
Notes towards a constructive proof of Hilbert's Theorem onternary quarticsVictoria Powers and Bruce Reznick1. IntroductionIn 1888, Hilbert [5] proved that a real ternary quartic which is positive semi-de�nite (psd) must have a representation as a sum of three squares of quadraticforms. Hilbert's proof is short, but di�cult; a high point of 19th century algebraicgeometry. There have been two modern expositions of the proof { one by Casselsin the 1993 book [6] by Rajwade, and one by Swan [8] in these Proceedings { butthere are apparently no other proofs of this theorem in the literature. In 1977, Choiand Lam [2] gave a short elementary proof that a psd ternary quartic must be asum of (�ve) squares of quadratic forms, but as we shall see, the number \three"is critical.Hilbert's approach does not address two interesting computational issues:1. Given a psd ternary quartic, how can one �nd three such quadratics?2. How many \fundamentally di�erent" ways can this be done?In this paper, we describe some methods for �nding and counting representa-tions of a psd ternary quartic as a sum of three squares. In certain special cases,we can answer these questions completely, describing all representations in detail.For example, if p(x; y; z) = x4 + F (y; z), where F is a psd quartic, then we give analgorithm for constructing all representations of p as a sum of three squares. Weshow that if F is not the fourth power of a linear form, then there are at most 8such representations. The key idea to our work is the simple observation that ifp = f2 + g2 + h2, then p� f2 is a sum of two squares. We also give an equivalentform of Hilbert's Theorem which involves only binary forms.2. PreliminariesSuppose p(x; y; z) = Xi+j+k=4 �i;j;kxiyjzk(1)is a ternary quartic. How can we tell whether p is psd? The general answer, by thetheory of quanti�er elimination (see, e.g., [1]) tells us that this is the case if andonly if the coe�cients of p belong to a particular semi-algebraic set. This general1991 Mathematics Subject Classi�cation. 11E20, 11E76, 14N15, 12Y05.1



2 VICTORIA POWERS AND BRUCE REZNICKset is likely to be rather unedifying to look at in detail, so it will be convenient tomake a few harmless assumptions about p.Suppose that p(x1; : : : ; xn) is a homogeneous polynomial. By an invertiblechange taking p to p0, we will mean a formal identity:p(x01: : : : ; x0n) = p0(x1; : : : ; xn); 264x01...x0n375 = 264m11 � � � m1n... . . . ...mn1 � � � mnn375264x1...xn375 ;where the matrix M = [mij ] above is in GL(n;R). Note that p is psd if andonly if p0 is psd, and representations of p as a sum of m squares are immediatelytransformed into similar representations of p0 and vice versa.For example, if p(x1; : : : ; xn) is a psd quadratic form of rank r, then afteran invertible change, p = x21 + � � � + x2r. If deg p = d and M = cI , then p0 =cdp. Thus, multiplying p by a positive constant is an invertible change. A non-trivial application of invertible changes is given in Theorem 6 below. When makinginvertible changes, we will customarily drop the primes as soon as no confusionwould result.Suppose now that p is a non-zero psd ternary quartic. Then there exists a point(a; b; c) for which p(a; b; c) > 0. By an (invertible) rotation, we may assume thatp(t; 0; 0) = t4p(1; 0; 0) = u > 0, and so we may assume that p(1; 0; 0) = 1; hence�4;0;0 = 1. Writing p in decreasing powers of x, we havep(x; y; z) = x4 + �3;1;0x3y + �3;0;1x3z + : : : :If we now let x0 = x+ 14 (�3;1;0y+�3;0;1z), y0 = y; z0 = z, then x = x0� 14 (�3;1;0y0+�3;0;1z0), y = y0; z = z0, and it's easy to see that p0(x; y; z) = x4+0�x3y+0�x3z+� � � :We may thus assume without loss of generality thatp(x; y; z) = x4 + 2F2(y; z)x2 + 2F3(y; z)x+ F4(y; z);(2)where Fj is a binary form of degree j in (y; z). Henceforth, we shall restrict ourattention to ternary quartics of this shape.We present a condition for p to be psd. No novelty is claimed for this result,which has surely been known in various guises for centuries. Note that p is psd ifand only if, for all (y; z) 2 R2 and all real t,�(y;z)(t) := t4 + 2F2(y; z)t2 + 2F3(y; z)t+ F4(y; z) � 0:Theorem 1. The quartic �(t) = t4 +2at2+2bt+ c satis�es �(t) � 0 for all tif and only if c � 0 andjbj � 23p3 ��a+pa2 + 3c�1=2 �2a+pa2 + 3c� := K(a; c):(3) Proof. A necessary condition for �(t) � 0 for all t is that �(0) = c � 0. If�(0) = 0, then �0(0) = 2b = 0 as well, and clearly t4+2at2 � 0 if and only if a � 0.Thus, one possibility is that c = 0, b = 0, and a � 0.We may henceforth assume that �(0) = c > 0, and so, dividing by jtj, �(t) � 0for all jtj if and only if jtj3+2ajtj+2b �Sign(t)+ cjtj�1 � 0, which holds if and onlyif minu>0 �u3 + 2au+ cu� � 2jbj:



HILBERT'S THEOREM ON TERNARY QUARTICS 3The minimum occurs when 3u40 + 2au20 � c = 0. The only positive solution to thisequation is u0 =  �a+pa2 + 3c3 !1=2 :Thus, using c = 3u40 + 2au20 to simplify the computation, we see that �(t) � 0 ifand only if2jbj � u30 + 2au0 + cu�10 = 4u30 + 4au0 = 4u0(u20 + a)(4) = 4�13 ��a+pa2 + 3c��1=2 �13 ��a+pa2 + 3c�+ a� = 2K(a; c):(5)We are nearly done, because this case assumes that c > 0. But note that if c = 0,we have K(a; 0) = 0 if a � 0 and K(a; 0) < 0 if a < 0, so jbj � K(a; 0) impliesb = 0 and a � 0 when c = 0, subsuming the �rst case.Note that if (a; b; c) satis�es (3), then K(a; c) � 0, and it's easy to check that thisimplies that a � �pc. However, it is not necessary to write this as a separatecondition.Corollary 2. Suppose p is given by (2). Then p is psd if and only if F4 ispsd, and for all (r; s) 2 R2,jF3(r; s)j � K(F2(r; s); F4(r; s)):(6) We remark, that, even after squaring, (6) is not a \true" illustration of quan-ti�er elimination, because there will still be square roots on the right-hand side.3. The Gram matrix methodObserve that for polynomials in f; g 2 R[X ] := R[x1; : : : ; xn] and for all �,f2 + g2 = (cos �f + sin �g)2 + (� sin �f � cos �g)2:(7)More generally, if M = [mij ] is a real t� t orthogonal matrix, thentXi=10@ tXj=1mijfj1A2 = tXj=1 tXk=1 tXi=1mijmik! fjfk = tXj=1 f2j :(8)(Note that (7) includes all real 2 � 2 orthogonal matrices.) Thus, any attempt tocount the number of representations of a form as a sum of squares must mod outthe action of the orthogonal group.Choi, Lam and Reznick [4] have developed a method for studying representa-tions of a form p 2 R[X ] as a sum of squares, called the Gram matrix method. For� = (�1; : : : ; �n) 2 Nn, we write j�j to denoteP�i and X� to denote x�11 � � � � �x�nn .Suppose p is a form in R[X ] which is a sum of squares of forms. Then p must haveeven degree 2d and thus can be writtenp = Xj�j=2da�X�:Suppose now that p has a representation



