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1. INTRODUCTION AND BACKGROUND

Given a closed subset K of R", and (mq)aezy a (multi-) sequence of real num-
bers, the K-moment problem asks whether this sequence can be realized as the
moment sequence of some positive Borel measure on K. In other words, the ques-
tion is whether there is a positive Borel measure p on K which satisfies

/ % dp = my
K

for every o € Z7. (By this notation, we imply tacitly that all moments of
exist.) In slightly different terms, the question is to characterize those linear forms
L: R[ty,...,ty] = R for which there exists a positive Borel measure p on K whose
moments exist and satisfy

/ f(@)du = L(f)
K

for every f € R[t1,...,t,]. In this case, we say that the K-moment problem is
solvable for L. Obviously, it is necessary that L(f) > 0 whenever f > 0on K. A
classical theorem says that this condition is also sufficient:

1.1. Theorem. (Haviland [12]) The K-moment problem is solvable for L if and
only if L(f) > 0 for every polynomial f which is non-negative on K.

Moment problems were originally studied in the one-variable case. In 1894,
Stieltjes [24] showed that for K = [0,00), the K-moment problem is solvable for
L if and only if L(f? + tg?) > 0 for all f,g € R[t]. The most famous example
is the case K = R, which was solved by Hamburger in 1921 [9]. He showed that
a necessary and sufficient condition in this case is L(f?) > 0 for all f € R[t]. In
1923, Hausdorff [11] studied the case K = [0,1] and showed that a necessary and
sufficient condition is L(f2+tg?+ (1 —t)h%) > 0 for all f,g, h € R[t]. These results
can be viewed as particular cases of Haviland’s theorem; in all three cases, every
polynomial which is non-negative on K is a finite sum of test functions.

Extending the moment problem to more than one variable is a more recent idea.
The multidimensional moment problem is mentioned briefly in the 1943 book of
Shohat and Tamarkin [23]. Some partial results on the two-dimensional moment
problem are given in works by Devinatz [8] in 1957 and by Zarhina [25] in 1959.
In 1979, Berg, Christensen, and Jensen [1] showed that the Hamburger result for
K = R does not extend to R™ for n > 2, using the fact that in more than one
variable there exist polynomials which are globally non-negative but not sums of
squares (see below). Later works studied the multidimensional moment problem
for other (specific) sets K, see, e.g., [2], [6], [16].
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In the following, we write A = R[t1,...,t,], and denote the set of sums of squares
in A by L A2

1.2. Definition. Given a closed subset K of R™ and a subset P of A, we say that
P solves the moment problem for K if

(1) K={zeR": f(z) >0 for every f € P};

(2) for every linear functional L on A with

L(a® fi--- fr) 20

foreverya € A, r > 0and fi,..., f. € P, there is a positive Borel measure p
on K such that L is integration with respect to pu.

The classic examples above imply (for n = 1) that {¢} solves the moment problem
for [0,00), @ solves the moment problem for R, and {¢,1 — t} solves the moment
problem for [0, 1].

In 1991, K. Schmiidgen proved the following remarkable theorem:

1.3. Theorem (Schmiidgen [22]). Suppose fi,...,fr € A are such that K =
{fi 20,...,fr > 0} is compact. Then {f1,...,fr} solves the moment problem
for K.

Note that Schmiidgen’s theorem holds regardless of the polynomials chosen to
define K by inequalities. As a simple example, we obtain the following (non-
obvious) variation of Hausdorff’s result: Let K = [0, 1], then for any (fixed) odd
integers k and m, the K-moment problem is solvable for L if and only if L(f? +
gtk (1 —t)™) > 0 for all f,g € R[t].

It seems that Schmiidgen’s result was the first on the moment problem which
covers a truly general class of sets K, rather than just specific sets.

Our goal in this paper is to study the non-compact case. Recall that a subset K of
R™ is called basic closed (semialgebraic) if it has the form K = {f; > 0,..., f, > 0},
where the f; are polynomials. Given such f;, we ask, when does {f1,..., fr} solve
the moment problem for K? The following well-known example (due to Berg,
Christensen and Jensen [1]) shows that Schmiidgen’s theorem does not generalize
to the non-compact case:

1.4. Example. Suppose A = R[t1,...,t,] where n > 2. Then there exists a linear
functional L on A such that L(f?) > 0 for all f € A but the R*-moment problem
is not solvable for L. In particular, # does not solve the moment problem for R™.

Sketch of proof. Since n > 2, there exists a polynomial p such that p > 0 on all
of R*, but p is not a sum of squares. This was proven by Hilbert in 1888 [13],
although the first explicit example of such p to appear in the literature was given
by Motzkin in 1965 [17]. (See [18] for more on this interesting subject.)

