Notes towards a constructive proof of Hilbert’s Theorem on
ternary quartics
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1. Introduction

In 1888, Hilbert [5] proved that a real ternary quartic which is positive semi-
definite (psd) must have a representation as a sum of three squares of quadratic
forms. Hilbert’s proof is short, but difficult; a high point of 19th century algebraic
geometry. There have been two modern expositions of the proof one by Cassels
in the 1993 book [6] by Rajwade, and one by Swan [8] in these Proceedings but
there are apparently no other proofs of this theorem in the literature. In 1977, Choi
and Lam [2] gave a short elementary proof that a psd ternary quartic must be a
sum of (five) squares of quadratic forms, but as we shall see, the number “three”
is critical.

Hilbert’s approach does not address two interesting computational issues:

1. Given a psd ternary quartic, how can one find three such quadratics?
2. How many “fundamentally different” ways can this be done?

In this paper, we describe some methods for finding and counting representa-
tions of a psd ternary quartic as a sum of three squares. In certain special cases,
we can answer these questions completely, describing all representations in detail.
For example, if p(z,y, z) = * + F(y, z), where F is a psd quartic, then we give an
algorithm for constructing all representations of p as a sum of three squares. We
show that if F' is not the fourth power of a linear form, then there are at most 8
such representations. The key idea to our work is the simple observation that if
p=f2+ g2+ h?, then p — f? is a sum of two squares. We also give an equivalent
form of Hilbert’s Theorem which involves only binary forms.

2. Preliminaries

Suppose
(1) p(z,y,2) = Z ai,j,kmiyjzk
i+j+k=4
is a ternary quartic. How can we tell whether p is psd? The general answer, by the

theory of quantifier elimination (see, e.g., [1]) tells us that this is the case if and
only if the coefficients of p belong to a particular semi-algebraic set. This general
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set is likely to be rather unedifying to look at in detail, so it will be convenient to
make a few harmless assumptions about p.

Suppose that p(z1,...,z,) is a homogeneous polynomial. By an invertible
change taking p to p', we will mean a formal identity:
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where the matrix M = [m;;] above is in GL(n,R). Note that p is psd if and
only if p’ is psd, and representations of p as a sum of m squares are immediately
transformed into similar representations of p' and vice versa.

For example, if p(x,...,x,) is a psd quadratic form of rank r, then after
an invertible change, p = 22 + -+ + 22. If deg p = d and M = ¢I, then p' =
¢?p. Thus, multiplying p by a positive constant is an invertible change. A non-
trivial application of invertible changes is given in Theorem 6 below. When making
invertible changes, we will customarily drop the primes as soon as no confusion
would result.

Suppose now that p is a non-zero psd ternary quartic. Then there exists a point
(a,b,¢) for which p(a,b,c) > 0. By an (invertible) rotation, we may assume that
p(t,0,0) = t*p(1,0,0) = u > 0, and so we may assume that p(1,0,0) = 1; hence
04,00 = 1. Writing p in decreasing powers of x, we have

p(z,y,z) =z* + a3,170m3y + a3,071m32 + ...

If we now let &' = z+ 1 (as1,0y + @3,012), ¥ =y,2' =z, then z = 2’ — Lz 104"+

az012'),y =y',2 =2, and it’s easy to see that p'(z,y,2) = 2+ 0-23y+0-232+- - - .
We may thus assume without loss of generality that

(2) p(r7ylz) = 'T4 + 2F2(y72).’172 + 2F3(y12)’ﬂ + F4(y,2),

where F} is a binary form of degree j in (y,z). Henceforth, we shall restrict our
attention to ternary quartics of this shape.

We present, a condition for p to be psd. No novelty is claimed for this result,
which has surely been known in various guises for centuries. Note that p is psd if
and only if, for all (y,2) € R? and all real t,

B, (t) = t" + 2P (y, 2)t° + 2F3(y, 2)t + Fu(y, 2) > 0.

THEOREM 1. The quartic ®(t) = t* + 2at? + 2bt + ¢ satisfies ®(t) > 0 for all t
if and only if ¢ > 0 and

(3) b < 2 (fa+ a’? +3c)1/2 (2a+ Va2 +3c) = K(a,c).

PROOF. A necessary condition for ®(¢) > 0 for all ¢ is that ®(0) = ¢ > 0. If
®(0) = 0, then ®'(0) = 2b = 0 as well, and clearly #* +2at*> > 0 if and only if a > 0.
Thus, one possibility is that ¢ =0, b= 0, and a > 0.

We may henceforth assume that ®(0) = ¢ > 0, and so, dividing by |¢|, ®(¢) > 0
for all |t] if and only if |¢|* + 2at| + 2b- Sign(t) +¢|t| ' > 0, which holds if and only
if

c
min (u3 + 2au + —) > 2[b|.
u>0 u
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The minimum occurs when 3ug + 2aud — ¢ = 0. The only positive solution to this
equation is

1/2
" (—a+\/a2+3c> /
0= _— .
3

Thus, using ¢ = 3ug + 2au3 to simplify the computation, we see that ®(t) > 0 if
and only if

(4) 2 < ug + 2aug + cua1 = 4u8 + dauy = 4U0(U% +a)

(5) =4 (% (~a+ Ve +3c)>1/2 (% (~a+ Va2 +3c) -|-a> = 2K (a,c).

We are nearly done, because this case assumes that ¢ > 0. But note that if ¢ = 0,
we have K(a,0) = 0if a > 0 and K(a,0) < 0if a < 0, so |b] < K(a,0) implies
b= 0 and a > 0 when ¢ = 0, subsuming the first case. [l

Note that if (a, b, ¢) satisfies (3), then K(a,c) > 0, and it’s easy to check that this
implies that a > —+/c. However, it is not necessary to write this as a separate
condition.

COROLLARY 2. Suppose p is given by (2). Then p is psd if and only if Fy is
psd, and for all (r,s) € R?,

(6) |F5(r,s)| < K(Fy(r,s), Fy(r,s)).

We remark, that, even after squaring, (6) is not a “true” illustration of quan-
tifier elimination, because there will still be square roots on the right-hand side.

3. The Gram matrix method

Observe that for polynomials in f,g € R[X]:= R|zy,...,x,] and for all 6,

(7 2+ g% = (cosf +sinfg)? + (£ sinff F cosfg)>.
More generally, if M = [m;;] is a real ¢ x t orthogonal matrix, then
2
t t t t t
(8) > mifi | =Y. (Z mijmik> fife =>_ 1.
i=1 \j=1 j=1k=1 \i=1 j=1

(Note that (7) includes all real 2 x 2 orthogonal matrices.) Thus, any attempt to
count the number of representations of a form as a sum of squares must mod out
the action of the orthogonal group.

