 Preliminaries

Let $\operatorname{Po}(n, d)$ be the set of forms of degree d in n variables for which there exists an $N \in \mathbb{N}$ such that $\left(X_{1}+\cdots+X_{n}\right)^{N} p \in \mathbb{R}^{+}[X]$. In other words, $P o(n, d)$ are the forms which satisfy the conclusion of Pólya's Theorem, with "positive coefficients" replaced by "nonnegative coefficients."

For $I \subseteq\{1, \ldots, n\}$, let $F(I)$ denote the face of Δ_{n} given by

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \in \Delta_{n} \mid x_{i}=0 \text { for } i \in I\right\} .
$$

Note that the relative interior of the face $F(I)$ is the set

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \in F(I) \mid x_{j}>0 \text { for all } j \notin I\right\} .
$$

For $f(X) \in \mathbb{R}[X], Z(f)$ denotes the real zeros of f.
Given $f=\sum_{\alpha \in \mathbb{N}^{n}} a_{\alpha} X^{\alpha} \in \mathbb{R}[X]$, let $\operatorname{supp}(f)$ denote $\left\{\alpha \in \mathbb{N}^{n} \mid a_{\alpha} \neq 0\right\}$ and define

$$
\Lambda^{+}(f):=\left\{\alpha \in \operatorname{supp}(f) \mid a_{\alpha}>0\right\}, \quad \Lambda^{-}(f):=\left\{\beta \in \operatorname{supp}(f) \mid a_{\beta}<0\right\} .
$$

For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$ in \mathbb{N}^{n}, we write $\alpha \preceq \beta$ if $\alpha_{i} \leq \beta_{i}$ for all i, and $\alpha \prec \beta$ if $\alpha \preceq \beta$ and $\alpha \neq \beta$.

For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$ and a face $F=F(I)$ of Δ_{n}, it will be convenient to use the notation α_{F} for $\left(\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{n}\right) \in \mathbb{N}^{n}$, where $\tilde{\alpha}_{i}=\alpha_{i}$ for $i \in I$ and $\tilde{\alpha}_{j}=0$ for $j \notin I$. Then $\alpha_{F} \preceq \beta_{F}$ iff $\alpha_{i} \leq \beta_{i}$ for all $i \in I$. (This is denoted $\alpha \preceq_{F} \beta$ in [2] and [7].)

For a form $p=\sum a_{\alpha} X^{\alpha} \in \mathbb{R}[X]$, we can write $p=p^{+}-p^{-}$for uniquely determined $p^{+}, p^{-} \in \mathbb{R}^{+}[X]$. Then for $N \in \mathbb{N}$ and $d=\operatorname{deg} p$, we have

$$
\begin{aligned}
\left(X_{1}+\cdots+X_{n}\right)^{N} p & =\left(X_{1}+\cdots+X_{n}\right)^{N}\left(p^{+}-p^{-}\right) \\
& =\left(X_{1}+\cdots+X_{n}\right)^{N} p^{+}-\left(X_{1}+\cdots+X_{n}\right)^{N} p^{-} \\
& =\sum_{|\gamma|=N+d} A_{\gamma} X^{\gamma}-\sum_{|\gamma|=N+d} B_{\gamma} X^{\gamma},
\end{aligned}
$$

where $|\gamma|$ denotes $\gamma_{1}+\cdots+\gamma_{n}$.
We call A_{γ} the positive part and B_{γ} the negative part of the coefficient of X^{γ} (although $B_{\gamma} \geq 0$). From calculations given in [9], we have

$$
\begin{align*}
& A_{\gamma}=\sum_{\substack{\alpha \in \Lambda^{+}(p) \\
\alpha \preceq \gamma}} \frac{N!}{\left(\gamma_{1}-\alpha_{1}\right)!\cdots\left(\gamma_{n}-\alpha_{n}\right)!} \cdot a_{\alpha} \tag{1}\\
& B_{\gamma}=\sum_{\substack{\beta \in \Lambda^{-}(p) \\
\beta \preceq \gamma}} \frac{N!}{\left(\gamma_{1}-\beta_{1}\right)!\cdots\left(\gamma_{n}-\beta_{n}\right)!} \cdot\left(-a_{\beta}\right) \tag{2}
\end{align*}
$$

We begin with some simple observations about forms in $P o(n, d)$.
Proposition 1. Suppose $p \in \operatorname{Po}(n, d)$.
a. If u is a point in the relative interior of a face F of Δ_{n} and $p(u)=0$, then p vanishes everywhere in F. In particular, if $p(u)=0$ for u an interior point of Δ_{n}, then p is the zero form.
b. $Z(p) \cap \Delta_{n}$ is a union of faces of Δ_{n}.
c. If $\beta \in \Lambda^{-}(p)$, then for every face F of Δ_{n}, there is $\alpha \in \Lambda^{+}(p)$ such that $\alpha_{F} \preceq \beta_{F}$.

Proof. We note that (a) is easy (a proof is given in [10] and [2, Prop. 2]) and (b) follows immediately from (a).

For (c), without loss of generality we can assume $F=F(\{1, \ldots, r\})$ with $0 \leq r<$ n. We have $N \in \mathbb{N}$ with $\left(\sum X_{i}\right)^{N} p \in \mathbb{R}^{+}[X]$. Let $\gamma=\left(\beta_{1}, \ldots, \beta_{n-1}, \beta_{n}+N\right) \in \mathbb{N}^{n}$; then $|\gamma|=N+d$ and $\beta \preceq \gamma$. Write the coefficient of X^{γ} in $\left(\sum X_{i}\right)^{N} p$ as $A_{\gamma}-B_{\gamma}$ as above; then since $\beta \preceq \gamma$, by equation (2), $B_{\gamma}>0$. Since the coefficient of X^{γ} in $\left(\sum X_{i}\right)^{N} p$ must be nonnegative, this implies $A_{\gamma}>0$ and hence, by equation (1), there is $\alpha \in \Lambda^{+}(p)$ with $\alpha \preceq \gamma$. This in turn implies $\alpha_{F} \preceq \beta_{F}$, which proves (c).

Remarks 1. The conditions in the proposition are necessary but not sufficient conditions for a real form p of degree d that is nonnegative on Δ_{n} to be in $\operatorname{Po}(n, d)$. This follows from [2, Example 2] or [7, Example 5.1]. Condition (c) was noticed independently in [7].