The cone Y A? is closed in the finest locally convex vector space topology on A.
By Hahn-Banach separation of convex sets, there is a linear functional L on A such
that L(p) < 0 but L(f) > 0 for every f € X A%. Trivially, L cannot come from a
positive Borel measure on R”. a

Note that Haviland’s theorem implies immediately that the set P consisting of
all everywhere non-negative polynomials in A solves the moment problem for R™.
More generally, for any closed K, there exists a set P which solves the moment
problem for K, namely the set of all f which are non-negative on K. However,
even if K is a basic closed semialgebraic set, it is not clear — and not true — in
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general that a finite set P of polynomials can be found which solves the moment
problem for K. Therefore, we wish to study the following questions:

e Given polynomials fi,..., f., can we give necessary or sufficient conditions
under which they solve the moment problem for K = {f; >0,..., f, > 0}?

e Given a basic closed semialgebraic set K, when does there exist some finite
set of polynomials which solves the moment problem for K?

If K is compact, the answer to the second question is “always”, and no conditions
are needed in the first question, both by Schmiidgen’s theorem. On the other hand,
we will show that there are many cases of non-compact K where the answer to the
second question is negative.

If P is any set of polynomials, it is easy to see that P solves the moment problem
for K if and only if the closure of PUY A% under addition and multiplication does.
A subset of A closed under addition and multiplication and containing all squares
is called a preorder. (See next section for precise definitions.) It turns out to be
advantageous to replace P by the preorder it generates, and to study the moment
problem for preorders. We will do so in the next section, after introducing the
necessary technical language. Also, it will be important to allow arbitrary finitely
generated R-algebras A in place of the polynomial ring. We equip A with the
finest locally convex vector space topology. The saturation of a preorder P is the
set of all polynomials which are non-negative on the closed set associated to P.
By Haviland’s theorem, P solves the moment problem for its associated set if and
only if the topological closure of P is also closed under saturation. One of our main
results is Theorem 2.13, which provides large classes of examples of basic closed sets
K for which every finitely generated preorder with associated set K is topologically
closed, but not saturated, and hence does not solve the moment problem for K.

Thus we have found many cases where the answer to our second question above
is negative. Among them are even (many) cases where dim(KX) = 1. We also
have some positive results, mainly for 1-dimensional sets K, which we obtain by
applying theorems from [21]. Furthermore, in all cases, our results give more precise
information that just whether the moment problem is solved or not.

When we were in the final stages of writing this paper, we found out from Murray
Marshall and Salma Kuhlmann that they had been studying these questions as well.
Their approach and techniques are somewhat different from ours, for example,
they work only in the polynomial ring. Their preprint [15] contains a list of open
questions, and at the end of our paper we settle some of these.

Acknowledgements: A talk of K. Schmiidgen at the 60th birthday celebration of
M. Marshall led the first author to consider the questions studied in this paper. She
thanks Prof. Schmiidgen for his inspiring talk, Prof. Marshall for having a birthday,
and Salma and Franz-Viktor Kuhlmann for organizing the birthday conference and
inviting her. The authors also thank M. Marshall and S. Kuhlmann for bringing
their work to their attention.

2. PREORDERS

Preorders are important objects in real algebra, which in some sense play a role in
semialgebraic geometry that is comparable to the role played by ideals in algebraic
geometry. In this section we study preorders with a view towards answering the
questions on the moment problem raised in the previous section. However, our
results are also of independent interest.
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We need to work with finitely generated (f. g.) R-algebras, rather than with
polynomial rings only. In geometric terms, this means working with affine algebraic
R-varieties rather than with n-dimensional affine space only. First recall the basic
dictionary between such varieties and f. g. R-algebras.

To any f. g. R-algebra A there corresponds an affine algebraic variety V over
R. (We use the word “variety” in a broad sense, it does not imply irreducible or
reduced.) The correspondence between A and V is expressed by writing V' = Spec A
or A = R[V]. The variety V' comes together with its set V(R) of real points;
by definition V(R) = Homg(A4,R), the set of R-algebra homomorphisms from A
to R Given M € V(R), the corresponding homomorphism A — R is written
[ f(M) and is thought of as evaluation of the elements of A in M. Note that if
A =TRt,...,t,], then V = A" = affine n-space, and V(R) is simply R".

The set V(R) comes with a natural topology, which has the sets {M € V(R):
f(M) > 0} (f € A) as a subbasis of open sets. A subset of V(R) is called semial-
gebraic if it is a finite boolean combination (unions, intersections, complements) of
these sets.

Choosing a finite system z1,...,x, of generators of A gives an epimorphism
Rlt1,... ,tn] = A, t; = x;, and correspondingly, an embedding of V' (R) into R" as
a Zariski closed subset. Thus, one can think of V(R) as a (Zariski closed) algebraic
subset of some R™, if one wishes, but it is often preferable not to fix such an
embedding.

Note that the full algebra A cannot be retrieved from V(R), if V(R) is given as
an algebraic subset of R", say. For example, V(R) may be empty without A being
trivial, e.g., for A = R[t]/(t?> +1). All one gets back from V (R) is the quotient ring
A/N, where N is the so-called real nilradical of A (see [3, 4.1]). To get a complete
dictionary between algebras and affine varieties, it would be necessary to employ
the structure sheaves of the latter.