Choi, Lam and Reznick [4] have developed a method for studying representa-
tions of a form p € R[X] as a sum of squares, called the Gram matriz method. For
a=(a1,...,a,) € N we write |a| to denote Y a; and X® to denote z" -+ - --x2m.

Suppose p is a form in R[X] which is a sum of squares of forms. Then p must have
even degree 2d and thus can be written

p= Z aa X%
la|=2d

Suppose now that p has a representation
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) p=hi kb

where h; = Z‘m:d bg)Xﬁ. For each 8 € N™ of degree d, set Ug = (bg), . .,b(ﬁt)).
Then (9) becomes p = Z@,gl Us - U51X5+,8’. Hence, for each a,

(10) Ao = Z Ug . Uﬁ/.

BHA'=a
The matrix V := [Ug - Ug/] (indexed by 8 € N™ with |3| = d) is the Gram matriz
of p associated to (9). Note that V = (vg ) is symmetric, positive semidefinite,
and the entries satisfy the equations

(11) Ay = Z V8,8 -

B+B'=a
The following result is proven in [4, Thm. 2.4, Prop. 2.10]:

THEOREM 3. Suppose p = }_,|_24@aX® and V = [vgg] is a real symmetric
matriz indezed by all B € N™ such that |3] = d.

1. The following are equivalent: (a) p is a sum of squares of forms and V is
the Gram matriz associated to a representation p =Y h?, (b) V is positive
semidefinite and the entries of V satisfy the equations (11).

2. If V is the Gram matriz of a representation of p as a sum of squares, then
the minimum number of squares needed in a representation corresponding to
V' is the rank of V.

3. Two representations of p as a sum of t squares are orthogonally equivalent,
as in (8), if and only if they have the same Gram matriz.

We now form the (general) Gram matrix of p by solving the linear system
corresponding to the equations (11), where the vg g are variables, with vg g =
vgr,g. This gives the vg g’s as linear polynomials in some parameters. Then V' =
[vg,p] is the Gram matrix of p. By Theorem 3, values of the parameters for which
V' is psd correspond to representations of p as a sum of squares, with the minimum
number of squares needed equal to the rank of V.

If we consider the two sets of vectors of coefficients from the two representations
given in (8), we see that one set is the image of the other upon by the action of
M, and since M is orthogonal, the dot products of the vectors are unaltered. If p
happens to be a quadratic form, then upon arranging the monomials in the usual
order, it’s easy to see that the (unique) Gram matrix for p is simply the usual
matrix representation for p. It follows that a psd quadratic form has, in effect, only
one representation as a sum of squares.

Henceforth, when we say that p € R[X] is a sum of ¢ real squares in m ways,
we shall mean that the sums of ¢ squares comprise m distinct orbits under the
action of the orthogonal group, or, equivalently, that there are exactly m different
psd matrices of rank ¢ which satisfy (11).

Finally, we remark that a real Gram matrix for p of rank ¢ which is not psd
corresponds to a representation of p as a sum or difference of ¢ squares over R
and that a complex Gram matrix of rank ¢ corresponds to a sum of ¢ squares over
C. These facts require relatively simple proofs, but we defer these to a future
publication.
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4. Hilbert’s Theorem and Gram matrices — an introduction

We describe how the Gram matrix method works for ternary quartics. There
are 6 monomials in a quadratic form in three variables, and 15 coefficients in the
ternary quartic. This means that there are 21 distinct entries in the Gram matrix
and 15 equations in (11), and hence the solution to the linear system will have 6 =
21— 15 parameters. Thus the Gram matrix of a ternary quartic is 6 x 6 with entries
linear in 6 parameters. If we recall (1), denote the parameters by {a,b,c,d, e, f},
and write the monomials of degree 2 in the order x2,y2, 22, zy, £z, yz, then we find
the general form of a Gram matrix of a ternary quartic p:

_ 1 1 _
X4.0,0 a b 5@3.1,0 5@3,0,1 d
1 1
a X0.4,0 c 331,30 € 5@0,3,1
1 1
b c x0.0,4 f 5@1,0,3 5@0,1,3
1 1 1 1
5310 301,30 f Q220 —2a zaz11—d o191 —e€
1 1 1 1
503,0,1 € 501,03 35Q2,1,1 — d Q20,2 — 2b 501,12 — f
1 1 1 1
L d 53@0,31 35Qp,1,3 X121 —€ SO 12— f Qp,2,2 — 2CJ

Hilbert’s Theorem together with Theorem 3 says that if p is psd, then for some
choice of the parameters {a, b, c,d, e, f}, this matrix will be psd and have rank 3.

We ignore the psd requirement for the moment and consider the problem of
finding choices of parameter for which this Gram matrix has rank 3. For any such
matrix, all 4 x 4 minors will equal zero. There are 225 such minors, although by
symmetry there are at most 120 different minors. Each minor is the determinant
of a 4 x 4 matrix with entries linear in the parameters, and hence its vanishing is
an equation of degree at most 4 in the 6 parameters.

Thus for a specific ternary quartic p we can form a system of 120 equations of
degree at most 4 in 6 variables so that the solutions correspond to rank 3 Gram
matrices for p. We can attempt to solve this system, however in almost all cases,
the system is much too complicated to solve “by hand”. We have made use of a
computational tool called RealSolving, which can count the number of solutions,
both complex and real, in the case where there are only finitely many complex
solutions. For details on RealSolving, see [7] and the RealSolving webpage

www.loria.fr/"rouillie
EXAMPLE. We consider p(z,y, 2z) = 2* + y* + 2%. The Gram matrix of p is

b 0 0 d
c 0 e 0
f 0 0
f —-2a —-d —e
0 —d -2b —f
0 0 —e —f *QCJ

V:V(a7b7c7d7e7f) =

OO T Q=
o o0 =2
—

u

[

Since p is psd, Hilbert’s Theorem states that it is a sum of three squares; indeed,
one such representation is evident. In terms of the Gram matrix, this means that
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there is a choice of values for the parameters so that V' (a,b,c,d, e, f) is psd with
rank 3. The obvious representation

2134 _|_y4 + Z4 _ ($2)2 + (y2)2 + (22)2
corresponds to V(0,0,0,0,0,0). But p has other representations. In fact, it’s easy

to see that V(—1,0,0,0,0,0) is also psd with rank 3. If we seek vectors whose dot
products are given by this matrix, we are easily led to the following representation:
CU4 + y4 + 2'4 — (2132 _ y2)2 + Q(wy)z + (22)2.
Clearly two other such representations can be found by cycling the variables:
V(0,-1,0,0,0,0) and V(0,0,—1,0,0,0). It turns out that there are four others.
One of them is V(r,r,7,5,s,5), with r = 1 — /2 and s = v/2 — 2; the three others
correspond to the symmetry of p under the sign changes y — —y and z — —z.
(See (15), (16) below.) We will later show how these representations can be derived
without using a Gram matrix.

