A new bound for Pólya's Theorem with applications to polynomials positive on polyhedra

Victoria Powers
Department of Mathematics and Computer Science,
Emory University,
Atlanta, GA 30322
Bruce Reznick
Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801

January 4, 2006

1 Introduction

Fix a positive integer n and let $\mathbf{R}[X]:=\mathbf{R}\left[x_{1}, \ldots, x_{n}\right]$. We write Δ_{n} for the simplex $\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \geq 0, \sum_{i} x_{i}=1\right\}$.

Pólya's Theorem ([?], [?, pp.57-59]) says that if $f \in \mathbf{R}[X]$ is homogeneous and positive on Δ_{n}, then for sufficiently large N all the coefficients of

$$
\left(x_{1}+\cdots+x_{n}\right)^{N} f\left(x_{1}, \ldots, x_{n}\right)
$$

are positive. In this note, we give an explicit bound for N and give an application to some special representations of polynomials positive on polyhedra. In particular, we give a bound for the degree of a representation of a polynomial positive on a convex polyhedron as a positive linear combination of products of the linear polynomials defining the polyhedron.

We use the following multinomial notation: For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbf{N}^{n}$, let X^{α} denote $x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$ and write $|\alpha|$ for $\alpha_{1}+\cdots+\alpha_{n}$. If $|\alpha|=d$, define $c(\alpha):=\frac{d!}{\alpha_{1}!\cdots \alpha_{n}!}$. Let us fix homogeneous $f \in \mathbf{R}[X]$ of degree d,

$$
f(X)=\sum_{|\alpha|=d} a_{\alpha} X^{\alpha}=\sum_{|\alpha|=d} c(\alpha) b_{\alpha} X^{\alpha},
$$

and let $L=L(f):=\max _{|\alpha|=d}\left|b_{\alpha}\right|$ and $\lambda=\lambda(f):=\min _{X \in \Delta_{n}} f(X)$.