4 VICTORIA POWERS AND BRUCE REZNICKp = h21 + � � �+ h2t(9)where hi = Pj�j=d b(i)� X�. For each � 2 Nn of degree d, set U� = (b(1)� ; : : : ; b(t)� ).Then (9) becomes p =P�;�0 U� � U�0X�+�0 . Hence, for each �,a� = X�+�0=�U� � U�0 :(10)The matrix V := [U� � U�0 ] (indexed by � 2 Nn with j�j = d) is the Gram matrixof p associated to (9). Note that V = (v�;�0) is symmetric, positive semide�nite,and the entries satisfy the equationsa� = X�+�0=� v�;�0 :(11)The following result is proven in [4, Thm. 2.4, Prop. 2.10]:Theorem 3. Suppose p =Pj�j=2d a�X� and V = [v�;�0 ] is a real symmetricmatrix indexed by all � 2 Nn such that j�j = d.1. The following are equivalent: (a) p is a sum of squares of forms and V isthe Gram matrix associated to a representation p =Ph2i , (b) V is positivesemide�nite and the entries of V satisfy the equations (11).2. If V is the Gram matrix of a representation of p as a sum of squares, thenthe minimum number of squares needed in a representation corresponding toV is the rank of V .3. Two representations of p as a sum of t squares are orthogonally equivalent,as in (8), if and only if they have the same Gram matrix.We now form the (general) Gram matrix of p by solving the linear systemcorresponding to the equations (11), where the v�;�0 are variables, with v�;�0 =v�0;�. This gives the v�;�0 's as linear polynomials in some parameters. Then V =[v�;�0 ] is the Gram matrix of p. By Theorem 3, values of the parameters for whichV is psd correspond to representations of p as a sum of squares, with the minimumnumber of squares needed equal to the rank of V .If we consider the two sets of vectors of coe�cients from the two representationsgiven in (8), we see that one set is the image of the other upon by the action ofM , and since M is orthogonal, the dot products of the vectors are unaltered. If phappens to be a quadratic form, then upon arranging the monomials in the usualorder, it's easy to see that the (unique) Gram matrix for p is simply the usualmatrix representation for p. It follows that a psd quadratic form has, in e�ect, onlyone representation as a sum of squares.Henceforth, when we say that p 2 R[X ] is a sum of t real squares in m ways,we shall mean that the sums of t squares comprise m distinct orbits under theaction of the orthogonal group, or, equivalently, that there are exactly m di�erentpsd matrices of rank t which satisfy (11).Finally, we remark that a real Gram matrix for p of rank t which is not psdcorresponds to a representation of p as a sum or di�erence of t squares over Rand that a complex Gram matrix of rank t corresponds to a sum of t squares overC. These facts require relatively simple proofs, but we defer these to a futurepublication.



HILBERT'S THEOREM ON TERNARY QUARTICS 54. Hilbert's Theorem and Gram matrices { an introductionWe describe how the Gram matrix method works for ternary quartics. Thereare 6 monomials in a quadratic form in three variables, and 15 coe�cients in theternary quartic. This means that there are 21 distinct entries in the Gram matrixand 15 equations in (11), and hence the solution to the linear system will have 6 =21�15 parameters. Thus the Gram matrix of a ternary quartic is 6�6 with entrieslinear in 6 parameters. If we recall (1), denote the parameters by fa; b; c; d; e; fg,and write the monomials of degree 2 in the order x2; y2; z2; xy; xz; yz, then we �ndthe general form of a Gram matrix of a ternary quartic p:266666666666666664
�4;0;0 a b 12�3;1;0 12�3;0;1 da �0;4;0 c 12�1;3;0 e 12�0;3;1b c �0;0;4 f 12�1;0;3 12�0;1;312�3;1;0 12�1;3;0 f �2;2;0 � 2a 12�2;1;1 � d 12�1;2;1 � e12�3;0;1 e 12�1;0;3 12�2;1;1 � d �2;0;2 � 2b 12�1;1;2 � fd 12�0;3;1 12�0;1;3 12�1;2;1 � e 12�1;1;2 � f �0;2;2 � 2c

377777777777777775Hilbert's Theorem together with Theorem 3 says that if p is psd, then for somechoice of the parameters fa; b; c; d; e; fg, this matrix will be psd and have rank 3.We ignore the psd requirement for the moment and consider the problem of�nding choices of parameter for which this Gram matrix has rank 3. For any suchmatrix, all 4 � 4 minors will equal zero. There are 225 such minors, although bysymmetry there are at most 120 di�erent minors. Each minor is the determinantof a 4� 4 matrix with entries linear in the parameters, and hence its vanishing isan equation of degree at most 4 in the 6 parameters.Thus for a speci�c ternary quartic p we can form a system of 120 equations ofdegree at most 4 in 6 variables so that the solutions correspond to rank 3 Grammatrices for p. We can attempt to solve this system, however in almost all cases,the system is much too complicated to solve \by hand". We have made use of acomputational tool called RealSolving, which can count the number of solutions,both complex and real, in the case where there are only �nitely many complexsolutions. For details on RealSolving, see [7] and the RealSolving webpagewww.loria.fr/~rouillieExample. We consider p(x; y; z) = x4 + y4 + z4. The Gram matrix of p isV = V (a; b; c; d; e; f) := 266666641 a b 0 0 da 1 c 0 e 0b c 1 f 0 00 0 f �2a �d �e0 e 0 �d �2b �fd 0 0 �e �f �2c
37777775 :Since p is psd, Hilbert's Theorem states that it is a sum of three squares; indeed,one such representation is evident. In terms of the Gram matrix, this means that