Using RealSolving, for p = 2% 4+ y* + 2* we have found that there are 15 choices
of parameter in which V is a real matrix of rank 3, and 63 choices of parameter
in which V is a complex matrix of rank 3. As noted above, the non-psd cases
correspond to the representations of p as a sum or difference of three real squares
or as a sum of three complex squares. Thus we know that there are exactly 63
(orthogonally inequivalent) ways to write p as a sum of three squares of forms over
C, of which 15 are a sum or difference of three squares over R.

In this case, after “by hand” manipulation of the 120 equations, we can find
the following 15 representations of p as a sum or difference of three squares of real
quadratic forms:

(12) (@) + (y*)* + (%)
(13) (#% = y)* + 2(2y)* + (%)
(14) (#% +y?)? = 2(ay)* + (%)

(15) (@ + (1 =V + V22 +2°)) + (V2 - 1) (2(V2y + 2) + y2z — 2°)°
+(V2 = 1) (22 — (y — 2)(V2y + 2))°

(16)  (a® + (1+V2)(y> = V2yz +2%))* = (V2 + 1) (2(—V2y + 2) + yz — 2°)°
~(V2+1)(zz — (y — 2)(—V2y + 2)).

These five equations correspond to 15 different representations, because p is
both symmetric under permutation of the variables and even in each of the variables.
Thus, p = Y. fi(z,y,2)? implies that p = 3. fi(z, £y, £2)? = Y. fi(z, £2, £y)? =
etc. The “obvious” representation (12) is unaffected by these symmetries. The
equations (13) and (14) correspond to three psd and three non-psd representations
each, after the cyclic permutation of the variables. It is not obvious, but (15) and
(16) are already symmetric in the variables (this shows up in their Gram matrices);
however, the substitutions (y, z) — (£1y, £22) make them correspond to four psd
and four non-psd representations respectively.

If we consider p as a sum of three complex quadratic forms, we need to allow
the entries of the Gram matrix to be complex. There are 48 non-real Gram matrices
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of rank 3. We find, for example, that V' (1,4,4,0,0,27) has rank 3, and this gives us
a representation of p as a sum of three squares:

(17) (2% +y? +1i2%)? + 2(izy + 22)% — 2i(zz + y2)*

Since p(z,y,z) = p(z,i™y,i"z), a cyclic permutation of the variables gives poten-
tially 3 x 42 = 48 different sums of squares. However, (17) is symmetric under
z — —z, so that it corresponds to only 24 non-real representations. We turn to
the real representations of the previous paragraph, and note that (13) and (14)
are now equivalent under y — iy. There are also 42 — 22 = 12 ways to take
(y,2z) = (i"y,i"z), with 0 < m,n < 3, where at least one of (m,n) is odd, and 12
non-real representations which correspond to such a substitution into each of (15)
and (16), completing the inventory.

Finally, we note that by [4, Cor. 2.12], given a psd Gram matrix for p with
rank 3, we may assume that 22 appears only in the first square and zy appears only
in the first two squares. Thus, we can view the totality of sums of three squares as
inducing a polynomial map from R!®> — R!5:

(b12% + byxy + bszz + bay? + bsyz + be2?)? +
(byzy + bgxz + boy? + bioyz + b1122)% + (b1axz + bisy? + biayz + bi522)?

Hilbert’s Theorem, in these terms, is that {a; jx(R')} is precisely the set
of coefficients of psd ternary quartics. It is not unreasonable to expect that the
degree of this mapping would (usually) be finite, but we have not seen this issue
discussed in detail in the other proofs of Hilbert’s Theorem. We know of no studies
of Hilbert’s Theorem over C.

We have applied the method of the example to a number of different real
ternary quartics. In all cases, we have obtained the values (63, 15) for the number
of complex and real solutions, apart from a couple of “degenerate” cases where the
numbers are less. Our experiments suggest that the values (63, 15) are generic. We
hope to have much more to say about this in a future publication.

5. Some preparatory results on binary forms

We now show how the representations of certain psd ternary quartics as a sum
of three squares can be analyzed without using Gram matrices explicitly. This is
done by reducing the analysis to certain questions about binary forms.

Suppose p(t,u) is a psd binary form of degree 2d. An invertible change is now
defined by

p'(t,u) = p(at + bu, ct + du), ad # be.

By the same reasoning applied to ternary quartics, we may assume that, after an
invertible change, p(1,0) = 1, so p(t,u) = t>*¢ + ---. In any given representation
p=f2+ f2, wehave fi(t,u) = at’+... and fo(t,u) = bt?+.... Then a® +b% = 1,
hence there exists a such that a = cosa and b = sin @, and we have from (7),
p(t,u) = (cosBfy +sin6f)? + (£sinff; F coshfa)’
= (cos(f — a)t® +...)% + (£(sin(d — a)t? +...))?
= [ s (tu) + f3 4 4 ().
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We see that, for exactly one value of § (namely «) and one choice of sign in £, the
coefficients of ¢ in fi g 4+ and f2 9 + are 1 and 0 respectively, and the highest power
of t in f5 4 + has a non-negative coefficient. We will call this a standard form for
writing p as a sum of two squares; in our terminology, p is a sum of two squares in
m ways means that there are exactly m standard forms for p.

Sums of two squares always factor over C: p = ff + fi = p = (fi +
ifa)(fr —if2), so the expression of p in standard form as a sum of squares is
equivalent to a factorization p = G1G_ over CJt,u] as a product of conjugate
factors so that G+ (1,0) = f1(1,0) £ if2(1,0) = 1. Note also that if p = G4 G_,
where G4 = f; +ifs, then for all 6, p = (e "G, ) (e’ G_), where

eT?Gy = (cosff +sin@fy) Fi(sinff, — cosbfy).