In [7], H.-N. Mok and W.-K. To give a sufficient condition for a real form p of degree d that is nonnegative on Δ_{n} to be in $\operatorname{Po}(n, d)$. This condition is related to (c) in Proposition 1.

Theorem 1 ([7], Theorem 2). Suppose p is a form of degree d such that $p \geq 0$ on $\Delta_{n}, Z(p) \cap \Delta_{n}$ is a union of faces of Δ_{n}, and p satisfies the following property: For every face F of Δ_{n} with $F \subseteq Z(p)$ and each $\beta \in \Lambda^{-}(p)$, there is $\alpha \in \Lambda^{+}(p)$ such that $\alpha_{F} \prec \beta_{F}$. Then $p \in \operatorname{Po}(n, d)$.

This theorem will follow easily from our main theorem. The new property in the above theorem is not always necessary, as shown by a simple example in [7, Example 5.2], and also by the following 1-parameter family of examples based on an example in [5].

Example. Let $p_{a}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=X_{1}^{4}+X_{2}^{4}+X_{1}^{2}\left(X_{3}^{2}-a X_{3} X_{4}+X_{4}^{2}\right)$, where $0<a \leq 2$. Then $p \geq 0$ on $\Delta_{4}, Z(p) \cap \Delta_{4}=F(\{1,2\}), \Lambda^{-}(p)=\{(2,0,1,1)\}$, and $\Lambda^{+}(p)=\{(4,0,0,0),(0,4,0,0),(2,0,0,2),(2,0,2,0)\}$. Hence all conditions of Proposition 1 hold. Note that there is no $\alpha \in \Lambda^{+}(p)$ with $\alpha_{F} \prec(2,0,1,1)_{F}$, where $F=F(\{1,2\})$, so that the new property in Theorem 1 doesn't hold.

If $\sum_{j=1}^{4} \gamma_{j}=N+4$, then by (1), the coefficient of $\frac{N!}{\gamma_{1}!\gamma_{2}!\gamma_{3}!\gamma_{4}!} X_{1}^{\gamma_{1}} X_{2}^{\gamma_{2}} X_{3}^{\gamma_{3}} X_{4}^{\gamma_{4}}$ in $\left(\sum_{j} X_{j}\right)^{N} p_{a}$ is

$$
\begin{gather*}
f_{a}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right):=\gamma_{1}\left(\gamma_{1}-1\right)\left(\gamma_{1}-2\right)\left(\gamma_{1}-3\right)+\gamma_{2}\left(\gamma_{2}-1\right)\left(\gamma_{2}-2\right)\left(\gamma_{2}-3\right) \\
+ \tag{3}\\
+\gamma_{1}\left(\gamma_{1}-1\right)\left(\gamma_{3}\left(\gamma_{3}-1\right)+\gamma_{4}\left(\gamma_{4}-1\right)-a \gamma_{3} \gamma_{4}\right) .
\end{gather*}
$$

We want to determine the smallest N so that for all such $\gamma, f_{a}(\gamma) \geq 0$. We first observe that

$$
\begin{aligned}
& f_{a}(2,3, k, k)=2\left(2 k(k-1)-a k^{2}\right)=2 k((2-a) k-2), \\
& f_{a}(3,3, k, k)=6\left(2 k(k-1)-a k^{2}\right)=6 k((2-a) k-2) .
\end{aligned}
$$

If $a=2$, then $f_{a}(3,3, k, k)<0$, so no N will ever work. So we must take $a<2$, whence $0<a<2$, and observe that $f_{a}(3,3, k, k)<0$ if

$$
k<\frac{2}{2-a} .
$$

Thus, if $N=2 M$ and all coefficients are nonnegative, we have

$$
2 M+4=6+2 k \Longrightarrow N=2 k+2 \geq 2+2\left\lceil\frac{2}{2-a}\right\rceil
$$

and if $N=2 M+1$ and all coefficients are nonnegative, we have

$$
2 M+5=6+2 k \Longrightarrow N=2 k+1 \geq 1+2\left\lceil\frac{2}{2-a}\right\rceil \text {. }
$$

Thus the smallest N satisfies the equation

$$
N \geq 1+2\left\lceil\frac{2}{2-a}\right\rceil
$$

A messy calculation, which we omit, shows that $p_{a} \in \operatorname{Po}(n, d)$ for all $a \in(0,2)$, and there is a smallest such $N=4(2-a)^{-1}+\mathcal{O}(1)$. In the last section, we will see that the first statement follows from our main theorem.

3 Local Versions of Pólya's Theorem

For $\alpha \in \mathbb{N}^{n} \backslash\{(0, \ldots, 0)\}$, let $\|\alpha\|$ denote the unit vector $\frac{\alpha}{|\alpha|}$ and note that $\|\alpha\| \in \Delta_{n}$. The original proof of Pólya's Theorem is "coefficient by coefficient": For $p>0$ on Δ_{n} and $N=0,1, \ldots$, let $\epsilon=\frac{1}{N+d}$; then a sequence of real polynomials p_{ϵ} is constructed which converge uniformly to p on Δ_{n} as $N \rightarrow \infty$, such that the coefficient of X^{α} in $\left(\sum X_{i}\right)^{N} p$ is a constant positive multiple (depending only on n and d) of $p_{\epsilon}(\|\alpha\|)$. Using this technique, we can obtain "local" versions of the theorem, by which we mean the result for coefficients which correspond to exponents α such that $\|\alpha\|$ lies in a given closed subset of Δ_{n}. To prove our main theorem, we will write Δ_{n} as a union of closed subsets so that we can apply one of the local versions to each of the subsets.

The key to our local versions of Pólya's Theorem and the bounds we obtain is the simple observation that the main theorem in [9] generalizes immediately to subsets of Δ_{n} on which the form is positive.