Therefore, the algebra A is our basic object of study. We fix V = Spec 4, an
affine R-variety. By this we mean that A is a f. g. R-algebra and V = Spec A is the
associated affine algebraic R-variety. A subset P of A is called a preorder (in A)
if f2 € P for every f € A and P is closed under addition and multiplication. Any
intersection of preorders in A is again a preorder. Therefore, given a subset F' of
A, there is a smallest preorder containing F', denoted PO(F'), or PO(fy,..., fr) if
F={f1,...,fr}, and called the preorder generated by F. Explicitly, PO(F) is the
set of all finite sums of elements of the form af; --- f,., where a € A, » > 0 and

fl;---;f‘r e F.
Given a preorder P in A, we write

S(P):={M € V(R): f(M) >0 for every f € P}.
This is a closed subset of V(R). If P = PO(f1,..., fr) is finitely generated, then
S(P)={M € V(R): f1(M)>0,...,f.(M) >0}, and in particular, is a semialge-

braic set.
On the other hand, if K is a closed subset of V(R), we write

P(K):={f€eA: f>0o0n K}.

This is a preorder in A, and clearly S(P(K)) = K.

A preorder P will be called saturated if there exists a closed subset K of V(R)
with P = P(K). If so, then necessarily K = S(P). The saturation Sat(P) of a
preorder P is defined by Sat(P) := P(S(P)); this is the smallest saturated preorder
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containing P. The correspondence K — P(K) is a bijection between closed subsets
of V(R) and saturated preorders in A, the inverse map being P — S(P).

2.1. Examples. The unique smallest preorder in A is $ A%, the set of sums of
squares in A. Its saturation Sat(XA42) is the set A, of all positive semidefinite
(psd) functions in A, i.e., of all f € A with f > 0 on V(R). Consider in particular
the case A = R[t1,...,t,). If n = 1, then XA? = A,. However, if n > 2, then as
we saw in Example 1.4, A, is strictly larger than Y A2.

As a matter of fact, the preorder A, of all psd polynomials is not finitely gen-
erated (as a preorder), if A = R[t1,...,t,] and n > 2. An even stronger assertion
is true: A, is not the closure of any finitely generated preorder, with respect to
the topology introduced below. This is a particular case of Thm. 3.6 from the next
section.

Let A be any f. g. R-algebra. By a subspace of A, we always mean an R-linear
subspace of A. Recall that if W is any finite-dimensional (f.-d.) vector space over
R, then a semialgebraic set in W is a finite boolean combination of sets of the form
{z €e W: f(z) > 0}, where f is a polynomial function on W. A subset S of A will
be called locally semialgebraic if SNU is a semialgebraic subset of U for every f.-d.
subspace U of A. If, in addition, S is contained in some f.-d. subspace of A, then
S is called semialgebraic.

We will always equip A with the finest topology that makes A a locally convex
topological R-vector space [4, IT §4 no. 2]. Every subspace of A is closed, and every
linear map A — R is continuous (loc. cit., exercise 6). By AY we denote the dual
of A, i.e., the space of all linear maps A — R. A subset of A is closed if and only if
its intersection with every f.-d. subspace U of A is closed in U. (This uses that A
has a countable linear basis, see loc. cit., exercise 8.)

For preorders in A, we study the properties of being closed and of being satu-
rated. These will be key properties needed for our results on the moment problem.
We begin with some simple observations.

2.2. Lemma. Any preorder in A is a convex cone in A. Any saturated preorder
is closed in A.

Proof. The first statement is obvious. For the second, note that if P = P(K) is
saturated, then P = (e Ay [0,00), where Apr: A — R is evaluation at M. O

By the Hahn-Banach separation theorem for convex sets [4, IT §5 no. 3], the
closure P of the preorder P is given by

P={a€ A: L(a) >0 for every L € AY with L >0 on P}.

However, in practice it is often not easy to give a more concrete description of
P. By Haviland’s theorem, this problem is in fact closely related to the moment
problem, see 3.1 below.

2.3. Lemma. If P is a preorder in A, then the closure P of P in A is again a
preorder. Moreover, S(P) = S(P).

Proof. The multiplication map A x A — A is continuous, since A has a countable
linear basis [4, IT exercise 9a]. Therefore, it is clear that P is a preorder. Moreover,
the saturated preorder Sat(P) is closed, and so P C P C Sat(P), which implies
S(P) D S(P) D S(Sat P) = S(P). O
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2.4. Proposition. Let K be a closed semialgebraic set in V(R), and let P =
P(K), the saturated preorder associated to K. Then P is a closed, convex, locally
semialgebraic subset of A.

Proof. We already know that P is closed and convex. There is an epimorphism
w: R[t1,...,tn] = A, for some n, inducing an embedding V(R) — R". Given a
f.-d. subspace U of A, choose a f.-d. subspace U’ of R[t1, ..., ] so that #(U') = U.
Then U’ N 7w~ (P) consists of all f € U’ which are non-negative on the closed
semialgebraic subset K of V(R) C R*. So U’ N7~ (P) is a semialgebraic subset
of U', since it can be described by a formula in the first order language of ordered
fields. |

2.5. Proposition. Let U be a f.-d. subspace of A. Then there is an integer py
such that every sum of squares of elements of U is a sum of py squares of elements
of U.