The linear factors of p(t,u) over CJ[t, u] are either real or appear as conjugate
pairs, and since the coefficient of #2¢ in p is 1, we may arrange that the coefficient
of t is 1 in each of these factors:

T s

(18)  p(t,u) = H(t + u)™ T+ (e + ivi)w)™ T 8+ (e — ivi)u)™.

k=1 k=1

Furthermore, since p > 0, the exponents of the real factors, m;, must be even.

THEOREM 4. Suppose p(t,u) is a psd binary form of degree 2d with p(1,0) =1,
and suppose that p factors over C as in (18). Then p is a sum of two squares in

[L 115 1 (ne + 1)] ways.

PROOF. Suppose p = fZ + f7 is given in standard form, with f;(1,0) = 1,
f2(1,0) = 0. Suppose first that p has the real linear factor £(¢,u) = ¢t + Au. Then
p(A,—1) = 0 for j = 1,2, hence f;(A,—1) = 0 as well, and so ¢ divides both f;
and f. In this way, we can “peel off” all the real linear factors of p, and we may
assume without loss of generality that p has only the complex conjugate factors.

As noted above, we consider the possible factorizations of p = GG _. Since
G4 | p, there exist 0 < ag, by < ny such that

Gi(t,u) = H(t+ (g + ivg)u)™ H(t+ (pr — ivg)u)*.
k=1 k=1
Taking conjugates, we see that
G (t,u) = [ ¢+ (ui + ive)w)™ T+ (i — ivi)u)*™.
k=1 k=1
Comparison with the factorization of p shows that ay + by, = ng, hence by = nj — ay,
for all k. There are N = [[,_,(nx + 1) ways to choose the ay’s, giving N pairs
(G4+,G-) of complex conjugate factors of p, which in turn define N pairs (fi, f2) =
(L1(G++G2), (G4 —G)). If G4 # G_, then exactly one of the pairs {(G4,G_),
(G_,G4)} will leave fo in standard form. There is one exceptional case: if all n;’s
are even, then taking a = %nk gives G4 = G_, and fo = 0. This occurs in the
case that p is already a square. O

We shall need the following result, though not in its full generality for n variables.

THEOREM 5. Suppose p € R[X] is quartic and can be written as a sum of two
squares. If p has no linear factors over R[X], but factors as a product of linear



HILBERT’'S THEOREM ON TERNARY QUARTICS 9

forms over C[X], then p is a sum of two squares in 2 ways. Otherwise, p is a sum
of two squares in 1 way.

PRrROOF. Since p is psd, if £ is a real linear factor and ¢ | p, then ¢? | p, and if
p= f£+ f3, then £ | f;. Writing p = £?p, f; = (f;, we’d have p = f% + f3. Since p
is quadratic, this means it has rank two, and there is only one way to write it as a
sum of two squares (up to (8), as always.)

We now assume that p has no linear factors, p(z1,...,z,) = 1 +... and that
a representation p = f2 + f2 has f1(1,0,...,0) = 1 and f»(1,0,...,0) = 0. Then
p = (f1+if2)(f1 —if2) factors over C[X] as a product of conjugate quadratics, and
conversely, any such factorization gives p as a sum of two squares. If p has a different
standard form representation p = g} + g3, then p has a different factorization
p=(g1+1ig2)(g1 —ig2), with g1 £igs # c(f1 Lifs). Let £y = ged(fi +ifa, g1 +1ig2).
Then ¢; has to be linear, and we can normalize so that ¢;(1,0,...,0) = 1. It is
now easy to show by unique factorization in C[X] that there are linear factors ¢;
so that £;(1,0,...,0) =1 and

fi+ifo="Lils,  f1—ify = {30y g1 +iga = lilz, g1 —iga = laly

It follows that ¢4 = ¢; and €5 = £, so that p = ¢16,020, and this implies that
the two representations are all that are possible. (It does not matter whether ¢;
and (, are distinct in this case; in the notation of the last theorem, 2 = [2:1] =
[(1+1)2(1+1)]_) 0

Finally, we shall need the following result. It is similar to the classical canon-
ical form for the binary quartic, which is in the literature. However, the classical
theorem allows invertible changes in GL(2, C); it is unclear whether our analysis
of the real case is in the literature.

THEOREM 6. If p(t,u) is a psd quartic form, then using an invertible change,
p(t,u) can be put into one of the following shapes: t*, t2u?, t2(t* + u?), (#* +u?)?,
or t* + M2u® + u* with |\ < 2. The particular shape of p depends only on the
factorization of p over Clt,u].

PRrROOF. Factor p as in (18). If )" m; = 4, then since the m;’s are even, either
p = {1 or p= (2% where /; and /5 are non-proportional linear forms. Make the
invertible change t' = ¢ (t,u) and u’ = ¢5(t, u) to get the first two cases.

If Y m; = 2, then p(t,u) = (*q(t,u), where ¢ is linear and ¢ is a positive
definite quadratic. Make a preliminary invertible change so that £ = t', drop the
prime and note that q(¢,u) = at® + 2btu + cu?, where ¢ > 0, ac > b*>. Thus,

q(t,u) = (a — %)t2 + (2t + u)”.

Writing d = a — g > 0 and ¢'(t,u) = 2t+u, we can make another invertible change
so that ¢/ = w'. This shows that p can be turned into t?(dt* + u?). By taking
u = V/du' and dividing by d, we obtain the third case.

In the last two cases, p has only complex conjugate roots. If they are repeated,
then p is the square of a positive definite binary quadratic form, which after an
invertible change is 2 + u?.

Otherwise, we may assume that p(t,u) = (t* + u?)(at* + 2btu + cu?), where
the second factor is positive definite. Under an orthogonal change of variables
t =ct' +su',u = —st' +cu', where s = sina, ¢ = cosa, the first factor becomes
(#')2+ (u')? and the coefficient of #'u’ in the second becomes (a— c) sin 2a+2b cos 2.
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Thus, we may choose a so that the second factor is also even in ¢ and u'. (In fact,
any two positive definite quadratic forms can be simultaneously diagonalized.) In
other words, after an invertible change, we may assume that p is a product of two
even positive definite quadratic forms, and after rescaling ¢ and wu if necessary, we
have p(t,u) = (2 + ru®)(t* + 2u?) = t* + Rt*u® + u*, with R =7+ 1 > 2. A final
invertible change gives

12 -2

and since A = 228 = —2 4+ ;18 =2 — Y3 we have [\ < 2.