If $|\alpha|=d$, define $c(\alpha):=\frac{d!}{\alpha_{1}!\cdots \alpha_{n}!}$. Suppose $p \in \mathbb{R}[X]$ is homogeneous of degree d, then write

$$
p(X)=\sum_{|\alpha|=d} a_{\alpha} X^{\alpha}=\sum_{|\alpha|=d} c(\alpha) b_{\alpha} X^{\alpha},
$$

and let $L(p):=\max _{|\alpha|=d}\left|b_{\alpha}\right|$. The following local result, which is in [3], is immediate from the proof of Theorem 1 in [9]:

Proposition 2. Suppose $S \subseteq \Delta_{n}$ is nonempty and closed and $p \in \mathbb{R}[X]$ is homogeneous of degree d such that $p(x)>0$ for all $x \in S$. Let λ be the minimum of p on S. Then for

$$
N>\frac{d(d-1)}{2} \frac{L(p)}{\lambda}-d
$$

and $\alpha \in \mathbb{N}^{n}$ such that $|\alpha|=N+d$ and $\|\alpha\| \in S$, the coefficient of X^{α} in $\left(\sum_{i=1}^{n} X_{i}\right)^{N} p$ is nonnegative.

The above theorem will give us an N with a bound for the region of the simplex away from the zeros. Then we will apply local results which work for certain closed subsets of Δ_{n} whose union contains the zero set of the form. We start with notation for certain closed subsets of Δ_{n} containing subsets of a given face.

Definition 1. Let $F=F(I)$ be a face of Δ_{n}.

1. For $0<\epsilon<1$, let $\Delta(F, \epsilon)$ denote the following closed subset of Δ_{n} containing F :

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \in \Delta_{n} \mid \sum_{i \in I} x_{i} \leq \epsilon\right\}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \Delta_{n} \mid \sum_{j \notin I} x_{j} \geq 1-\epsilon\right\} .
$$

2. We need notation for certain closed subsets of Δ_{n} containing the "middle" of F, i.e., the part of F away from the lower-dimensional subfaces. Given $0<\epsilon<\tau<1$, let

$$
C(F, \epsilon, \tau):=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \Delta(F, \epsilon) \mid x_{j} \geq \tau-\epsilon \text { for } j \notin I\right\} .
$$

3. Given $0<\tau<1$, define the following closed subset of the relative interior of F :

$$
W(F, \tau):=\left\{\left(x_{1}, \ldots, x_{n}\right) \in F \mid x_{j} \geq \tau \text { for } j \notin I\right\}
$$

Remark 2. It is easy to check that if F is a face of dimension k, and F_{1}, \ldots, F_{k+1} are the subfaces of F of dimension $k-1$, then

$$
\Delta(F, \epsilon) \subseteq C(F, \epsilon, \tau) \cup \Delta\left(F_{1}, \tau\right) \cup \cdots \cup \Delta\left(F_{k+1}, \tau\right) .
$$

The following proposition is a local result for closed neighborhoods of vertices of the simplex and is similar to Proposition 2 in [3]. For $1 \leq i \leq n$, let v_{i} denote the i-th vertex of Δ_{n}, i.e., $v_{i}=F(I)$, where $I=\{1, \ldots, i-1, i+1, \ldots, n\}$.

Proposition 3. Suppose $p=\sum a_{\alpha} X^{\alpha}$ is a form of degree d such that $p \geq 0$ on Δ_{n}. Let $F=v_{i}$ for some i, and suppose that for every $\beta \in \Lambda^{-}(p)$ there is some $\alpha \in \Lambda^{+}(p)$ such that $\alpha_{F} \preceq \beta_{F}$. Let $c_{\min }$ be the minimum and $c_{\max }$ the maximum of $\left\{a_{\alpha} \mid \alpha \in \Lambda^{+}(p)\right\}$, and U the sum of the absolute values of the coefficients of p. Now define the following constants:

$$
\epsilon=\frac{c_{\min }}{c_{\max }+2 U}, \quad s=\frac{c_{\min }}{2}\left(\frac{2 c_{\min }}{c_{\max }+2 U}\right)^{d} .
$$

Then for any $N \in \mathbb{N}$ such that

$$
N>\frac{d(d-1)}{2} \frac{L(p)}{s},
$$

and every $\gamma \in \mathbb{N}^{n}$ with $|\gamma|=N+d$ and $\|\gamma\| \in \Delta(F, \epsilon)$, the coefficient of X^{γ} in $\left(\sum X_{j}\right)^{N} p$ is nonnegative.

Proof. For ease of exposition assume $F=v_{1}$. Suppose $\beta \in \Lambda^{-}(p)$ and $\alpha \in \Lambda^{+}(p)$ such that $\alpha_{F} \preceq \beta_{F}$. This means that $\alpha_{i} \leq \beta_{i}$ for $i=2, \ldots, n$ and hence, since p is homogeneous and $\alpha \neq \beta$, it follows that $\alpha_{1}>\beta_{1}$.

For each $\beta \in \Lambda^{-}(p)$, pick one $\alpha \in \Lambda^{+}(p)$ such that $\alpha_{F} \preceq \beta_{F}$ and denote this α by $m(\beta)$. Then for each $\alpha \in \Lambda^{+}(p)$, define f_{α} as follows:

$$
f_{\alpha}=a_{\alpha} X^{\alpha}+\sum_{\substack{\gamma \in \Lambda^{-}(p) \\ m(\gamma)=\alpha}} a_{\gamma} X^{\gamma} .
$$

By the previous remark, we have

$$
f_{\alpha}=X_{2}^{\alpha_{2}} \cdots X_{n}^{\alpha_{n}}\left(a_{\alpha} X_{1}^{\alpha_{1}}+q(X)\right),
$$

where every monomial in $q(X)$ has X_{1}-degree $<\alpha_{1}$ and coefficient <0. (We allow the possibility that $q(X)=0$.)

By construction, for every $\beta \in \Lambda^{-}(p)$, the term $a_{\beta} X^{\beta}$ occurs in one and only one f_{α}. This implies that p is precisely the sum of the f_{α} 's. It therefore suffices to show that the proposition holds for the f_{α} 's and hence for a form of the type $f=a X_{1}^{e}+q(X)$, where $a>0,0<e \leq d$, every monomial in $q(X)$ has degree in X_{1} less than e, and the set of coefficients of f is a subset of the set of coefficients of p.