Proof. By [7, 4.2] this is true for A = R[t1,...,t,]- It is easy to see that this

particular case implies the general one: Again use w: R[t1,...,t,] = A, and lift U
to a f.-d. subspace U’ of Rty,...,t,], as in the proof of the previous lemma. The
result for U’ then implies the result for U. d

Given a subspace W of A and f1,..., fr € A, we denote by X(W; f1,..., f.) the

set, of all sums
S it
1€{0,1}"
in which the s; are sums of squares of elements of W. Recall that the ring A is said
to be reduced if a> = 0 implies a = 0, for every a € A.

2.6. Proposition. Let fi,...,fr € A, and let K = S(f1,..., fr). Let W be a f.-d.
subspace of A. Then

(a) T(W; f1,..., fr) is a conver semialgebraic subset of A.
(b) If A is reduced and K is Zariski dense in'V, then X(W; f1,..., fr) is closed.

Proof. We abbreviate X(W; f1,..., fr) by Z(W). It is clear that (W) is contained
in some f.-d. subspace U of A, and that it is a convex set. Let N = pw, see
Proposition 2.5.

For a € A, let Ann(a) = {b € A: ab = 0}, the annihilator of a. This is an ideal
of A, and the ring A/Ann(a) is reduced. For i € {0,1}", write f* := fit ... fir.
Consider the map

\N
s: P (W/WﬂAnn(f’)) S A
i€{0,1}~
defined by

w= (mij)ie{o,l}’”,jzl,...,N = p(w) = Z (Z wz?j) I
ie{o,1}» j
Here w;; = w;; + (W N Ann(f?)); note that the right hand side is well-defined.
The map ¢ is a homogeneous quadratic polynomial map, and (W) is its image
set. In particular, it is clear that (W) is a semialgebraic set. Now assume that
the conditions of (b) hold. We first show ¢~'(0) = {0}. So let w = (wj;) be a
tuple with ¢(w) = 0. If M is any point in K, we have fi{(M) > 0 for every i, and

therefore (w3, f*)(M) = 0 for every bi-index (i,j). Since K is Zariski dense and A
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is reduced, it follows that w; f* = 0, and hence even w;; f* = 0, for every bi-index
(4,7). Hence w = 0.

Now the next lemma shows that ¢ is a proper map. In particular, the image of
¢ is closed. |

2.7. Lemma. Suppose ¢ = (¢1,...,¢0n): R™ — R™ is a homogeneous map of
some fized degree d > 1 (i.e., each component ¢; is homogeneous of degree d). If
#~1(0) = {0}, then ¢ is a proper map.

Proof. Recall that a continuous map is proper iff it is closed and has compact fibres
[5, ch. I §10 no. 2]. If K is a closed subset of R™ with 0 ¢ K, then 0 ¢ ¢(K), since
0 ¢ ¢(K) and ¢ is homogeneous. Therefore, it suffices to show that the restriction
¢ R™ {0} = R™ \ {0} of ¢ is proper. Consider the commutative square

R {0} —2 5 R* < {0}

pl lp (%)

Sm—l 2 ; Sn—l
in which the vertical arrows are the natural retractions  — z/|z| and ¢ = po
#|S™ 1. One checks immediately that the square (x) is cartesian. Since S™1 is
compact, ¢ is a proper map, and therefore ¢’ is proper as well. O

2.8. Remark. In general, the conditions in Prop. 2.6(b) cannot be dropped. For
example, let A = R[t], f = —t?, K = {0} and W = R.1 & R.¢, the space of
polynomials of degree < 1. Here K is not Zariski dense in V. We have t + € €
X(W; f) for every € > 0, but t ¢ X(W; f), so T(W; f) is not closed. For essentially
the same example, seen from a different viewpoint, take the finite (non-reduced)
algebra A = R[t]/(#?) and » = 0 (no f;). Here t + € is a sum of squares in A for
every € > 0, but not for € = 0. Again, A% = ¥(4;0) is not closed.

Let again A be an arbitrary f. g. R-algebra, and assume now that we are given
finitely many elements f,..., f. € A. Suppose we know that X(W; fi,..., fr) is
closed for every f.-d. subspace W of A. Under suitable conditions, see 2.6(b), this
will be the case. Let P = PO(f1,..., fr), the preorder generated by the f;. We
would like to find a condition under which we can conclude that P is itself closed.
One such condition is the following:

(%) For every f.-d. subspace U of A, there is a f.-d. subspace W of A with PNU C
E(W, f17 te 7f7‘)'
Indeed, PNU = X(W; f1,..., f»)NU then, which under our assumption is a closed
subset of U.
We are therefore going to study condition (x) more closely.