6. The direct approach to Hilbert’s Theorem

Let us now assume Hilbert’s Theorem, and write
3
(19) p(z,y,2) = a* + 222 Fy (y, 2) + 22 F3(y, 2) + Fu(y, 2) = Z f;(r Y, 2).
j=1

As noted earlier, we may assume that the term x2 appears only in f;, and up to
sign, we may assume that its coefficient is 1. Thus,
3

(20) p(x,y,2) = <:v2 +g1.1(y,2)x + g2.1 (v, z)) 2 + <gl,j(y, 2)z + ga(y, z))2.

j=2
Comparing the coefficients of 3 in (19) and (20), we see that 0 = 2g; 1(y, 2), hence
we may assume that fi(z,y,z) = 22 + Q(y, 2) for a binary quadratic @) and

(21) p(z,y,2) = <:U2 + Q(y, z))2 + ZS: <g17j(y, 2)z + g2, (y, z)>2.

j=2

We now exploit the algebraic properties of sums of two squares, in a lemma

which will be applied to p — (22 + Q)?. The basic idea is similar to [3, Lemma 7.5].
LEMMA 7. Suppose

b(x,y,2) = ha(y, 2)x® + 2h3(y, 2)z + ha(y, 2)
is a quartic form (so that hy, is a form of degree k). Then there exist forms ;) so
that ¢ = 1/)%1> +¢f2) if and only if ¢ is psd and the discriminant of ¢ as a quadratic
inx,
Aly, z) := h2(y, 2)ha(y, z) — h3(y, 2),
is the square of a real cubic form.

Proor. First, if ¢ = 1/)(21) + 1/)(22), then it is psd and we have

Vi (2,9, 2) = M) (Y, 2)z + p) (Y, 2),
hence hy = /\%1) + /\%2), hs = Ay + Aayt2), ha = u%l) + ué). It follows that

A = hoha — B3 = (A1) — A 1)”-

Conversely, suppose ¢ is psd and A is a square. Then hy(y, z) is a psd quadratic
form, so after an invertible change in (y, z), which will affect neither the hypothesis
nor the conclusion, we may consider one of three cases: ha(y,z) =0, ha(y, z) = 42,
ha(y,z) = y* + 2%
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In the first case, A = —h3, so hz = 0 as well and ¢(z,y,z) = ha(y, 2) is a psd
binary quartic. By Theorem 4, ¢ = hy is a sum of two squares.

In the second case, A(y,z) = y>*ha(y,z) — h3(y,2) > 0, hence A(0,2) =
—h3(0,2) > 0, so h3(0,2) = 0. Thus hs(y,2z) = yka(y,z) for some quadratic
ko. Further, there exists a cubic form ¢3(y, z) so that

Ay, z) = y*(haly, 2) — k3(y, 2)) = 3 (y, 2).
Thus, c3(y, 2) = ys2(y, 2) for some quadratic so. But this means that hy — k3 = s3,
hence
Oy, 2) = y* + 2ayka(y, 2) + k3(y, 2) + 53(y, 2) = (2y + k2(y, 2))* + s3(y, 2)

is a sum of two squares.
Finally, in the third case, since A is a square, there exists real c3 so that

A(ylz) = (y2 + 22)h4(y72) - hg(ylz) = Cg(y,Z)
It follows that, over Cly, z],
(y +i2)(y —i2)ha(y, 2) = (y* + 2*)ha(y, z) = B3(y, 2) + 3(y, 2)

Thus, up to choice of sign of ¢3, y + iz is a factor of h3(y, z) + ic3(y, z). Write
(23) hs(y, z) +ics(y, z) = (y +i2)(ka2(y, 2) +is2(y, 2)).
so that

ha(y,z) = yka(y,2) — zs2(y,2),  ces(y, 2) = ysa2(y, 2) + zk2(y, 2).
Taking conjugates in (23) and substituting into (22), we get

ha(y,z) = (k2 (y. 2) + isa(y, 2)) (k2(y, 2) — is2(y, 2)) = k3 (y, 2) + s5(y. 2).-
Thus,
Oy, 2) = 2 (y* + 2%) + 2w(yka(y, 2) — zs2(y, 2)) + k3 (y, 2) + 55(y, 2)
= (zy + ka(y, 2))* + (22 — 52(y, 2))*.

This lemma, leads to the fundamental constructive theorem of this paper.

THEOREM 8. If p is a quartic satisfying (19), then p can be written as in (21)
if and only if

p(.’E,y,Z)*(.’E2+Q(y,Z))2 = Q(Fz(y,Z)7Q(y,Z)).’IT2+2F3(y,Z).’E+F4(y,2)*Q2(y,Z)
s psd and

A(y7z) = 2(F‘2(y=z) - Q(y,z))(F4(y,z) - Q2(y7z)) - FB‘Q(yz)

is the square of a real cubic form.

Note that for every ) which satisfies the above conditions, p(z,y,2) — (22 +
Q(y, 2))? is quadratic in z and is a sum of two squares, and hence by Theorem 5
can be written as a sum of two squares in at most two ways. That is, the number
of representations of p as a sum of three squares is bounded by twice the number
of suitable ().

Whereas the Gram matrix approach involves a system of polynomial equa-
tions in the six parameters {a, b, ¢,d, e, f}, the method of Theorem 8 involves three
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parameters, the coefficients of ). It is not difficult to set up necessary condi-
tions for a binary sextic to be the square of a cubic form, and when applied to
A =2(F, — Q)(Fy — Q%) — F2, these give a non-trivial system of three equations,
although the degree is much higher than that which arises in the Gram matrix
approach.

Finally, by comparing Corollary 2 and Theorem 8, we see that Hilbert’s Theo-
rem can be reduced entirely to a theorem in binary forms.

COROLLARY 9. Suppose F,, F3, Fy are binary forms of degree 2,3,4 respec-
tively, such that Fy is psd and

2
27FF < 4 <F2 + 4/ F3 + 3F4> <2F2 +4/F} + 3F4> .

Then there exists a binary quadratic Q such that 2(Fy — Q)(Fy — Q?) — F} is a
perfect square and Fy — Q and Fy — Q? are psd.

We believe that it should be possible to prove Corollary 9 directly. This would
provide a purely constructive proof of Hilbert’s Theorem. We hope to validate this
belief in a future publication.