Let $f=a X_{1}^{e}+q(X)$ be as above and let \tilde{U} be the sum of the absolute value of the coefficients of f. By [3, Lemma 2], $f \geq u$ on $\Delta_{n}(F, r)$, where

$$
r=\frac{a}{a+2 \tilde{U}}, \quad u=\frac{a}{2}\left(\frac{2 \tilde{U}}{a+2 \tilde{U}}\right)^{e} .
$$

Since the set of coefficients of f is a subset of the set of coefficients of p and a is the coefficient of some X^{α} with $\alpha \in \Lambda^{+}(p)$, we have $\tilde{U} \leq U, \tilde{U} \geq c_{\text {min }}, a \geq c_{\text {min }}$ and $a \leq c_{\max }$. Then $a+2 \tilde{U} \leq c_{\max }+2 U$, and hence,

$$
r=\frac{a}{a+2 \tilde{U}} \geq \frac{c_{\min }}{c_{\max }+2 U}=\epsilon
$$

and, noting that $\frac{2 c_{\text {min }}}{c_{\text {max }}+2 U} \leq 1$,

$$
u=\frac{a}{2}\left(\frac{2 \tilde{U}}{a+2 \tilde{U}}\right)^{e} \geq \frac{c_{\min }}{2}\left(\frac{2 c_{\min }}{c_{\max }+2 U}\right)^{d}=s
$$

Since $\epsilon \leq r, \Delta_{n}(F, \epsilon) \subseteq \Delta_{n}(F, r)$. Since $f \geq u$ on $\Delta_{n}(F, r)$ and $s \leq u$, it follows that $f \geq s$ on $\Delta_{n}(F, \epsilon)$. Finally, we apply Proposition 2 to f with $S=\Delta_{n}(F, \epsilon)$.

We need a localized Pólya's Theorem which holds on the closed subsets $C(F, \epsilon, \tau)$ defined above. This result, without the explicit bound, is a special case of [3, Proposition 1].

Lemma 1. Suppose $F=F(I)$ is a nonempty face of Δ_{n} (so that $I \neq\{1, \ldots, n\}$), $p \in \mathbb{R}[X]$ is homogeneous of degree d, and we can write $p=\phi+\psi$ for forms $\phi, \psi \in \mathbb{R}[X]$ so that

1. $\phi>0$ on the relative interior of F,
2. for $i \in I, X_{i}$ does not occur in ϕ, and
3. every monomial in ψ contains at least one factor X_{i} for some $i \in I$.

Given $\tau \in \mathbb{R}$ with $0<\tau<2 /(n-|I|)$, define λ as follows: Let m be the minimum of ϕ on the closed subset $W(F, \tau / 2)$ of the relative interior of F and let
$\lambda=\min (1, m)$. Let U be the sum of the absolute values of the coefficients of p. Then for any $N \in \mathbb{N}$ with

$$
N>d(d-1) \frac{L(p)}{\lambda}-d
$$

any ϵ with

$$
\epsilon<\min \left\{\frac{\lambda}{2 d+2 U}, \tau / 2\right\}
$$

and any $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{N}^{n}$ such that $\beta_{j}=0$ for all $j \notin I$, the coefficient of X^{α} in $\left(\sum X_{i}\right)^{N} X^{\beta} p$ is nonnegative for any α such that $\|\alpha\| \in C(F, \epsilon, \tau)$.

Proof. Claim: For ϵ and λ as given, $p \geq \lambda / 2$ on $C(F, \epsilon, \tau)$.
Proof of claim: For ease of exposition, let $C=C(F, \epsilon, \tau)$. We want to bound ϕ and ψ on C. Given $x=\left(x_{1}, \ldots, x_{n}\right) \in \Delta(F, \epsilon)$, suppose $\gamma \in \operatorname{supp}(\psi)$. Then $x_{i} \leq \epsilon$ for $i \in I$ and X^{γ} contains a factor X_{i} for some $i \in I$, hence X^{γ} evaluated at x is $\leq \epsilon$. It follows that $|\psi(x)| \leq U \epsilon$ on $\Delta(F, \epsilon)$. Since $C \subseteq \Delta(F, \epsilon)$, we have $\psi \geq-U \epsilon$ on C.

Given $x \in C$, we have $\sum_{j \notin I} x_{j}=1-t$ for $t=\sum_{i \in I} x_{i} \leq \epsilon$. Define $a=\left(a_{1}, \ldots, a_{n}\right)$ by setting $a_{j}=\frac{x_{j}}{1-t}$ for $j \notin I$ and $a_{i}=0$ for $i \in I$. Then $a \in F$ and for $j \notin I$ we have $a_{j}=\frac{x_{j}}{1-t} \geq x_{j} \geq \tau-\epsilon \geq \tau / 2$, hence $a \in W(F, \tau / 2)$. Then, since ϕ is a form of degree d containing none of the variables X_{i} for $i \in I, \phi(x)=(1-t)^{d} \phi(a) \geq(1-\epsilon)^{d} \lambda$.

Putting together the two bounds and noting that $\lambda \leq 1$, we have for $x \in C$,

$$
p(x) \geq(1-\epsilon)^{d} \lambda-U \epsilon \geq(1-d \epsilon) \lambda-U \epsilon=\lambda-(d \lambda+U) \epsilon \geq \lambda-(d+U) \epsilon
$$

Hence with ϵ as given we have $p(x) \geq \lambda-\lambda / 2=\lambda / 2$, and the claim is proven.
Now we apply Proposition 2 to p with $S=C$. Let λ^{\prime} be the minimum of p on C; then by the claim, $\lambda^{\prime} \geq \lambda / 2$. It follows that $N \geq \frac{d(d-1)}{2} \frac{L(p)}{\lambda^{\prime}}-d$ and hence, by Proposition 2, the coefficient of X^{α} in $\left(\sum X_{i}\right)^{N} p$ is nonnegative for $\|\alpha\| \in C$. It remains to show that this still holds if we replace p by $X^{\beta} p$.

Suppose $\gamma \in \operatorname{supp}\left(\left(\sum X_{i}\right)^{N} X^{\beta} p\right)$ with $\|\gamma\| \in C$; then $\gamma=\alpha+\beta$ for some $\alpha \in \operatorname{supp}\left(\left(\sum X_{i}\right)^{N} p\right)$. Since $\beta_{j}=0$ for $j \notin I$, we have $\gamma_{j}=\alpha_{j}$ for $j \notin I$. Then since $|\gamma| \geq|\alpha|$, it is easy to see that $\|\gamma\| \in C$ implies $\|\alpha\| \in C$. It follows that the coefficient of X^{α} in $\left(\sum X_{i}\right)^{N} p$ is nonnegative and therefore the coefficient of X^{γ} in $\left(\sum X_{i}\right)^{N} X^{\beta} p$ is nonnegative, completing the proof.