2.9. Lemma. Let f1,...,f. € A, and write P = PO(f1,...,fr). Given g € P
(so also P = PO(f1,..., fr,9)), condition (x) holds for fi,..., fr iff it holds for
f].)"'?fTJg'

Proof. The “only if” is obvious. Conversely, assume () holds for fi,..., fr, g
Let U and W be f.-d. subspaces of A with UNnP C S(W; f1,..., fr,g)- Choose
a f.-d. subspace W' of A which contains 1 and the f; and in addition satisfies
g € X(W'; f1,...,fr). Let WW' be the subspace spanned by the products ww’
(weW,w eW'). ThenUNP CEWW'; f1,..., fr)- O
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2.10. Definition. Let P = PO(fi,..., fr) be a finitely generated preorder in A.
We say that P is stable if (x) holds. By Lemma 2.9, this is independent of the
choice of generators of P.

Note that if a f. g. preorder P is stable, then it is a locally semialgebraic subset
of A.

2.11. Corollary. Let P be a finitely generated preorder in A which is stable. As-
sume that A is reduced and that K = S(P) is Zariski dense in' V.. Then P is closed
in A.

Proof. Choose f1,...,fr € A with P = PO(f1,..., fr). Then S(W; f1,..., fr) is
closed for each f.-d. subspace W of A (2.8). Since P is stable, P is closed. d

2.12. Remark. This remark is for readers with a little background in real alge-
braic geometry. It won’t be used in the sequel.

Let R be any real closed field, and let A be a finitely generated R-algebra.
Consider the topology on A which is analogous to the one we use for R-algebras: A
subset of A is open iff its intersection with every f.-d. R-linear subspace of A is open
in this subspace. Prop. 2.6 and Lemma 2.9 hold in this context as well, mutatis
mutandis. Hence it is clear what we mean by saying that a finitely generated
preorder in A is stable.

Now one can give the following different characterizations of stable preorders,
which explain the reason for our choice of the word “stable”. Given a real closed
field R, a finitely generated R-algebra A and a finitely generated preorder P in A,
P is stable if and only if either one of the following two conditions is satisfied:

(i) For every real closed field extension R'/R, the preorder in A’ = A ®pg R’

generated by P is a locally semialgebraic subset of A’;
(ii) P is a locally semialgebraic subset of A, and for every real closed extension
R' of R, the preorder in A’ generated by P is equal to P(R').
Here in (ii), we mean by P(R') the subset @ of A’ for which Q N (U ®g R’) is the
base extension (to R') of the R-semialgebraic set P N U, for every f.-d. R-linear
subspace U of A.

We return to our usual setting, and assume that A is a f. g. R-algebra. The
next theorem, though it may appear somewhat technical, is the main result of our
paper. In the next section we will apply it to concrete particular cases. It provides
us with a large family of examples of finitely generated preorders which are stable
and closed. On the other hand, if we add a suitable dimension hypothesis, they
won’t be saturated, by a result from [20].

Recall that V = Spec A is called normal if A is a direct product of finitely
many integrally closed domains. This is a mildness condition on the nature of the
singularities of A.

2.13. Theorem. Suppose that the variety V' = Spec A is normal. Let P be a
finitely generated preorder in A and set K = S(P). Assume that V' has an open
embedding into a normal complete R-variety V such that the following is true: For
any irreducible component Z of V. —V, the subset K N Z(R) of Z(R) is Zariski
dense in Z, where K denotes the closure of K in V(R). Then the preorder P is
stable and closed.

2.14. Example. To illustrate this, consider the polynomial ring A := R[t1, ..., t,]
and the preorder P = Y A2 of all sums of squares in A. The preorder P is stable
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(and therefore closed). Indeed, if a polynomial f is a sum of squares, say f = Y, fZ,
and if f has (total) degree < d, then it is obvious that the f; must have (total)
degrees < g, since leading terms cannot cancel. The theorem, and its proof, are a
generalization of this simple remark.

For the proof of the theorem, we need to use some (easy) ideas from algebraic
geometry and from real algebraic geometry. For the first we refer to Hartshorne’s
book [10], for the second to [3] or [14]. In particular, we need the notion of the real
spectrum Sper A of A, and how it relates to the semialgebraic subsets of V(IR).

Proof. We can assume that V is irreducible. Fix an irreducible component Z of
V —V, then Z has codimension one in V, and hence defines a discrete valuation
vz of R(V), the function field of V. Namely, vz(f) is the (vanishing, resp. pole)
order of f along Z. The residue field of vz is R(Z), the function field of Z.

The condition in the theorem implies that Z(R) is Zariski dense in Z. It is well
known that this is equivalent to the condition that the function field R(Z) of Z is
(formally) real. Therefore, the valuation vz has a real residue field.

The subset Z(R) N K of Z(R) is semialgebraic. Therefore, the hypothesis that
Z(R) N K is Zariski dense in Z means that the associated constructible subset
(Z(R) N K)~ in the real spectrum of Z contains an element whose support is the
generic point of Z. This, in turn, means that the constructible set K of Sper R[V]
contains an element o with support (0) which is compatible with the valuation vz.