7. Some constructions

The simplest applications of Theorem 8 occur when F3(y, z) = 0; that is, when
p is an even polynomial in z. (Unfortunately, a constant-counting argument which
we omit shows that not every real ternary quartic can be put in this form after an
invertible change.) We revisit Theorem 8 in this special case:

COROLLARY 10. There is a representation
3
(24) ot + 2Py, 2)2” + Fa(y,2) = (¢ + Q(y,2)° + Y_ £ (2,4, 2)
j=2

if and only if one of the following four cases holds:
(a): Fy — F} is psd and Q = F>.
(b): Fy = k3 is a square, Q = tky and Fy F ko is psd.
(c): There is a linear form £ so that Q = Fy — (%, and Fy — (Fy — (*)? is a
square.
(d): There is a linear form { so that Fy — Q? = (?(Fy — Q) and Fy — Q is psd.
(In this case, F» — @Q is a factor of Fy — F3.)

PROOF. By Theorem 8, the necessary and sufficient conditions are that

2(F2(y72’) - Q(y,z))azz + F4(y2) - Qz(yz)
be psd, and that

(25) A(y/ Z) = (F2 (y7 Z) - Q(y/ 2))(F4(y/ Z) - QQ(Z]; 2))
is the square of a real cubic form. The first condition is equivalent to F» — () and
F; — @Q* both being psd. We now turn to the second condition.

If the first factor in (25) is 0, then A = 0 is trivially a square, and @ = F5.
Thus, the remaining condition is that Fy — F? be psd. This is (a).

If the second factor in (25) is 0, then again A is trivially a square and Q2 = F}.
Suppose Fy = k2, then Q = +ko, and the remaining condition is that Fy — Q =
F5 F ko be psd and we obtain case (b).
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In the remaining two cases, we have a quadratic ¢ = Fy — ) and a quartic
g1 = Fy — Q? whose product is a square. If go and q4 are relatively prime, then
each must be a square. Thus, Fy — Q = ¢2 for some linear form ¢, and Fy — Q? = s2
is a square. This is (c).

Finally, if gcd(ga,q4) = g, then g2 = gu and ¢4 = gv, with u and u relatively
prime, so that goqs = g?uv is a square. This implies that u and v are squares, so
that g has even degree. This last case is that g is quadratic, so we may take g = ¢
and write v = £2 for a linear form ¢; that is, Fy — Q* = (Fy — Q)¢?. Note that this
implies that (Fy — Q)(¢* — Fy — Q) = F, — F2. Thus any () which satisfies this
condition will have the additional property that Fy — @ is a psd factor of Fy — F3.

O

REMARK. We can use Corollary 10 to count the number of possible represen-
tations as a sum of three squares of z* + 2Fy(y, 2)x? + Fy(y, z). If (a) holds, then

p(z,y,2) = (2 + Fa(y, 2))* + (Fu(y, 2) = F3(y,2)),

and the second summand above is a sum of two squares by Theorem 4, in one or
two ways, depending on whether Fy, — F3 has linear factors. (It may also happen
to be a square: ¢ 4+ 0% can be viewed as a sum of two squares.)

In case (b), the condition that Fy — Q = F» F ko is psd may be true for zero,
one or two choices of sign. If it is true, we have

p(m,y,z) = (.’E2 + Q(ylz))z + 2$2(F2(y72) - Q(ylz)),

If F, — @ is psd, it is a sum of two squares (in exactly one way) by Theorem 4.
If (c¢) holds, then

p(a:,y,z) = (wQ + Fl(y7z) - 22(3/:'2))2 + 262(:%'2)332 + 52(y7z)2

is, as written, a sum of three squares. Furthermore, although 2%(y, 2)z2 + s2(y, 2)?
factors into quadratic forms over Cly, z], it does not factor into linear forms unless
£ | so, and so the sum of three squares is unique except in this case. It is not a
priori clear how many different linear forms ¢ satisfy these conditions for a given
pair (Fy, Fy).

Finally, in case (d)

plz,y,2) = (° + Qy,2))* + 2(Fa(y, 2) — Q(y, 2))(2* + £(y, 2)).

Since Fy — @ is a psd binary form, it splits into linear factors over Cly, z], and so
any suitable @) leads to two representations of p as a sum of three squares. Again,
it is not a priori clear how many such forms @) exist for given (Fs, Fy).

We conclude this section with some simple examples.
ExAMPLE. The psd quartic
p(z,y,2) = (2 +y°)(a + 2%) = ' + 2% (y + 2%) + 972
is a product of two sums of two squares and hence is a sum of two squares in
two different ways. Are there other ways to write p as a sum of three squares?
Using Theorem 8, if one of the squares is 22 + Q(y, 2), then Fy — @ and Fy — Q2
must be psd. If y?2% — Q*(y, 2) is psd, then Q(y,2) = ayz with |a] < 1 and
B Q= %(y2 — 2ayz + 2?) is psd. But
2

Ay, z) = 52 (y* — 2ayz + 2°)y°2°
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will be a perfect square only when a = +1. This re-derives the familiar represen-
tations from the two-square identity:

p(z.y,2) = (¢* —y2)* + 2’ (y +2)” = (¢ +y2)* + 27 (y — 2)°
ExaMPLE. The similar-looking psd quartic
p(x,y,2) = a* + 2%y’ +y°2° + 2*

is irreducible, and so is not a sum of two squares. It is not trivial to write p as a
sum of three squares, so we apply the algorithm.

Here, Fy(y, z) = 3y” and Fy(y,z) = 2%(y* + 2%). If Fy — Q? is psd then z | Q,
so Q(y,z) = ayz + bz? for some (a,b). It is easily checked that Fy — @Q? is psd if
and only if a® + b? < 1 and it’s a square, 22(by — az)?, if and only if a® + b? = 1.
And F; — Q is psd if and only if a® + 2b < 0, and it’s a square, (y — $az)?, if and
only if b = f%a2.

Running through the cases, we see that (a) and (b) are not possible, because
Q cannot equal F, and F is not a square. For (¢), Fy — @ and Fy — Q? are both

squares when b = —1a” and a? + b? = 1, which implies that

a=+7:=+/2V2 - 2, b=1- 2.

This gives the representation
p(z,y,2) = (@2 £ryz+ (1= V2)2)2 +22(y Fr2)? + 22(V2 - 1)y £ 72)2.