Remark 3. The dependence of ϵ on τ is due to the fact that λ depends on τ.

4 Pólya's Theorem with Zeros

In this section we give necessary and sufficient conditions for a form to be in $P o(n, d)$ and a bound on the exponent N needed. One condition is the necessary condition (3) from Proposition 1 for the faces of Δ_{n} in $Z(p)$. The second condition involves
the positivity of certain forms related to p on the relative interior of the faces in $Z(p)$.

For a form p and a face F of Δ_{n}, we say that $\alpha \in \Lambda^{+}(p)$ is minimal with respect to F if there is no $\gamma \in \Lambda^{+}(p)$ such that $\gamma_{F} \prec \alpha_{F}$. Note that it is possible to have $\alpha_{F} \prec \beta_{F}$ and $\beta_{F} \prec \alpha_{F}$ for distinct α and $\beta \in \Lambda^{+}(p)$. We start with notation for certain subforms of p related to the elements minimal with respect to a face.

Definition 2. Suppose $p=\sum a_{\alpha} X^{\alpha} \in \mathbb{R}[X]$ is homogeneous.

1. For $\Gamma \subseteq \operatorname{supp}(p)$, let $p(\Gamma)$ denote the form $\sum_{\gamma \in \Gamma} a_{\gamma} X^{\gamma}$.
2. For $\alpha \in \operatorname{supp}(p)$ and a face F of Δ_{n}, define

$$
p(\alpha, F):=p\left(\left\{\gamma \in \operatorname{supp}(p) \mid \gamma_{F}=\alpha_{F}\right\}\right) / X^{\alpha_{F}}
$$

Note that $p(\alpha, F)$ is a nonzero form in the variables $\left\{X_{j} \mid j \notin I\right\}$, where $F=F(I)$, and $X^{\alpha_{F}} p(\alpha, F)$ is a subform of p.

Lemma 2. Suppose $p \in \operatorname{Po}(n, d)$ and F is a face of Δ_{n}. Then for every $\alpha \in \Lambda^{+}(p)$ which is minimal with respect to F, the form $p(\alpha, F)$ must be strictly positive on the relative interior of F.

Proof. Suppose $F=F(I)$ and set $q:=p(\alpha, F)$. Since $p \in P o(n, d)$, there exists $N \in \mathbb{N}$ such that $\left(\sum_{i=1}^{n} X_{i}\right)^{N} p \in \mathbb{R}^{+}[X]$. We claim that $\left(\sum_{j \notin I} X_{j}\right)^{N} X^{\alpha_{F}} q \in \mathbb{R}^{+}[X]$.

Suppose γ is in the support of $\left(\sum_{j \notin I} X_{j}\right)^{N} X^{\alpha_{F}} q$; then by the definition of q, $\gamma_{F}=\alpha_{F}$. Consider the coefficient of X^{γ} in $\left(\sum_{i=1}^{n} X_{i}\right)^{N} p$ and let A_{γ} be the positive part and B_{γ} the negative part, as in (1) and (2) in $\S 2$. Contributions to A_{γ} come from $\delta \in \Lambda^{+}(p)$ with $\delta \preceq \gamma$, which implies $\delta_{F} \preceq \gamma_{F}=\alpha_{F}$. Since α is minimal with respect to F, it follows that the only contributions to A_{γ} come from $\delta \in \Lambda^{+}(p)$ with $\delta_{F}=\alpha_{F}$. Since all such δ are in $\operatorname{supp}\left(X^{\alpha_{F}} q\right)$, it follows that A_{γ} is also the positive part of the coefficient of X^{γ} in $\left(\sum_{j \notin I} X_{j}\right)^{N} X^{\alpha_{F}} q$. Since $X^{\alpha_{F}} q$ is a subform of p, the negative part of the coefficient of $\left(\sum_{j \notin I} X_{j}\right)^{N} X^{\alpha_{F}} q$ is clearly $\leq B_{\gamma}$ and it follows that the coefficient of X^{γ} in $\left(\sum_{j \notin I} X_{j}\right)^{N} X^{\alpha_{F}} q \geq A_{\gamma}-B_{\gamma} \in \mathbb{R}^{+}$.

From the claim it follows that $\left(\sum_{j \notin I} X_{j}\right)^{N} q \in \mathbb{R}^{+}[X]$. Since q is a form in $\left\{X_{j} \mid j \notin I\right\}$, this means that q satisfies Pólya's Theorem on the simplex $F(I)$. Hence, by Proposition $1, q$ is strictly positive on the relative interior of F.

Theorem 2. Given p, a nonzero form of degree d, such that $p \geq 0$ on Δ_{n} and $Z(p) \cap \Delta_{n}$ is a union of faces. Then $p \in \operatorname{Po}(n, d)$ if and only if for every face $F \subseteq Z(p)$ the following two conditions hold:

1. For every $\beta \in \Lambda^{-}(p)$, there is $\alpha \in \Lambda^{+}(p)$ so that $\alpha_{F} \preceq \beta_{F}$.
2. For every $\alpha \in \Lambda^{+}(p)$ which is minimal with respect to F, the form $p(\alpha, F)$ is strictly positive on the relative interior of F.

Proof. Condition (1) is necessary by Proposition 1 and condition (2) is necessary by Lemma 2.

Suppose the conditions hold for $p=\sum a_{\alpha} X^{\alpha} \in \mathbb{R}[X]$. Since p is not identically zero, $\Delta_{n} \nsubseteq Z(p)$ (since p is homogeneous), so any face in $Z(p) \cap \Delta_{n}$ must be proper, i.e., must have dimension $\leq n-2$. For a closed subset of Δ_{n} which does not intersect the zero set, we can apply Proposition 2, hence the theorem will follow easily from the following claim:
Claim: For every face F contained in $Z(p) \cap \Delta_{n}$ we can find ϵ such that $0<\epsilon<1$ and $N \in \mathbb{N}$ so that for any $\theta \in \mathbb{N}^{n}$ with $|\theta|=N+d$ and $\|\theta\| \in \Delta(F, \epsilon)$, the coefficient of X^{θ} in $\left(X_{1}+\cdots+X_{n}\right)^{N} p$ is nonnegative.
Proof of claim: We prove the claim by induction on the dimension of F. If the dimension is 0 , then we are done by Proposition 3 .

