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1 Introduction

Fix a positive integer n and let R[X] := R[x1, . . . , xn]. We write ∆n for the
simplex {(x1, . . . , xn) | xi ≥ 0,

∑
i
xi = 1}.

Pólya’s Theorem ([?], [?, pp.57-59]) says that if f ∈ R[X] is homogeneous and
positive on ∆n, then for sufficiently large N all the coefficients of

(x1 + · · · + xn)Nf(x1, . . . , xn)

are positive. In this note, we give an explicit bound for N and give an application
to some special representations of polynomials positive on polyhedra. In partic-
ular, we give a bound for the degree of a representation of a polynomial positive
on a convex polyhedron as a positive linear combination of products of the linear
polynomials defining the polyhedron.

We use the following multinomial notation: For α = (α1, . . . , αn) ∈ N
n, let Xα

denote xα1

1
. . . xαn

n
and write |α| for α1 + · · ·+αn. If |α| = d, define c(α) := d!

α1!···αn!
.

Let us fix homogeneous f ∈ R[X] of degree d,

f(X) =
∑

|α|=d

aαXα =
∑

|α|=d

c(α)bαXα,

and let L = L(f) := max
|α|=d

|bα| and λ = λ(f) := min
X∈∆n

f(X).
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