Let now Zi,...,Z, be the irreducible components of V' — V', and let vz, be the
discrete valuation of R(V") associated to Z;, as above. For n > 0, let the R-subspace
U, of A be defined by

Uo={f€A: vz,(f) > —nfori=1,...,r}.
Then dimg(U,) < oo for each n. This is a particular case of [10, Thm. I1.5.19],

noticing that U,, = I'(V, Og(nD)), where D is the Weil divisor D =}, Z; on V.
Moreover, Uy CU; C --- C |J,, Un = A.

Now assume that agy,...,a,, € P are such that ay + --- + a,, € U,, for some
n > 0. Each a; is positive in a. Since « is compatible with vz, , for each i, it follows
from [20, Lemma 0.2] that vz, (3_; a;) = min;jvz(a;), for each i. In particular,
each summand a; lies itself in U,.

From this observation it is easy to see that the preorder P is stable. Indeed,
if P=PO(f1,-.-,fr),and ifa € Aand 1 < j; < --+ < js < r are such that
a®fj, -+ fj. € Un, then vz, (a®) > —n — 37 _, vz, (fj,) for each i, and so it is clear
that PN U, C X(Un; f1,..., fr) for sufficiently large N. (Explicitly, it suffices to
take 2N > n + max; Y, my;, where m;; = max{0,vz(f;)}.)

From the hypotheses, it follows that K is Zariski dense in V. Therefore P is
closed by Corollary 2.11. d

2.15. Remark. Observe that the hypotheses in the theorem depend only on V
and K, but not on the particular choice of the preorder P. In the next section we
will apply the theorem to exhibit classes of basic closed sets which admit no finite
presentation by non-strict inequalities which would solve the moment problem.

In the next section, we will apply the following result proved in [20, Prop. 6.1]:

2.16. Proposition. Let A be a f. g. R-algebra, let V = Spec A, and let P be a
finitely generated preorder in A. Assume that K = S(P) has (topological) dimension
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> 3. Then there exists f € R[V] with f > 0 on V(R) but f ¢ P. In particular, P
is not saturated. |

2.17. Example. Let P be a f. g. preorder in A for which K = S(P) is compact.
If K has dimension > 3, then, by 2.16, P is not saturated, and hence is not closed
by Schmiidgen’s theorem (c.f. 3.2 below). In particular, if A is reduced and K is
Zariski dense in V, P cannot be stable, by 2.11.

If dim(K) < 2, however, the question of stability for P is less clear, since P may
be saturated. We mention a non-trivial example: Let C' be a smooth affine curve
over R for which C(R) is compact. Let P = IR[C]?, the preorder of all sums of
squares. It can be shown that P is saturated [21]. In any case, P is stable if, and
only if, for each integer d > 0, there is an integer N(d) > 0, such that every sum of
squares f € R[C] whose pole orders (in the points at 00) are < d is a sum of squares
of regular functions whose pole orders are < N(d). We do not know whether this
condition always holds. One can show that it does indeed hold if C' has genus one,
using the approach from [20, §4].

3. APPLICATIONS TO THE MOMENT PROBLEM

We use the previous results on preorders to study the questions raised in §1.
First, we can rephrase Haviland’s theorem (1.1) in our terminology as follows:

3.1. Corollary. Suppose P is a preorder in Rlt1,...,t,] and K = S(P). Then P
solves the moment problem for K if and only if the closure P of P is a saturated
preorder.

Proof. If P is not saturated, then there is a polynomial f with f > 0 on K but
f ¢ P. The argument of 1.4 now generalizes: Since P is a convex cone, there exists,
by Hahn-Banach separation, a linear form L: R[¢1,...,¢,] = R with L > 0 on P,
but L(f) < 0. Obviously, L cannot come from a positive Borel measure on K.
Conversely, every linear map L with L > 0 on P satisfies L > 0 on P. So if P is
saturated, P solves the moment problem for K by Haviland’s theorem. |

3.2. Example. Let A be a f. g. Ralgebra and P a f. g. preorder in A for which
K = S(P) is compact. Then the saturation Sat(P) of P is equal to the closure P
of P in A. Indeed, Sat(P) is closed by 2.4. Conversely, for every f € Sat(P) and
€ > 0 one has f + € € P, by Schmiidgen’s theorem (1.3), and so f € P.

3.3. Corollary. Suppose P is a preorder in Rlty,...,t,] and K = S(P). If P is
closed but not saturated, then P does not solve the moment problem for K. a

For the question of whether a given preorder solves the moment problem, we can
often pass from affine n-space to a smaller algebraic variety; and, as we will see, it
is in fact useful to do so. The reason is the following.