Now suppose F has dimension $k, 1 \leq k \leq n-2$, and the claim is true for all subfaces of F of dimension $k-1$. Let τ be less than the minimum of $2 /(1+k)$ and the ϵ 's that occur among these subfaces and \tilde{N} the maximum of the N 's.

By assumption, for each $\beta \in \Lambda^{-}(p)$, there exists at least one $\alpha \in \Lambda^{+}(p)$ such that $\alpha_{F} \preceq \beta_{F}$. Let $\alpha=\alpha(\beta)$ be such a vector which is minimal with respect to F. Construct a subset Ω of $\Lambda^{+}(p)$ by the following procedure: Let $\Lambda^{-}(p)=$ $\left\{\beta^{(1)}, \ldots, \beta^{(m)}\right\}$ and set $\Omega=\emptyset$. Now for $i=1,2, \ldots, m$, if there is no $\gamma \in \Omega$ with $\gamma_{F} \preceq \beta_{F}^{(i)}$, add $\alpha\left(\beta^{(i)}\right)$ to Ω. Suppose α, α^{\prime} are distinct elements of Ω and that in the above constuction of Ω, α was added to Ω before α^{\prime} was added. Then there must be some $\beta \in \Lambda^{-}(p)$ such that $\alpha_{F}^{\prime} \preceq \beta_{F}$ but $\alpha_{F} \npreceq \beta_{F}$. Then the transitivity of \preceq implies that $\alpha_{F} \npreceq \alpha_{F}^{\prime}$, and this last implies $\alpha_{F}^{\prime} \npreceq \alpha_{F}$ by the minimality of α with respect to F.

To summarize, we have constructed a subset Ω of the set of $\alpha \in \Lambda^{+}(p)$ which are minimal with respect to F such that for every $\beta \in \Lambda^{-}(p)$, there is $\alpha \in \Omega$ such that $\alpha_{F} \preceq \beta_{F}$. Further, for any two $\alpha, \alpha^{\prime} \in \Omega$, we have that $\alpha_{F} \npreceq \alpha_{F}^{\prime}$ and $\alpha_{F}^{\prime} \npreceq \alpha_{F}$. Order the set Ω in some way and, one at a time, for each $\alpha \in \Omega$ define a form ψ_{α} as follows: Let Γ_{α} be the set of $\beta \in \Lambda^{-}(p)$ such that $\alpha_{F} \prec \beta_{F}$ and β is not contained in any previously defined Γ_{α}. Now let $\psi_{\alpha}=p\left(\Gamma_{\alpha}\right) / X^{\alpha_{F}}$. Then ψ_{α} is a form (possibly the zero form) and every monomial of ψ_{α} contains at least one variable X_{i} for $i \in I$. Furthermore, by construction, if $\alpha, \gamma \in \Omega$ and $\alpha \neq \gamma$, then $\operatorname{supp}\left(\psi_{\alpha}\right) \cap \operatorname{supp}\left(\psi_{\gamma}\right)=\emptyset$.

Now, for each $\alpha \in \Omega$, let $\phi_{\alpha}=p(\alpha, F)$ and consider the subform $X^{\alpha_{F}}\left(\phi_{\alpha}+\psi_{\alpha}\right)$ of p. By definition of $\Omega, \operatorname{supp}\left(\phi_{\alpha}\right) \cap \operatorname{supp}\left(\phi_{\gamma}\right)=\emptyset$ if $\alpha \neq \gamma$. By assumption, $p(\alpha, F)$ is strictly positive on the relative interior of F. Hence $\phi_{\alpha}, \psi_{\alpha}$, and α_{F} satisfy the conditions of Lemma 1 and thus we may apply the lemma taking the β to be α_{F}; we conclude that there is some $N_{\alpha} \in \mathbb{N}$ and $\epsilon_{\alpha}>0$ such that the coefficient of X^{γ} in $\left(X_{1}+\cdots+X_{n}\right)^{N_{\alpha}} X^{\alpha_{F}}\left(\phi_{\alpha}+\psi_{\alpha}\right)$ is nonnegative for all $\gamma \in \mathbb{N}^{n}$ with $\|\gamma\| \in C\left(F, \epsilon_{\alpha}, \tau\right)$.

By construction, for every $\beta \in \Lambda^{-}(p)$, the term $a_{\beta} X^{\beta}$ in p occurs in $X^{\alpha_{F}}\left(\phi_{\alpha}+\psi_{\alpha}\right)$ for some unique $\alpha \in \Omega$. Hence we can write

$$
\begin{equation*}
p=\sum_{\alpha \in \Omega} X^{\alpha_{F}}\left(\phi_{\alpha}+\psi_{\alpha}\right)+\tilde{p}, \tag{4}
\end{equation*}
$$

where \tilde{p} has only positive coefficients. Let $\epsilon>0$ be less than the minimum of the ϵ_{α} 's, $\tau / 2$, and $\lambda /(2 d+2 U)$, where λ and U are defined as in Lemma 1, and let M be the maximum of the N_{α} 's; then for any $\gamma \in \operatorname{supp}\left(\left(X_{1}+\cdots+X_{n}\right)^{M} p\right)$ with $\|\gamma\| \in C(F, \epsilon, \tau)$, the coefficient of X^{γ} is nonnegative. Let $F_{1}, \ldots F_{k+1}$ denote the subfaces of F of dimension $k-1$. By the inductive hypothesis, we have \tilde{N} such that for $i=1, \ldots, k+1$ and any $\gamma \in \operatorname{supp}\left(\left(X_{1}+\cdots+X_{n}\right)^{\tilde{N}} p\right)$ with $\|\gamma\| \in \Delta\left(F_{i}, \tau\right)$, the coefficient of X^{γ} is nonnegative. Since $\Delta(F, \epsilon) \subseteq C(F, \epsilon, \tau) \cup \Delta\left(F_{1}, \tau\right) \cup \cdots \cup$ $\Delta\left(F_{k+1}, \tau\right)$, the claim now follows.