6 VICTORIA POWERS AND BRUCE REZNICKthere is a choice of values for the parameters so that V (a; b; c; d; e; f) is psd withrank 3. The obvious representationx4 + y4 + z4 = (x2)2 + (y2)2 + (z2)2corresponds to V (0; 0; 0; 0; 0; 0). But p has other representations. In fact, it's easyto see that V (�1; 0; 0; 0; 0; 0) is also psd with rank 3. If we seek vectors whose dotproducts are given by this matrix, we are easily led to the following representation:x4 + y4 + z4 = (x2 � y2)2 + 2(xy)2 + (z2)2:Clearly two other such representations can be found by cycling the variables:V (0;�1; 0; 0; 0; 0) and V (0; 0;�1; 0; 0; 0). It turns out that there are four others.One of them is V (r; r; r; s; s; s), with r = 1�p2 and s = p2� 2; the three otherscorrespond to the symmetry of p under the sign changes y ! �y and z ! �z.(See (15), (16) below.) We will later show how these representations can be derivedwithout using a Gram matrix.Using RealSolving, for p = x4+y4+z4 we have found that there are 15 choicesof parameter in which V is a real matrix of rank 3, and 63 choices of parameterin which V is a complex matrix of rank 3. As noted above, the non-psd casescorrespond to the representations of p as a sum or di�erence of three real squaresor as a sum of three complex squares. Thus we know that there are exactly 63(orthogonally inequivalent) ways to write p as a sum of three squares of forms overC, of which 15 are a sum or di�erence of three squares over R.In this case, after \by hand" manipulation of the 120 equations, we can �ndthe following 15 representations of p as a sum or di�erence of three squares of realquadratic forms: (x2)2 + (y2)2 + (z2)2(12) (x2 � y2)2 + 2(xy)2 + (z2)2(13) (x2 + y2)2 � 2(xy)2 + (z2)2(14) (x2 + (1�p2)(y2 +p2yz + z2))2 + (p2� 1)(x(p2y + z) + yz � z2)2(15) +(p2� 1)(xz � (y � z)(p2y + z))2(x2 + (1 +p2)(y2 �p2yz + z2))2 � (p2 + 1)(x(�p2y + z) + yz � z2)2(16) �(p2 + 1)(xz � (y � z)(�p2y + z))2:These �ve equations correspond to 15 di�erent representations, because p isboth symmetric under permutation of the variables and even in each of the variables.Thus, p = P fi(x; y; z)2 implies that p = P fi(x;�y;�z)2 = P fi(x;�z;�y)2 =etc. The \obvious" representation (12) is una�ected by these symmetries. Theequations (13) and (14) correspond to three psd and three non-psd representationseach, after the cyclic permutation of the variables. It is not obvious, but (15) and(16) are already symmetric in the variables (this shows up in their Gram matrices);however, the substitutions (y; z) ! (�1y;�2z) make them correspond to four psdand four non-psd representations respectively.If we consider p as a sum of three complex quadratic forms, we need to allowthe entries of the Gram matrix to be complex. There are 48 non-real Gram matrices



HILBERT'S THEOREM ON TERNARY QUARTICS 7of rank 3. We �nd, for example, that V (1; i; i; 0; 0; 2i) has rank 3, and this gives usa representation of p as a sum of three squares:(x2 + y2 + iz2)2 + 2(ixy + z2)2 � 2i(xz + yz)2:(17)Since p(x; y; z) = p(x; imy; inz), a cyclic permutation of the variables gives poten-tially 3 � 42 = 48 di�erent sums of squares. However, (17) is symmetric underz ! �z, so that it corresponds to only 24 non-real representations. We turn tothe real representations of the previous paragraph, and note that (13) and (14)are now equivalent under y ! iy. There are also 42 � 22 = 12 ways to take(y; z)! (imy; inz), with 0 � m;n � 3, where at least one of (m;n) is odd, and 12non-real representations which correspond to such a substitution into each of (15)and (16), completing the inventory.Finally, we note that by [4, Cor. 2.12], given a psd Gram matrix for p withrank 3, we may assume that x2 appears only in the �rst square and xy appears onlyin the �rst two squares. Thus, we can view the totality of sums of three squares asinducing a polynomial map from R15 ! R15:(b1x2 + b2xy + b3xz + b4y2 + b5yz + b6z2)2+(b7xy + b8xz + b9y2 + b10yz + b11z2)2 + (b12xz + b13y2 + b14yz + b15z2)2=Pi+j+k=4 �i;j;k(b1; : : : ; b15)xiyjzk:Hilbert's Theorem, in these terms, is that f�i;j;k(R15)g is precisely the setof coe�cients of psd ternary quartics. It is not unreasonable to expect that thedegree of this mapping would (usually) be �nite, but we have not seen this issuediscussed in detail in the other proofs of Hilbert's Theorem. We know of no studiesof Hilbert's Theorem over C.We have applied the method of the example to a number of di�erent realternary quartics. In all cases, we have obtained the values (63; 15) for the numberof complex and real solutions, apart from a couple of \degenerate" cases where thenumbers are less. Our experiments suggest that the values (63; 15) are generic. Wehope to have much more to say about this in a future publication.5. Some preparatory results on binary formsWe now show how the representations of certain psd ternary quartics as a sumof three squares can be analyzed without using Gram matrices explicitly. This isdone by reducing the analysis to certain questions about binary forms.Suppose p(t; u) is a psd binary form of degree 2d. An invertible change is nowde�ned by p0(t; u) = p(at+ bu; ct+ du); ad 6= bc:By the same reasoning applied to ternary quartics, we may assume that, after aninvertible change, p(1; 0) = 1, so p(t; u) = t2d + � � � . In any given representationp = f21 +f22 , we have f1(t; u) = atd+ : : : and f2(t; u) = btd+ : : : . Then a2+ b2 = 1,hence there exists � such that a = cos� and b = sin�, and we have from (7),p(t; u) = (cos �f1 + sin �f2)2 + (� sin �f1 � cos �f2)2= (cos(� � �)td + : : : )2 + (��sin(� � �)td + : : : �)2:= f21;�;�(t; u) + f22;�;�(t; u):