Let P be a preorder in A = R[t1,...,t,], and let K = S(P). The support of P
is the ideal supp(P) := PN (—P) of A. Write B := A/supp(P), and let 7: A - B
be the natural epimorphism. Then V' = Spec(B) is a closed subvariety of A", and
K is contained in V(R). If P is finitely generated, then K is Zariski dense in V.
This is seen as follows: Let f € A with f = 0 on K. By the real Nullstellensatz
(e. g. [14, p. 143]), there is an identity f2™ +a =0 in A, with m > 1 and a € P.
Therefore f2™ € supp(P), and so the element 7 (f) is nilpotent in B. Note however
that the ring B need not be reduced in general.
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Let Q = w(P), the preorder in B induced by P. The linear maps L: A — R
with L > 0 on P are precisely those of the form L = L o 7w, where L: B — R is
a linear map with L > 0 on . Therefore, the closures of P (in A) and of Q (in
B) are related by P = 7~ 1(Q). On the other hand, the respective saturations are
obviously related by Sata(P) = = !(Sats(Q)). Therefore, P solves the moment
problem for K <& P = Sata(P) & 771(Q) = 7 }(Satz(Q)) & Q = Satz(Q) &
the closure of () in B is saturated.

Conversely, if I is an ideal in A = Rlt1,...,t,],if B=A/I and 7: A — B is the
canonical map, and if () is a preorder in B, then starting from a system of generators
for @) it is easy to obtain a system of generators for the preorder P := 771(Q) of
A. Indeed, if @ is generated by elements 7(fy), A € A, with f\, € A, then P is
generated by the fy together with +as,...,+a,,, where a4,...,a,, is a system of
generators for the ideal I. In particular, ) is finitely generated iff P is finitely
generated. Summarizing some of the above discussion, we have:

3.4. Lemma. Let P be a preorder in A = Rty,...,t,], let K = S(P), and let Q
be the preorder induced by P in B = A/supp(P). Write V = Spec(B).
(a) P solves the moment problem for K (in R™) if and only if the closure of Q
in B is saturated.

(b) P is finitely generated if and only if Q is finitely generated. In either case,
the subset K of V(R) is Zariski dense in V. O

3.5. Corollary. Let K be a basic semialgebraic subset of R™. Let I be the ideal
of all polynomials in A = Rty,...,t,] which vanish identically on K, and put
B = A/I. The following two conditions are equivalent:

(i) There exists a finite family of polynomials which solves the moment problem

for K;
(ii) the saturated preorder P(K) in B contains a dense preorder which is finitely
generated. O

In view of the lemma and its corollary, Thm. 2.13 allows us to obtain many
examples of basic closed semialgebraic sets K for which the moment problem is not
solved by any finite family of polynomials.

3.6. Proposition. Let f1,..., fr € Rlt1,...,t,] be suchthat K = {f1 > 0,...,f >
0} contains an open cone (i.e., there are z € R" and a non-empty open subset
U of R* with x + \u € K for every A > 0 and uw € U). Then the preorder
P =PO(f1,...,[fr) is stable and closed. If n > 2, P is not saturated, and hence
fi,-.., fr do not solve the moment problem for K.

Proof. By Thm. 2.13, P is stable and closed, and is not saturated if n > 3. Consider
the case n = 2 (c.f. also [20, Rem. 6.7]). We can find a smooth irreducible curve
C in the affine plane, of genus > 1, which has exactly one point at infinity and for
which the set KNC(R) is unbounded. Indeed, after an affine change of coordinates,
K contains the positive quadrant, and we can take C' to be the curve t2 = ¢, (t? +1),
for example.

Let 7: Rt1,t2] — R[C] be the natural (restriction) homomorphism, and let
P = n(P), the preorder induced by P in R[C]. By [20, Cor. 3.9], there exists a
psd function g € R[C] which is not contained in P. By loc. cit., Thm. 5.6, g can
be lifted to a psd polynomial f € Rt1,ts], i.e., m(f) = g. Clearly f ¢ P, and in
particular, P is not saturated. O
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3.7. Remarks. 1. Except for the fact that P is stable, Theorem 3.6 is also proven
by Kuhlmann and Marshall in [15, Thm. 3.5]. Applying results from [20], they
deduce from this that the f; do not solve the moment problem for n > 2, in the
same way that we do.

2. In contrast to 3.6, it is not enough to assume that K contains a cylinder. For
example, in [15, 5.1], it is shown if K is a cylinder in R?> with compact cross section,
then there is a finite set of polynomials which solves the moment problem for K.

We recall some terminology: If C' is a smooth irreducible affine curve over R,
there exists (up to isomorphism) a unique smooth irreducible projective curve C
over R which contains C' as a Zariski open subset, i.e., for which there is a finite
subset T of C such that C' = C \.T. The points in T are called the points at infinity
of C'. They are called real or nonreal according to whether they are R-rational or
not.

We can now give a complete answer to the moment problem for one-dimensional
closed semialgebraic sets on smooth curves:

3.8. Proposition. Let C' be a smooth affine curve over R, of genus g > 1, and
let P be a f. g. preorder in R[C]. Put K = S(P). Assume that every point of C
at infinity is real, and is contained in the closure of K (inside C(R)). Then P is
closed and stable, but not saturated.