Now write $Z(p) \cap \Delta_{n}$ as a union of faces $G_{1} \cup \cdots \cup G_{l}$, where $G_{i} \nsubseteq G_{j}$ for any $i \neq j$, and apply the claim to each G_{i}; say we have that the claim holds with ϵ_{i} and N_{i}. Let S be the closure of $\Delta_{n} \backslash \bigcup_{i=1}^{l} \Delta\left(G_{i}, \epsilon_{i}\right)$; then $p>0$ on S. By Proposition 2 , there is M such that for every $\theta \in \mathbb{N}^{n}$ with $\|\theta\| \in S$ the coefficient of X^{θ} in $\left(X_{1}+\cdots+X_{n}\right)^{M} p$ is nonnegative. Taking N to be the maximum of M and the N_{i} 's, we are done.

Remark 4. The sufficient condition for p to be in $\operatorname{Po}(n, d)$ given in [7] implies the sufficient condition given in Theorem 2 above. Hence [7, Theorem 2] follows from Theorem 2.

Corollary 1. Suppose p is a form of degree d with $p \geq 0$ on Δ_{n} and $Z(p) \cap \Delta_{n}$ is a union of faces. Suppose further that for every face $F \subseteq Z(p)$ and every $\beta \in \Lambda^{-}(p)$, there exists $\alpha \in \Lambda^{+}$such that $\alpha_{F} \prec \beta_{F}$. Then $p \in \operatorname{Po}(n, d)$.
Proof. If the given condition holds for p, then the first condition of Theorem 2 holds trivially. For every α which is minimal with respect to F, by the given condition, there is no $\beta \in \Lambda^{-}(p)$ such that $\beta_{F}=\alpha_{F}$. Hence every $p(\alpha, F)$ has only positive coefficients and thus must be strictly positive on the relative interior of F. By Theorem 2, this implies $p \in \operatorname{Po}(n, d)$.

We now give a bound on the exponent N needed in Theorem 2. The bound will depend on the degree of p, the size of the coefficients, and constants which are defined recursively in terms of minimums of the $p(\alpha, F)$'s on a certain closed subset of the relative interior of F. We begin with the definition of these constants.

Definition 3. Suppose $p \in \sum a_{\alpha} X^{\alpha}$ is a form of degree d and F is a face of Δ_{n} such that either F is a vertex or p satisfies (2) of Theorem 2 on every subface G of F (including $G=F$), i.e., for every $\alpha \in \Lambda^{+}(p)$ which is minimal with respect to G, the form $p(\alpha, G)$ is strictly positive on the relative interior of G. Let U be the sum of the absolute value of the the coefficients of p, and let $c_{\text {min }}$ (respectively, $c_{\max }$) denote the mimimum (respectively, maximum) of $\left\{a_{\alpha} \mid \alpha \in \Lambda^{+}(p)\right\}$.

We will recursively define constants $N(F)$ and $\epsilon(F)$ which will correspond to the N and ϵ of the claim in the proof of Theorem 2. First we define $\epsilon_{0}, \lambda_{0}$, and N_{0} as the ϵ, s and N in Proposition 3:

$$
\epsilon_{0}=\min \left\{\frac{c_{\min }}{c_{\max }+2 U}, \frac{1}{n}\right\}, \quad \lambda_{0}=\frac{c_{\min }}{2}\left(\frac{2 c_{\min }}{c_{\max }+2 U}\right)^{d}, \quad N_{0}=\frac{d(d-1)}{2} \frac{L(p)}{\lambda_{0}} .
$$

Suppose $\operatorname{dim} F=k$; then we define $\epsilon_{i}, \lambda_{i}$, and N_{i} for $i=1, \ldots, k$ recursively as follows: Suppose G is a subface of F of dimension i. By hypothesis, if $\alpha \in \Lambda^{+}(p)$ is minimal with respect to G, then $p(\alpha, G)$ is strictly positive on the relative interior of G and hence $p(\alpha, G)$ has a positive minimum m_{α} on $W\left(G, \epsilon_{i-1} / 2\right)$. Let $\lambda(G)$ be the minimum of the m_{α} 's, taken over the set of α 's which are minimal with respect to G, or 1 if this minimum is larger than 1 . Now let λ_{i} be the minimum over all G 's of the $\lambda(G)$'s, and choose any positive ϵ_{i} with

$$
\begin{equation*}
\epsilon_{i}<\min \left\{\frac{\lambda_{i}}{2 d+2 U}, \epsilon_{i-1}\right\}, \tag{5}
\end{equation*}
$$

and define N_{i} as

$$
\max \left\{N_{i-1}, \frac{d(d-1)}{2} \frac{L(p)}{\lambda_{i}}\right\} .
$$

Finally, set $N(F)$ to be N_{k} and $\epsilon(F)$ to be ϵ_{k}.
Theorem 3. Suppose $p \in \operatorname{Po}(n, d)$, so that $Z(p) \cap \Delta_{n}$ is a union of faces of Δ_{n}. Write $Z(p) \cap \Delta_{n}=G_{1} \cup \cdots \cup G_{l}$, where each G_{i} is a face and $G_{i} \nsubseteq G_{j}$ for all $i \neq j$. Let $M=\max \left\{N\left(G_{i}\right) \mid 0 \leq i \leq l\right\}, \epsilon=\min \left\{\epsilon\left(G_{i}\right) \mid 0 \leq i \leq l\right\}$, and define τ as the minimum of p on the closure of $\Delta_{n} \backslash\left(\Delta\left(G_{1}, \epsilon\right) \cup \cdots \cup \Delta\left(G_{l}, \epsilon\right)\right)$. Then $\left(X_{1}+\cdots+X_{n}\right)^{N} p \in \mathbb{R}^{+}[X]$ for

$$
N>\max \left\{M, \frac{d(d-1)}{2} \frac{L(p)}{\tau}\right\} .
$$

Proof. Suppose N satisfies the inequality. For each G_{i}, following the proof of the claim in Theorem 2, we see that for any $\theta \in \mathbb{N}^{n}$ with $|\theta|=N\left(G_{i}\right)+d$ and $\|\theta\| \in$ $\Delta\left(G_{i}, \epsilon\left(G_{i}\right)\right)$, the coefficient of X^{θ} in $\left(X_{1}+\cdots+X_{n}\right)^{N\left(G_{i}\right)} p$ is nonnegative. Since $N \geq N\left(G_{i}\right)$ for all i and $\epsilon \leq \epsilon\left(G_{i}\right)$, this holds with $N\left(G_{i}\right)$ replaced by N and $\epsilon\left(G_{i}\right)$ replaced by ϵ. By Proposition 2, for any $\theta \in \mathbb{N}^{n}$ with $|\theta|=N+d$ and $\|\theta\|$ in the closure of $\Delta_{n} \backslash\left(\Delta\left(G_{1}, \epsilon\right) \cup \cdots \cup \Delta\left(G_{l}, \epsilon\right)\right)$, the coefficient of X^{θ} in $\left(X_{1}+\cdots+X_{n}\right)^{N} p$ is nonnegative. Since Δ_{n} is the union of these sets, the theorem follows.