8 VICTORIA POWERS AND BRUCE REZNICKWe see that, for exactly one value of � (namely �) and one choice of sign in �, thecoe�cients of td in f1;�;� and f2;�;� are 1 and 0 respectively, and the highest powerof t in f2;�;� has a non-negative coe�cient. We will call this a standard form forwriting p as a sum of two squares; in our terminology, p is a sum of two squares inm ways means that there are exactly m standard forms for p.Sums of two squares always factor over C: p = f21 + f22 =) p = (f1 +if2)(f1 � if2), so the expression of p in standard form as a sum of squares isequivalent to a factorization p = G+G� over C[t; u] as a product of conjugatefactors so that G�(1; 0) = f1(1; 0) � if2(1; 0) = 1. Note also that if p = G+G�,where G� = f1 � if2, then for all �, p = (e�i�G+)(ei�G�), wheree�i�G� = (cos �f1 + sin �f2)� i(sin �f1 � cos �f2):The linear factors of p(t; u) over C[t; u] are either real or appear as conjugatepairs, and since the coe�cient of t2d in p is 1, we may arrange that the coe�cientof t is 1 in each of these factors:p(t; u) = qYj=1(t+ �ju)mj rYk=1(t+ (�k + i�k)u)nk rYk=1(t+ (�k � i�k)u)nk :(18)Furthermore, since p � 0, the exponents of the real factors, mj , must be even.Theorem 4. Suppose p(t; u) is a psd binary form of degree 2d with p(1; 0) = 1,and suppose that p factors over C as in (18). Then p is a sum of two squares in� 12 Qrk=1(nk + 1)� ways.Proof. Suppose p = f21 + f22 is given in standard form, with f1(1; 0) = 1,f2(1; 0) = 0. Suppose �rst that p has the real linear factor `(t; u) = t + �u. Thenp(�;�1) = 0 for j = 1; 2, hence fj(�;�1) = 0 as well, and so ` divides both f1and f2. In this way, we can \peel o�" all the real linear factors of p, and we mayassume without loss of generality that p has only the complex conjugate factors.As noted above, we consider the possible factorizations of p = G+G�. SinceG+ j p, there exist 0 � ak; bk � nk such thatG+(t; u) = rYk=1(t+ (�k + i�k)u)ak rYk=1(t+ (�k � i�k)u)bk :Taking conjugates, we see thatG�(t; u) = rYk=1(t+ (�k + i�k)u)bk rYk=1(t+ (�k � i�k)u)ak :Comparison with the factorization of p shows that ak+bk = nk, hence bk = nk�akfor all k. There are N = Qrk=1(nk + 1) ways to choose the ak's, giving N pairs(G+; G�) of complex conjugate factors of p, which in turn de�ne N pairs (f1; f2) =( 12 (G++G�); 12i (G+�G�)). If G+ 6= G�, then exactly one of the pairs f(G+; G�),(G�; G+)g will leave f2 in standard form. There is one exceptional case: if all nk'sare even, then taking ak = 12nk gives G+ = G�, and f2 = 0. This occurs in thecase that p is already a square.We shall need the following result, though not in its full generality for n variables.Theorem 5. Suppose p 2 R[X ] is quartic and can be written as a sum of twosquares. If p has no linear factors over R[X ], but factors as a product of linear



HILBERT'S THEOREM ON TERNARY QUARTICS 9forms over C[X ], then p is a sum of two squares in 2 ways. Otherwise, p is a sumof two squares in 1 way.Proof. Since p is psd, if ` is a real linear factor and ` j p, then `2 j p, and ifp = f21 + f22 , then ` j fj . Writing p = `2�p, fj = ` �fj , we'd have �p = �f21 + �f22 . Since �pis quadratic, this means it has rank two, and there is only one way to write it as asum of two squares (up to (8), as always.)We now assume that p has no linear factors, p(x1; : : : ; xn) = x41 + : : : and thata representation p = f21 + f22 has f1(1; 0; : : : ; 0) = 1 and f2(1; 0; : : : ; 0) = 0. Thenp = (f1+ if2)(f1� if2) factors over C[X ] as a product of conjugate quadratics, andconversely, any such factorization gives p as a sum of two squares. If p has a di�erentstandard form representation p = g21 + g22, then p has a di�erent factorizationp = (g1+ ig2)(g1� ig2), with g1� ig2 6= c(f1� if2). Let `1 = gcd(f1+ if2; g1+ ig2).Then `1 has to be linear, and we can normalize so that `1(1; 0; : : : ; 0) = 1. It isnow easy to show by unique factorization in C[X ] that there are linear factors `jso that `j(1; 0; : : : ; 0) = 1 andf1 + if2 = `1`2; f1 � if2 = `3`4; g1 + ig2 = `1`3; g1 � ig2 = `2`4It follows that `4 = �̀1 and `3 = �̀2, so that p = `1 �̀1`2 �̀2, and this implies thatthe two representations are all that are possible. (It does not matter whether `1and `2 are distinct in this case; in the notation of the last theorem, 2 = d 2+12 e =d (1+1)(1+1)2 e.)Finally, we shall need the following result. It is similar to the classical canon-ical form for the binary quartic, which is in the literature. However, the classicaltheorem allows invertible changes in GL(2;C); it is unclear whether our analysisof the real case is in the literature.Theorem 6. If p(t; u) is a psd quartic form, then using an invertible change,p(t; u) can be put into one of the following shapes: t4, t2u2, t2(t2 + u2), (t2 + u2)2,or t4 + �t2u2 + u4 with j�j < 2. The particular shape of p depends only on thefactorization of p over C[t; u].Proof. Factor p as in (18). If Pmj = 4, then since the mj 's are even, eitherp = `41 or p = `21`22, where `1 and `2 are non-proportional linear forms. Make theinvertible change t0 = `1(t; u) and u0 = `2(t; u) to get the �rst two cases.If Pmj = 2, then p(t; u) = `2q(t; u), where ` is linear and q is a positivede�nite quadratic. Make a preliminary invertible change so that ` = t0, drop theprime and note that q(t; u) = at2 + 2btu+ cu2, where c > 0; ac > b2. Thus,q(t; u) = (a� b2c )t2 + c( bc t+ u)2:Writing d = a� b2c > 0 and `0(t; u) = bc t+u, we can make another invertible changeso that `0 = u0. This shows that p can be turned into t2(dt2 + u2). By takingu = pdu0 and dividing by d, we obtain the third case.In the last two cases, p has only complex conjugate roots. If they are repeated,then p is the square of a positive de�nite binary quadratic form, which after aninvertible change is t2 + u2.Otherwise, we may assume that p(t; u) = (t2 + u2)(at2 + 2btu + cu2), wherethe second factor is positive de�nite. Under an orthogonal change of variablest = ct0 + su0; u = �st0 + cu0, where s = sin�; c = cos�, the �rst factor becomes(t0)2+(u0)2 and the coe�cient of t0u0 in the second becomes (a�c) sin 2�+2b cos2�.