The sum of the last two squares does not split over C[y, z], so there are no additional
representations in this case. In (d), 3y? — Q(y, 2) = 3(y* — 2ayz — 2b2?) must be
a psd factor of

Fy — Fz2 =2+ 22y2 — %y‘l = (22 + —172\/5342) (22 + —1+2‘/§y2) .
Thus, it is a multiple of 22 + HT‘ﬁy?, and a =0, b =1 — +/2. This leads to

ple.y,2z) = (2% + (1= v2)22)? + (2% + 2%)(y* + (2v2 - 2)2°);

since the last sum of two squares splits into linear factors over C, there are two
more representations of p as a sum of two squares, making four in all.

ExaMPLE. We consider the class of quartics: p(z,y,2) = (22 + G(y, 2))?, so
that Fy(y,2) = 2G(y, z) and Fy(y,z) = G*(y,z). By Corollary 10, p is a sum of
three squares as in (24) if and only if 2(G — @) and G? — Q? are both psd and
(G-Q)(G*-Q?) = (G—-Q)?*G+Q) is a square. If G = Q, then these conditions
are satisfied immediately, and of course, we recover the representation of p as a
single square. If G = —(@Q, then we get another representation, provided G is psd:

(z° + G(y,2))” = (2" — G(y,2))” + 42°G(y, 2).

Since G is a quadratic form, this gives p as a sum of two squares if G = ¢% and a
sum of three squares if G is positive definite. Otherwise, we must have that G — )
is psd and G + @ is a square. This means that G(y, z) > |Q(y, )| for all (y, z), and
hence G is psd. Thus Q(y, z) can be —(G(y, z) — (ay + bz)?) for any (a, b) for which
2G(y,z) — (ay + bz)? is psd.
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If G has rank 1, then after an invertible change, G(y, z) = y?, and Q(y,2) =
(1 — a?)y?, so that (G + Q)(y,z) = (2 — a®)y? > 0; that is, Q(y,2) = —\y?, with
—1 < A < 1. This gives an infinite family of representations:

(@ +9°)? = (2” = A\y*)* + (2 + 20)2%y” + (1 - N)y".

If G has rank 2, then after an invertible change, G(y,2) = y* + 2%, and G > |Q] if
and only if a? + b? < 2. This gives a doubly infinite family of representations:
(2% +y*+2%)" = (2" = (" +2"— (ay+b2)"))+(2(y"+2°) — (ay +2)") (22° +(ay +2)*).

If G is not psd, then p has only the trivial representation. This also can be
seen directly: since 2® 4+ G(y, z) is indefinite, in any representation p = Y- f7, f;
must be a multiple of 22 + G(y, 2); by degrees, it must be a scalar multiple. Thus

any representation of p as a sum of squares is orthogonally equivalent to the trivial
one.

8. A complete answer in a special case
We now simplify further still, by supposing that F»(y, z) = 0 as well, so that
p(may7 Z) = 'T4 + F4(y7 Z),

where F} is a psd quartic form. Hilbert’s Theorem is no mystery in this special
case, because we already know that Fj; can be written as a sum of two squares,
and this gives one way to write p as a sum of three squares. Are there any other
representations? Note that necessary conditions on () include that —Q and Fy — Q?
are both psd.

There are five cases, based on the factorization of Fj; we shall need two lemmas
about real binary forms.

LeEMMA 11. Suppose F(y,z) is a positive definite quartic form, and consider
the equation

(26) Fy,2) — (ay +b2)' = (3, 2)
for linear forms ay+ bz and quadratic forms q. If F is a square, then (26) has only

the trivial solution (a,b) = (0,0). If F is not a square, then there are two different
q’s for which (26) holds.

PRrROOF. By Theorem 6, we may assume that F(y,z) = y* + A\y?2% + z* and
that —2 < A < 2. There are two trivial solutions to (26):

(27) yt 4+ Ayt 2t - (1 - ’\4—2)z4 = (y> + 32%)%,
5 o« 2 < G\ -
yt+ Ayt 42t — (1= )yt = 3y + D)2
If A = 2, these are truly trivial! It is easy to see that these are the only possible

expressions in which @ = 0 or b = 0. For other solutions, assume ab # 0, and set up
the five equations for the coefficients of F(y,z) — (ay + b2)* = (ry? + syz + tz2)?:

1—a*=7r% —4a®b=2rs, \—6a’b’> =2rt +s>, —4ab®=2st, 1—0b" =1t
Since 4r2s%t? = r2(2st)? = t2(2rs)?, we have
(1 —a")(—4ab®)? = (1 — b*)(—4a’b)> = a*b5 — ab® = a®b* — a50S.
Since ab # 0 it follows that a* = b*, so a®> = b? and so rs = st. If s = 0, then
ab = 0, which is impossible, so we conclude that » = ¢. But then
s2 =8>+ 2rt — 2r7 = (A — 6a%?) —2(1 —a*) =\~ 2 —4a* <0,
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which is a contradiction. Thus, (27) gives the only solutions to (26). O

LemMA 12. If F(y,z) and G(y, z) are non-proportional positive definite qua-
dratic forms, then there is a unique positive number ug such that F — uoG is the
non-zero square of a linear form.

PRrOOF. Since F' and G are both positive definite, the following minimum is
well-defined; it is positive, and achieved for § = 6y:
. F(cosf,sinb)
= min ———=.
Ho = o <on G(cos b, sinf)
Let H,(y,2) = F(y,z) — uG(y, z). Then H,, is psd and H,,(cosbp,sinfy) = 0,
and as F' and G are not proportional, H,, is not identically zero. Thus H,, is the
non-zero square of a linear form. If y < pg, then H, is positive definite, and so is
not a square; if g > o, then Hy(cosby,sinby) < 0, so H, is not even psd. O

If [\ < 2, then A =2 — v? with 0 < v < 2, s0
v+ A7 42t = (0 gz 4+ 2 (0 - vz + )

is a product of two positive definite quadratics. In this case, the computation of ug
is extremely easy: the minimum occurs at the extreme value of cosf sin#, namely,
+3 and

. 1+ vcosfsinb 1-—
= min =
Ho 0<9<2r 1 —wvcosfsinf 1+

NSNS

In this case, note that
2—v
24v

>(y2¢vy2+22)=< 2 >(yi2)2-

(y2ivyz+22)< 5

COROLLARY 13. Suppose p(z,y,2) = z* + Fy(y,z) is psd. The one of the
following holds:

1. Fy = {* for some linear form £, and p is a sum of three squares in infinitely
many ways.

2. Fy = (20% for mnon-proportional linear forms {1 and {3, and p is a sum of
three squares in exactly one way.

3. Fy = (%ky, where ko is positive definite, and p is a sum of three squares in
exactly two ways.

4. Fy = k2, where ky is positive definite, and p is a sum of three squares in
exactly three ways.

5. Fy = kogo, where ky and qo are positive definite and not proportional, and
p is a sum of three squares in exactly eight ways.