Example. We continue with our example from Section 2. For $0<a \leq 2$, we have

$$
p=X_{1}^{4}+X_{2}^{4}+X_{1}^{2} X_{3}^{2}+X_{1}^{2} X_{4}^{2}-a X_{1}^{2} X_{3} X_{4} .
$$

Recall $Z(p) \cap \Delta_{n}$ is the face $F=F(\{1,2\})$. There are two elements α of $\Lambda^{+}(p)$ which are minimal with respect to $F:(2,0,2,0)$ and $(2,0,0,2)$. In both cases, the form $p(\alpha, F)=q:=X_{3}^{2}+X_{4}^{2}-a X_{3} X_{4}$. Note that $q>0$ on the relative interior of F iff $a<2$ and hence Theorem 2 says that $p \in \operatorname{Po}(n, d)$ iff $a<2$, as claimed in Section 2.

We now compute the bound from Theorem 3. We are interested in the behavior as $a \rightarrow 2$; hence there is no harm in assuming $a \geq 1$. The first step is to compute the constants $\epsilon=\epsilon(F)$ and $M=N(F)$ from Definition 3. We have $d=n=4$,
$L(p)=1, c_{\min }=c_{\max }=1$, and $U=4+a$, hence $\epsilon_{0}=\frac{1}{9+2 a}, \lambda_{0}=\frac{1}{2}\left(\frac{2}{9+2 a}\right)^{4}$, and $N_{0}=\frac{3}{4}(9+2 a)^{4}$.

Next we need to find λ_{1}, which is the minimum of q on $W\left(F, \epsilon_{0} / 2\right)$. It's easy to check that, on $F, q(0,0, t, 1-t)=1-(2+a)\left(t-t^{2}\right)$, which achieves its minimum $\frac{2-a}{4}$ at $(0,0,1 / 2,1 / 2)$ and that this is the global minimum on $W\left(F, \epsilon_{0} / 2\right)$. Hence $\lambda(F)=\lambda_{1}=\frac{2-a}{4}$ and $N_{1}(F)=\max \left\{N_{0}, 6 \frac{1}{\lambda_{1}}\right\}=\max \left\{\frac{3}{4}(9+2 a)^{4}, \frac{24}{2-a}\right\}$. This means that for a very close to 2 , the M in the statement of Theorem 3 is $\frac{24}{2-a}$.

Finally, we need to estimate ϵ_{1} and then estimate τ, the minimum of p on S, the closure of $\Delta_{4} \backslash \Delta\left(F, \epsilon_{1}\right)$. By definition, we need

$$
\epsilon_{1}<\min \left\{\frac{\lambda_{1}}{2 d+2 U}, \epsilon_{0}\right\}=\min \left\{\frac{2-a}{64+8 a}, \frac{1}{9+2 a}\right\}=\frac{2-a}{64+8 a}
$$

There are no critical points in the relative interior of Δ_{n}, whence the minimum occurs on the boundary of S. Observe that $p\left(e_{1}, 0,\left(1-e_{1}\right) / 2,\left(1-e_{1}\right) / 2\right)=e_{1}^{4}$, hence $\tau \leq e_{1}^{4}$ and $\frac{d(d-1)}{2} \frac{L(p)}{\tau}>6 \frac{(64+8 a)^{4}}{(2-a)^{4}}$. This means that the estimate from the theorem is several orders of magnitude worse than the true value computed earlier.

Question: The previous computation shows that the bound from the theorem is not sharp for our example. Is there a non-trivial example for which the bound from the theorem is sharp? If not, is a better bound possible?"

References

[1] S. Burgdorf, C. Scheiderer, and M. Schweighofer, Pure states, nonnegative polynomials and sums of squares, preprint.
[2] M. Castle, Pólya's Theorem with Zeros, Ph.D. thesis, Emory University, 2008.
[3] M. Castle, V. Powers, and B. Reznick, A quantitative Pólya's Theorem with zeros, Journal of Symbolic Computation 44 (2009), no. 9, 1285 - 1290, Effective Methods in Algebraic Geometry.
[4] E. de Klerk and D. V. Pasechnik, Approximation of the stability number of a graph via copositive programming, SIAM Journal on Optimization 12 (2002), no. 4, 875-892.
[5] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press, 1952.
[6] C.W.J. Hol and C.W. Scherer, Matrix sum-of-squares relaxations for robust semidefinite programs, Math. Programming 107 (2006), 198-211.
[7] H.-N. Mok and W.-K. To, Effective Pólya semi-positivity for non-negative polynomials on the simplex, Journal of Complexity 24 (2008), no. 4, 524-544.
[8] G. Pólya, Über positive Darstellung von Polynomen, Vierteljahrschrift Naturforsch. Ges. Zürich 73 (1928), 141-145, in Collected Papers 2 (1974), MIT Press, 309-313.
[9] V. Powers and B. Reznick, A new bound for Pólya's Theorem with applications to polynomials positive on polyhedra, Journal of Pure and Applied Algebra 164 (2001), no. 1-2, 221 - 229.
[10] V. Powers and B. Reznick, A quantitative Pólya's Theorem with corner zeros, Proceedings of the 2006 International Symposium on Symbolic and Algebraic Computation (J.-G. Dumas, ed.), ACM Press, 2006, pp. 285-290.
[11] M. Schweighofer, An algorithmic approach to Schmüdgen's Positivstellensatz, Journal of Pure and Applied Algebra 166 (2002), no. 3, 307 - 319.

[^0]: *Department of Mathematics and Statistics, Kennesaw State University, Kennesaw, GA 30144. Email: mfc7379@kennesaw.edu
 ${ }^{\dagger}$ Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322. Email: vicki@mathcs.emory.edu.
 ${ }^{\ddagger}$ Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801. Email: reznick@math.uiuc.edu