10 VICTORIA POWERS AND BRUCE REZNICKThus, we may choose � so that the second factor is also even in t0 and u0. (In fact,any two positive de�nite quadratic forms can be simultaneously diagonalized.) Inother words, after an invertible change, we may assume that p is a product of twoeven positive de�nite quadratic forms, and after rescaling t and u if necessary, wehave p(t; u) = (t2 + ru2)(t2 + 1ru2) = t4 +Rt2u2 + u4, with R = r + 1r > 2. A �nalinvertible change givesp(t+ u; t� u) = (2 +R)�t4 +�12� 2R2 +R � t2u2 + u4� ;and since � = 12�2R2+R = �2 + 162+R = 2� 4R�82+R , we have j�j < 2.6. The direct approach to Hilbert's TheoremLet us now assume Hilbert's Theorem, and writep(x; y; z) = x4 + 2x2F2(y; z) + 2xF3(y; z) + F4(y; z) = 3Xj=1 f2j (x; y; z):(19)As noted earlier, we may assume that the term x2 appears only in f1, and up tosign, we may assume that its coe�cient is 1. Thus,p(x; y; z) = �x2 + g1;1(y; z)x+ g2;1(y; z)�2 + 3Xj=2�g1;j(y; z)x+ g2;j(y; z)�2:(20)Comparing the coe�cients of x3 in (19) and (20), we see that 0 = 2g1;1(y; z), hencewe may assume that f1(x; y; z) = x2 +Q(y; z) for a binary quadratic Q andp(x; y; z) = �x2 +Q(y; z)�2 + 3Xj=2�g1;j(y; z)x+ g2;j(y; z)�2:(21)We now exploit the algebraic properties of sums of two squares, in a lemmawhich will be applied to p� (x2+Q)2. The basic idea is similar to [3, Lemma 7.5].Lemma 7. Suppose�(x; y; z) = h2(y; z)x2 + 2h3(y; z)x+ h4(y; z)is a quartic form (so that hk is a form of degree k). Then there exist forms  (j) sothat � =  2(1)+ 2(2) if and only if � is psd and the discriminant of � as a quadraticin x, �(y; z) := h2(y; z)h4(y; z)� h23(y; z);is the square of a real cubic form.Proof. First, if � =  2(1) +  2(2), then it is psd and we have (j)(x; y; z) = �(j)(y; z)x+ �(j)(y; z);hence h2 = �2(1) + �2(2), h3 = �(1)�(1) + �(2)�(2), h4 = �2(1) + �2(2). It follows that� = h2h4 � h23 = (�(1)�(2) � �(2)�(1))2:Conversely, suppose � is psd and � is a square. Then h2(y; z) is a psd quadraticform, so after an invertible change in (y; z), which will a�ect neither the hypothesisnor the conclusion, we may consider one of three cases: h2(y; z) = 0, h2(y; z) = y2,h2(y; z) = y2 + z2.



HILBERT'S THEOREM ON TERNARY QUARTICS 11In the �rst case, � = �h23, so h3 = 0 as well and �(x; y; z) = h4(y; z) is a psdbinary quartic. By Theorem 4, � = h4 is a sum of two squares.In the second case, �(y; z) = y2h4(y; z) � h23(y; z) � 0, hence �(0; z) =�h23(0; z) � 0, so h3(0; z) = 0. Thus h3(y; z) = yk2(y; z) for some quadratick2. Further, there exists a cubic form c3(y; z) so that�(y; z) = y2(h4(y; z)� k22(y; z)) = c23(y; z):Thus, c3(y; z) = ys2(y; z) for some quadratic s2. But this means that h4� k22 = s22,hence�(y; z) = x2y2 + 2xyk2(y; z) + k22(y; z) + s22(y; z) = (xy + k2(y; z))2 + s22(y; z)is a sum of two squares.Finally, in the third case, since � is a square, there exists real c3 so that�(y; z) = (y2 + z2)h4(y; z)� h23(y; z) = c23(y; z):It follows that, over C[y; z],(y + iz)(y � iz)h4(y; z) = (y2 + z2)h4(y; z) = h23(y; z) + c23(y; z)= (h3(y; z) + ic3(y; z))(h3(y; z)� ic3(y; z)):(22)Thus, up to choice of sign of c3, y + iz is a factor of h3(y; z) + ic3(y; z). Writeh3(y; z) + ic3(y; z) = (y + iz)(k2(y; z) + is2(y; z)):(23)so that h3(y; z) = yk2(y; z)� zs2(y; z); c3(y; z) = ys2(y; z) + zk2(y; z):Taking conjugates in (23) and substituting into (22), we geth4(y; z) = (k2(y; z) + is2(y; z))(k2(y; z)� is2(y; z)) = k22(y; z) + s22(y; z):Thus, �(y; z) = x2(y2 + z2) + 2x(yk2(y; z)� zs2(y; z)) + k22(y; z) + s22(y; z)= (xy + k2(y; z))2 + (xz � s2(y; z))2:This lemma leads to the fundamental constructive theorem of this paper.Theorem 8. If p is a quartic satisfying (19), then p can be written as in (21)if and only ifp(x; y; z)�(x2+Q(y; z))2 = 2(F2(y; z)�Q(y; z))x2+2F3(y; z)x+F4(y; z)�Q2(y; z)is psd and�(y; z) = 2(F2(y; z)�Q(y; z))(F4(y; z)�Q2(y; z))� F 23 (y; z)is the square of a real cubic form.Note that for every Q which satis�es the above conditions, p(x; y; z) � (x2 +Q(y; z))2 is quadratic in x and is a sum of two squares, and hence by Theorem 5can be written as a sum of two squares in at most two ways. That is, the numberof representations of p as a sum of three squares is bounded by twice the numberof suitable Q.Whereas the Gram matrix approach involves a system of polynomial equa-tions in the six parameters fa; b; c; d; e; fg, the method of Theorem 8 involves three