Proor. Throughout, we shall use the classification of Theorem 6 as the first
step in the proof.
1. We assume that £(y, z) = y. We must have that —Q(y, z) and y* — Q*(y, z) are
psd. The second condition implies that Q(y,z) = ay* with 1 > o2, and the first
implies that a < 0. In this case A = —a(1 — a?)y% is always a square and, writing
a=—-£%0<pB<1 we have

ot +yt = (07 — BPy?)? + 2877y + (1 - BNyt
The distinct values of 8 give orthogonally distinct different representations of p as
a sum of three squares. This can’t be too surprising, because p is obviously a sum
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of two squares. However, the next case gives another sum of two squares which has
no additional representations as a sum of three squares.

2. In this case, ¢1(y,2z) = y and £5(y,z) = z. We must have that —Q(y,z) and
y222 — Q*(y, 2) are psd. The second condition implies that yz | Q, hence Q(y, z) =
ayz. But the first condition then implies that @ = 0, so ¢ = 0 and we have
3
oty = () + ) f(,y,2).
j=2

But this implies that f;(y,2) = ajyz and 1 = a3 + a3; these are all orthogonally
equivalent to (yz)2 +0%. So the only representations of p as a sum of three squares
are orthogonally equivalent to those as a sum of two squares. In fact, the psd
Gram matrices for p have no parameters, and p has, up to orthogonal equivalence,
a unique representation as a sum of squares.

3. In this case, we assume that Fy(y, z) = y*(y*> + 2%). The condition that F; — Q*
is psd implies that y | @, and the condition that —(@) is psd implies that Q(y, z) =
—ay?, with a > 0, so now Fy(y, 2)—Q*(y, z) = y?((1—a?)y?+2?), hence 0 < a < 1.
Finally, the condition that A = ay?((1 —a?)y? + 22) be a square implies that « = 0
or a = 1. In the first case, we have

3

2yt (7 42 = () + ) [y, 2).
j=2

There is by Theorem 4 exactly one way to write y”(y* +2?) as a sum of two squares,
(¥?)? + (y2)?. In the second case, we have

3

3
2+t (420 = (0 =)+ D fwy,2) = 20 4y =) [, 2).
=2 =2

By Theorem 5, there is also just one way to write y?(2z2 + 22) as a sum of two
squares, 2(zy)? + (yz)?, so altogether there are two ways to write p as a sum of
three squares.

4. We assume that ka(y,z) = y? + 22. We now run through the four cases in
Corollary 10. In case (a), we have () = 0, and

3
o+ (P + 22 = (%) + fo(x,%z).
=2

We know from Theorem 4 that there are two inequivalent choices for (fa, f3). These
are easy to compute by hand and give

dh(y?+2%)7 = (%) 4 (7 207+ 07 = (%) + (v - 277+ (292)%
In case (b), Q(y,z) = £(y? + 22) and —@Q is psd, so Q(y, z) = —(y* + 22) and

3
2+ @+ =@ -+ )+ ) @y, 2).
j=2

This implies that 2z2(y? + 22) = 2322 f3(x,y), and, as before, Theorem 5 implies
that there is a unique representation:

2 (42 = (@7 — (7 + 20)” + 2(ay) + 2(w2)”.
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In case (c), we have that Q(y,z) = —(ay + bz)? and (y* + 2?)? — (ay + bz)* is a
square. We have seen in Lemma 11 that this is impossible. Finally, in case (d),
—Q is a psd factor of Fy — F? = (y? + 2%)2, hence Q(y,2) = —a(y® + 22) for some
a > 0. This implies that A(y,2) = a(1 — a?)(y® + 22)3, which is only a square
for a = 0,1, which have been already discussed. Altogether, there are only three
representations.

5. We write Fy(y,2) = y* + A\y?22 + 2%, with |A| < 2 and, as before, write A = 2—v?,
with 0 < v < 2. In case (a), @ = 0, and as in the last case, F, is a sum of two
squares in two ways:

yr P 2t = (P + 3R+ (- ’\4—2)z4 =2 -2+ (2+ \)(y2)>
This gives two ways to write z* + Fy(y, z) as a sum of three squares.

Case (b) does not apply, since Fj is not a square. In case (c), Q = —(?,
and Fy — ¢* = s is a square. By Lemma 11, there are two different choices of
(¢2,5?) for which this is the case. For simplicity, let p = 1/1 — >f. These give the
representations

gyt + Ay 42t = (2 = py?) + 2027y + (ByP 4+ 27)°,
and a similar one, with y and z permuted. Note that the factors of the two sum-
mands are \/2pzy + i(%y2 + 22) which are irreducible over C. Thus there is only
one representation of p as a sum of three squares for each Q = —¢2, and so two in
all.

Finally, in case (d), we have that —@ is a psd factor of

Fi(y,z) = (y* + vyz + 2°)(y° — vyz + 2°)
Thus Q = k(y* £ vyz + z?) for some choice of sign. In this case
Fi(y,z) = Q*(y,2) = 1 Qy. 2) ((y* — Fryz + 2°) = k*((y* £ vyz + 27)).
By Lemma 12, the last factor is a square if and only if k? = ;;Z In this case, we
have

syt a2 22 42t = (22 k(P vy +22)) 2+ (Y2 tvyz+20) 2k +(1-6%) (yF2)?)

Since the sum of these last two squares splits over C, we get four different repre-
sentations of p as a sum of three squares altogether, so there are four from case (d)
and eight in all. O

ExamMpLE. We illustrate the eight representations of p(x,y,2) = z* +y* + 2% as
a sum of three squares of real quadratic forms. In this case, A\ =0, p=1, v = /2

and K = 4/ ilg = /2 -1, s0 that 1 — k? = 2k. The two from case (a) are
pla,y,2) = (@) + (y°)° + (%) = (=°)” + (y* — 2°)* + 2(y2)*.

That is, (12) and one of (13). The two cases from (c) become the other two from
(13).

plz,y,2) = (2° —y*)* + 2(zy)” + (%)% = (27 — 2°) + 2(22)* + (y°)*.
Finally, from case (d), we get four representations from
(@ — (V2 - D)y £ V292 +2%)) +2(V2 - 1)(y* £ V2yz + 2°) (" + (y 7 2)).
The two-square identity then gives (15).
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