12 VICTORIA POWERS AND BRUCE REZNICKparameters, the coe�cients of Q. It is not di�cult to set up necessary condi-tions for a binary sextic to be the square of a cubic form, and when applied to� = 2(F2 �Q)(F4 �Q2)� F 23 , these give a non-trivial system of three equations,although the degree is much higher than that which arises in the Gram matrixapproach.Finally, by comparing Corollary 2 and Theorem 8, we see that Hilbert's Theo-rem can be reduced entirely to a theorem in binary forms.Corollary 9. Suppose F2; F3; F4 are binary forms of degree 2; 3; 4 respec-tively, such that F4 is psd and27F 23 � 4��F2 +qF 22 + 3F4��2F2 +qF 22 + 3F4�2 :Then there exists a binary quadratic Q such that 2(F2 � Q)(F4 � Q2) � F 23 is aperfect square and F2 �Q and F4 �Q2 are psd.We believe that it should be possible to prove Corollary 9 directly. This wouldprovide a purely constructive proof of Hilbert's Theorem. We hope to validate thisbelief in a future publication.7. Some constructionsThe simplest applications of Theorem 8 occur when F3(y; z) = 0; that is, whenp is an even polynomial in x. (Unfortunately, a constant-counting argument whichwe omit shows that not every real ternary quartic can be put in this form after aninvertible change.) We revisit Theorem 8 in this special case:Corollary 10. There is a representationx4 + 2F2(y; z)x2 + F4(y; z) = (x2 +Q(y; z))2 + 3Xj=2 f2j (x; y; z)(24)if and only if one of the following four cases holds:(a): F4 � F 22 is psd and Q = F2.(b): F4 = k22 is a square, Q = �k2 and F2 � k2 is psd.(c): There is a linear form ` so that Q = F2 � `2, and F4 � (F2 � `2)2 is asquare.(d): There is a linear form ` so that F4�Q2 = `2(F2�Q) and F2�Q is psd.(In this case, F2 �Q is a factor of F4 � F 22 .)Proof. By Theorem 8, the necessary and su�cient conditions are that2(F2(y; z)�Q(y; z))x2 + F4(y; z)�Q2(y; z)be psd, and that�(y; z) = (F2(y; z)�Q(y; z))(F4(y; z)�Q2(y; z))(25)is the square of a real cubic form. The �rst condition is equivalent to F2 �Q andF4 �Q2 both being psd. We now turn to the second condition.If the �rst factor in (25) is 0, then � = 0 is trivially a square, and Q = F2.Thus, the remaining condition is that F4 � F 22 be psd. This is (a).If the second factor in (25) is 0, then again � is trivially a square and Q2 = F4.Suppose F4 = k22 , then Q = �k2, and the remaining condition is that F2 � Q =F2 � k2 be psd and we obtain case (b).



HILBERT'S THEOREM ON TERNARY QUARTICS 13In the remaining two cases, we have a quadratic q2 = F2 � Q and a quarticq4 = F4 � Q2 whose product is a square. If q2 and q4 are relatively prime, theneach must be a square. Thus, F2�Q = `2 for some linear form `, and F4�Q2 = s22is a square. This is (c).Finally, if gcd(q2; q4) = g, then q2 = gu and q4 = gv, with u and u relativelyprime, so that q2q4 = g2uv is a square. This implies that u and v are squares, sothat g has even degree. This last case is that g is quadratic, so we may take g = q2and write v = `2 for a linear form `; that is, F4 �Q2 = (F2 �Q)`2. Note that thisimplies that (F2 � Q)(`2 � F2 � Q) = F4 � F 22 . Thus any Q which satis�es thiscondition will have the additional property that F2 �Q is a psd factor of F4 � F 22 .Remark. We can use Corollary 10 to count the number of possible represen-tations as a sum of three squares of x4 + 2F2(y; z)x2 + F4(y; z). If (a) holds, thenp(x; y; z) = (x2 + F2(y; z))2 + (F4(y; z)� F 22 (y; z));and the second summand above is a sum of two squares by Theorem 4, in one ortwo ways, depending on whether F4 � F 22 has linear factors. (It may also happento be a square: q2 + 02 can be viewed as a sum of two squares.)In case (b), the condition that F2 �Q = F2 � k2 is psd may be true for zero,one or two choices of sign. If it is true, we havep(x; y; z) = (x2 +Q(y; z))2 + 2x2(F2(y; z)�Q(y; z));If F2 �Q is psd, it is a sum of two squares (in exactly one way) by Theorem 4.If (c) holds, thenp(x; y; z) = (x2 + F2(y; z)� `2(y; z))2 + 2`2(y; z)x2 + s2(y; z)2is, as written, a sum of three squares. Furthermore, although 2`2(y; z)x2+s2(y; z)2factors into quadratic forms over C[y; z], it does not factor into linear forms unless` j s2, and so the sum of three squares is unique except in this case. It is not apriori clear how many di�erent linear forms ` satisfy these conditions for a givenpair (F2; F4).Finally, in case (d),p(x; y; z) = (x2 +Q(y; z))2 + 2(F2(y; z)�Q(y; z))(x2 + `2(y; z)):Since F2 �Q is a psd binary form, it splits into linear factors over C[y; z], and soany suitable Q leads to two representations of p as a sum of three squares. Again,it is not a priori clear how many such forms Q exist for given (F2; F4).We conclude this section with some simple examples.Example. The psd quarticp(x; y; z) = (x2 + y2)(x2 + z2) = x4 + x2(y2 + z2) + y2z2is a product of two sums of two squares and hence is a sum of two squares intwo di�erent ways. Are there other ways to write p as a sum of three squares?Using Theorem 8, if one of the squares is x2 + Q(y; z), then F2 � Q and F4 � Q2must be psd. If y2z2 � Q2(y; z) is psd, then Q(y; z) = �yz with j�j � 1 andF2 �Q = 12 (y2 � 2�yz + z2) is psd. But�(y; z) = 1��22 (y2 � 2�yz + z2)y2z2



14 VICTORIA POWERS AND BRUCE REZNICKwill be a perfect square only when � = �1. This re-derives the familiar represen-tations from the two-square identity:p(x; y; z) = (x2 � yz)2 + x2(y + z)2 = (x2 + yz)2 + x2(y � z)2Example. The similar-looking psd quarticp(x; y; z) = x4 + x2y2 + y2z2 + z4is irreducible, and so is not a sum of two squares. It is not trivial to write p as asum of three squares, so we apply the algorithm.Here, F2(y; z) = 12y2 and F4(y; z) = z2(y2 + z2). If F4 �Q2 is psd then z j Q,so Q(y; z) = ayz + bz2 for some (a; b). It is easily checked that F4 � Q2 is psd ifand only if a2 + b2 � 1 and it's a square, z2(by � az)2, if and only if a2 + b2 = 1.And F2 �Q is psd if and only if a2 + 2b � 0, and it's a square, (y � 12az)2, if andonly if b = � 12a2.Running through the cases, we see that (a) and (b) are not possible, becauseQ cannot equal F2 and F4 is not a square. For (c), F2 �Q and F4 � Q2 are bothsquares when b = � 12a2 and a2 + b2 = 1, which implies thata = �� := �q2p2� 2; b = 1�p2:This gives the representationp(x; y; z) = (x2 � �yz + (1�p2)z2)2 + x2(y � �z)2 + z2((p2� 1)y � �z)2:The sum of the last two squares does not split overC[y; z], so there are no additionalrepresentations in this case. In (d), 12y2 �Q(y; z) = 12 (y2 � 2ayz � 2bz2) must bea psd factor ofF4 � F 22 = z4 + z2y2 � 14y4 = �z2 + 1�p22 y2��z2 + 1+p22 y2� :Thus, it is a multiple of z2 + 1+p22 y2, and a = 0, b = 1�p2. This leads top(x; y; z) = (x2 + (1�p2)z2)2 + (x2 + z2)(y2 + (2p2� 2)z2);since the last sum of two squares splits into linear factors over C, there are twomore representations of p as a sum of two squares, making four in all.Example. We consider the class of quartics: p(x; y; z) = (x2 + G(y; z))2, sothat F2(y; z) = 2G(y; z) and F4(y; z) = G2(y; z). By Corollary 10, p is a sum ofthree squares as in (24) if and only if 2(G � Q) and G2 � Q2 are both psd and(G�Q)(G2 �Q2) = (G�Q)2(G+Q) is a square. If G = Q, then these conditionsare satis�ed immediately, and of course, we recover the representation of p as asingle square. If G = �Q, then we get another representation, provided G is psd:(x2 +G(y; z))2 = (x2 �G(y; z))2 + 4x2G(y; z):Since G is a quadratic form, this gives p as a sum of two squares if G = `2 and asum of three squares if G is positive de�nite. Otherwise, we must have that G�Qis psd and G+Q is a square. This means that G(y; z) � jQ(y; z)j for all (y; z), andhence G is psd. Thus Q(y; z) can be �(G(y; z)� (ay+ bz)2) for any (a; b) for which2G(y; z)� (ay + bz)2 is psd.



HILBERT'S THEOREM ON TERNARY QUARTICS 15If G has rank 1, then after an invertible change, G(y; z) = y2, and Q(y; z) =(1 � a2)y2, so that (G +Q)(y; z) = (2 � a2)y2 � 0; that is, Q(y; z) = ��y2, with�1 � � � 1. This gives an in�nite family of representations:(x2 + y2)2 = (x2 � �y2)2 + (2 + 2�)x2y2 + (1� �2)y4:If G has rank 2, then after an invertible change, G(y; z) = y2 + z2, and G � jQj ifand only if a2 + b2 � 2. This gives a doubly in�nite family of representations:(x2+y2+z2)2 = (x2�(y2+z2�(ay+bz)2))2+(2(y2+z2)�(ay+bz)2)(2x2+(ay+bz)2):If G is not psd, then p has only the trivial representation. This also can beseen directly: since x2 + G(y; z) is inde�nite, in any representation p = P f2j , fjmust be a multiple of x2 +G(y; z); by degrees, it must be a scalar multiple. Thusany representation of p as a sum of squares is orthogonally equivalent to the trivialone. 8. A complete answer in a special caseWe now simplify further still, by supposing that F2(y; z) = 0 as well, so thatp(x; y; z) = x4 + F4(y; z);where F4 is a psd quartic form. Hilbert's Theorem is no mystery in this specialcase, because we already know that F4 can be written as a sum of two squares,and this gives one way to write p as a sum of three squares. Are there any otherrepresentations? Note that necessary conditions on Q include that �Q and F4�Q2are both psd.There are �ve cases, based on the factorization of F4; we shall need two lemmasabout real binary forms.Lemma 11. Suppose F (y; z) is a positive de�nite quartic form, and considerthe equation F (y; z)� (ay + bz)4 = q2(y; z)(26)for linear forms ay+ bz and quadratic forms q. If F is a square, then (26) has onlythe trivial solution (a; b) = (0; 0). If F is not a square, then there are two di�erentq's for which (26) holds.Proof. By Theorem 6, we may assume that F (y; z) = y4 + �y2z2 + z4 andthat �2 < � � 2. There are two trivial solutions to (26):y4 + �y2z2 + z4 � (1� �24 )z4 = (y2 + �2 z2)2;(27) y4 + �y2z2 + z4 � (1� �24 )y4 = (�2 y2 + z2)2:If � = 2, these are truly trivial! It is easy to see that these are the only possibleexpressions in which a = 0 or b = 0. For other solutions, assume ab 6= 0, and set upthe �ve equations for the coe�cients of F (y; z)� (ay + bz)4 = (ry2 + syz + tz2)2:1� a4 = r2; �4a3b = 2rs; �� 6a2b2 = 2rt+ s2; �4ab3 = 2st; 1� b4 = t2:Since 4r2s2t2 = r2(2st)2 = t2(2rs)2, we have(1� a4)(�4ab3)2 = (1� b4)(�4a3b)2 =) a2b6 � a6b6 = a6b2 � a6b6:Since ab 6= 0 it follows that a4 = b4, so a2 = b2 and so rs = st. If s = 0, thenab = 0, which is impossible, so we conclude that r = t. But thens2 = s2 + 2rt� 2r2 = (�� 6a2b2)� 2(1� a4) = �� 2� 4a4 < 0;



16 VICTORIA POWERS AND BRUCE REZNICKwhich is a contradiction. Thus, (27) gives the only solutions to (26).Lemma 12. If F (y; z) and G(y; z) are non-proportional positive de�nite qua-dratic forms, then there is a unique positive number �0 such that F � �0G is thenon-zero square of a linear form.Proof. Since F and G are both positive de�nite, the following minimum iswell-de�ned; it is positive, and achieved for � = �0:�0 = min0���2� F (cos �; sin �)G(cos �; sin �) :Let H�(y; z) = F (y; z) � �G(y; z). Then H�0 is psd and H�0(cos �0; sin �0) = 0,and as F and G are not proportional, H�0 is not identically zero. Thus H�0 is thenon-zero square of a linear form. If � < �0, then H� is positive de�nite, and so isnot a square; if � > �0, then H�(cos �0; sin �0) < 0, so H� is not even psd.If j�j < 2, then � = 2� �2 with 0 < � < 2, soy4 + �y2z2 + z4 = (y2 + �yz + z2)(y2 � �yz + z2)is a product of two positive de�nite quadratics. In this case, the computation of �0is extremely easy: the minimum occurs at the extreme value of cos � sin �, namely,� 12 and �0 = min0���2� 1 + � cos � sin �1� � cos � sin � = 1� �21 + �2 :In this case, note that(y2 � �yz + z2)��2� �2 + �� (y2 � �yz + z2) = � 2�2 + �� (y � z)2:Corollary 13. Suppose p(x; y; z) = x4 + F4(y; z) is psd. The one of thefollowing holds:1. F4 = `4 for some linear form `, and p is a sum of three squares in in�nitelymany ways.2. F4 = `21`22 for non-proportional linear forms `1 and `2, and p is a sum ofthree squares in exactly one way.3. F4 = `2k2, where k2 is positive de�nite, and p is a sum of three squares inexactly two ways.4. F4 = k22, where k2 is positive de�nite, and p is a sum of three squares inexactly three ways.5. F4 = k2q2, where k2 and q2 are positive de�nite and not proportional, andp is a sum of three squares in exactly eight ways.Proof. Throughout, we shall use the classi�cation of Theorem 6 as the �rststep in the proof.1. We assume that `(y; z) = y. We must have that �Q(y; z) and y4 �Q2(y; z) arepsd. The second condition implies that Q(y; z) = �y4 with 1 � �2, and the �rstimplies that � < 0. In this case � = ��(1� �2)y6 is always a square and, writing� = ��2, 0 � � � 1 we havex4 + y4 = (x2 � �2y2)2 + 2�2x2y2 + (1� �4)y4:The distinct values of � give orthogonally distinct di�erent representations of p asa sum of three squares. This can't be too surprising, because p is obviously a sum



HILBERT'S THEOREM ON TERNARY QUARTICS 17of two squares. However, the next case gives another sum of two squares which hasno additional representations as a sum of three squares.2. In this case, `1(y; z) = y and `2(y; z) = z. We must have that �Q(y; z) andy2z2�Q2(y; z) are psd. The second condition implies that yz j Q, hence Q(y; z) =�yz. But the �rst condition then implies that � = 0, so Q = 0 and we havex4 + y2z2 = (x2)2 + 3Xj=2 f2j (x; y; z):But this implies that fj(y; z) = �jyz and 1 = �22 + �23; these are all orthogonallyequivalent to (yz)2+02. So the only representations of p as a sum of three squaresare orthogonally equivalent to those as a sum of two squares. In fact, the psdGram matrices for p have no parameters, and p has, up to orthogonal equivalence,a unique representation as a sum of squares.3. In this case, we assume that F4(y; z) = y2(y2+ z2). The condition that F4�Q2is psd implies that y j Q, and the condition that �Q is psd implies that Q(y; z) =��y2, with � � 0, so now F4(y; z)�Q2(y; z) = y2((1��2)y2+z2), hence 0 � � � 1.Finally, the condition that � = �y4((1��2)y2+z2) be a square implies that � = 0or � = 1. In the �rst case, we havex4 + y2(y2 + z2) = (x2)2 + 3Xj=2 f2j (x; y; z):There is by Theorem 4 exactly one way to write y2(y2+z2) as a sum of two squares,(y2)2 + (yz)2. In the second case, we havex4 + y2(y2 + z2) = (x2 � y2)2 + 3Xj=2 f2j (x; y; z) =) 2x2y2 + y2z2 = 3Xj=2 f2j (x; y; z):By Theorem 5, there is also just one way to write y2(2x2 + z2) as a sum of twosquares, 2(xy)2 + (yz)2, so altogether there are two ways to write p as a sum ofthree squares.4. We assume that k2(y; z) = y2 + z2. We now run through the four cases inCorollary 10. In case (a), we have Q = 0, andx4 + (y2 + z2)2 = (x2)2 + 3Xj=2 f2j (x; y; z):We know from Theorem 4 that there are two inequivalent choices for (f2; f3). Theseare easy to compute by hand and givex4 + (y2 + z2)2 = (x2)2 + (y2 + z2)2 + 02 = (x2)2 + (y2 � z2)2 + (2yz)2:In case (b), Q(y; z) = �(y2 + z2) and �Q is psd, so Q(y; z) = �(y2 + z2) andx4 + (y2 + z2)2 = (x2 � (y2 + z2))2 + 3Xj=2 f2j (x; y; z):This implies that 2x2(y2 + z2) =P3j=2 f2j (x; y), and, as before, Theorem 5 impliesthat there is a unique representation:x4 + (y2 + z2)2 = (x2 � (y2 + z2))2 + 2(xy)2 + 2(xz)2:



18 VICTORIA POWERS AND BRUCE REZNICKIn case (c), we have that Q(y; z) = �(ay + bz)2 and (y2 + z2)2 � (ay + bz)4 is asquare. We have seen in Lemma 11 that this is impossible. Finally, in case (d),�Q is a psd factor of F4 � F 22 = (y2 + z2)2, hence Q(y; z) = ��(y2 + z2) for some� > 0. This implies that �(y; z) = �(1 � �2)(y2 + z2)3, which is only a squarefor � = 0; 1, which have been already discussed. Altogether, there are only threerepresentations.5. We write F4(y; z) = y4+�y2z2+z4, with j�j < 2 and, as before, write � = 2��2,with 0 < � < 2. In case (a), Q = 0, and as in the last case, F4 is a sum of twosquares in two ways:y4 + �y2z2 + z4 = (y2 + �2 z2)2 + (1� �24 )z4 = (y2 � z2)2 + (2 + �)(yz)2:This gives two ways to write x4 + F4(y; z) as a sum of three squares.Case (b) does not apply, since F4 is not a square. In case (c), Q = �`2,and F4 � `4 = s22 is a square. By Lemma 11, there are two di�erent choices of(`2; s2) for which this is the case. For simplicity, let � = q1� �24 . These give therepresentationsx4 + y4 + �y2z2 + z4 = (x2 � �y2)2 + 2�x2y2 + (�2 y2 + z2)2;and a similar one, with y and z permuted. Note that the factors of the two sum-mands are p2�xy � i(�2 y2 + z2) which are irreducible over C. Thus there is onlyone representation of p as a sum of three squares for each Q = �`2, and so two inall. Finally, in case (d), we have that �Q is a psd factor ofF4(y; z) = (y2 + �yz + z2)(y2 � �yz + z2)Thus Q = �(y2 � �yz + z2) for some choice of sign. In this caseF4(y; z)�Q2(y; z) = 1�Q(y; z)�(y2 ���yz + z2)� �2((y2 � �yz + z2)�:By Lemma 12, the last factor is a square if and only if �2 = 2��2+� . In this case, wehavex4+y4+�y2z2+z4 = (x2��(y2��yz+z2))2+(y2��yz+z2)(2�x2+(1��2)(y�z)2)Since the sum of these last two squares splits over C, we get four di�erent repre-sentations of p as a sum of three squares altogether, so there are four from case (d)and eight in all.Example. We illustrate the eight representations of p(x; y; z) = x4+y4+z4 asa sum of three squares of real quadratic forms. In this case, � = 0, � = 1, � = p2and � =q 2�p22+p2 = p2� 1, so that 1� �2 = 2�. The two from case (a) arep(x; y; z) = (x2)2 + (y2)2 + (z2)2 = (x2)2 + (y2 � z2)2 + 2(yz)2:That is, (12) and one of (13). The two cases from (c) become the other two from(13). p(x; y; z) = (x2 � y2)2 + 2(xy)2 + (z2)2 = (x2 � z2)2 + 2(xz)2 + (y2)2:Finally, from case (d), we get four representations from(x2 � (p2� 1)(y2 �p2yz + z2))2 + 2(p2� 1)(y2 �p2yz + z2)(x2 + (y � z)2):The two-square identity then gives (15).
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