Proof. P is stable and closed by Thm. 2.13. On the other hand, by [20, Thm. 3.5],
there exists a psd function f € R[C] which is not contained in P. In particular, P
is not saturated. a

In particular, if C' is a smooth affine curve over R, of genus g > 1, whose points at
infinity are all real, and if K C C(R) is a closed semialgebraic set whose closure in
C(R) contains all points at infinity, then the moment problem for K is not solvable
by finitely many polynomial functions.

We can even go further and, using a restriction-extension argument, generalize
this last fact considerably. The following corollary was inspired by, and generalizes,
[15, Cor. 3.10]:

3.9. Corollary. Let K be a basic closed semialgebraic subset of R™. Assume that
there exists a smooth curve C' in A", of genus > 1, all of whose points at infinity
are real and are contained in the closure of K N C(R) (inside P*(R)). Then the
moment problem for K is not solvable by finitely many polynomials.

Proof. Let P be af. g. preorder in A = R[ty,...,t,] with S(P) = K. We show that
the closure P is not saturated. Let 7: A — R[C] be the natural epimorphism, and
let @ = w(P), the preorder induced by P on C. Then @ is finitely generated and
has S(Q) = KNC(R). By [20, Thm. 3.5], there exists g € R[C] with g > 0 on C(R)
but g ¢ Q. The latter is witnessed by a linear map L': R[C] — R with L'(g) < 0
but L' > 0 on (). The linear map L := L' om: A — R satisfies L > 0 on P. By
loc. cit., Thm. 5.6, we can find an everywhere non-negative polynomial f € A with
7(f) = g. In particular, f € Sat(P), but f ¢ P since L(f) < 0. O

On the other hand, there are the following positive results for the moment prob-
lem on curves. We state them without proofs here, referring instead to [21].

3.10. Theorem ([21]). Let C be an irreducible smooth affine curve over R, let
fi,oo, fr € RIC], and put K = {f1 > 0,...,fr > 0} C C(R). Suppose that the
following three conditions are satisfied:
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(1) Either C has a nonreal point at infinity, or it has a real point at infinity which
does not lie in the closure of K (inside C(R));

(2) fi--- fr has vanishing order < 2 in each point of K;

(3) if M is an isolated point of K, then ordy (f;) <1 for every i.

Then the preorder PO(f1,..., fr) in R[C] is saturated.

3.11. Proposition ([21]). Let C be an irreducible smooth affine curve over R.
Let K be a closed semi-algebraic subset of C(R), and let P = P(K), the saturated
preorder in R[C| associated with K. Assume that at least one of the following three
conditions is satisfied:
(i) C is rational;
(ii) C has at least one nonreal point at infinity;
(iii) C has a real point at infinity which does not lie in the closure of K (in C(R)).

Then the following are true:

(a) P is finitely generated. In particular, the moment problem for K can be solved
by finitely many functions.

(b) If either (ii) or (iii) holds, then P is in fact generated by two elements, and
even by one element if K has no isolated points.

Sketch of proof. In case (i), one can reduce to C = A!, i.e. to the polynomial ring
R[t]. In this case the proof becomes elementary, see [15, Thm. 2.2], for example. For
the remaining cases one has, by Thm. 3.10, to show that one can find polynomial
functions fi,..., fr € R[C] such that K = {M € C(R): fi(M) >0,...,f.(M) >
0}, and such that the f; satisfy conditions (2) and (3) from 3.10; moreover, that
this is even possible with » = 2 or r = 1, respectively. This can be achieved using
methods similar to those used in [20, §2]. For details, we refer to [21]. O

3.12. Remark. Observe that the condition that at least one of (i)—(iii) holds in
3.11 is the precise complement of the condition in 3.8. Therefore, taking together
3.8 and 3.11, we have obtained a complete answer to the question whether the
moment problem for K is solvable by finitely many polynomials, in the case when
K is contained in a smooth curve.

3.13. Examples. We illustrate our results on curves by a series of examples.

1. Let C be an irreducible smooth affine curve over R, embedded into A™ as a
Zariski closed subset, for some n. Let I = (g1,...,gm) be the vanishing ideal of C
inside R[t1,...,t,], and let K be a closed semialgebraic subset of C(R). Assume
that C and K satisfy (ii) or (iii) from 3.11. Then the moment problem for K
(considered as a closed subset of R™) can be solved by 2m + 2 polynomials, and
even by 2m + 1 if K does not contain an isolated point. Namely, it suffices to take
two polynomials whose restrictions to C' generate P = P(K) in R[C], together with
tg1,.-.,£gm. If K = C(R) (so C has a nonreal point at infinity), the moment
problem for K is solved by +g1,-..,£g,, alone. Both assertions follow from 3.11.

2. For an explicit example, let C be the plane affine curve with equation f(z,y) =
22+ 32+ 1 =0. Then C is smooth, of genus one, and has 3 geometric points at
infinity, of which one is real and the other two are complex conjugate. According
to the remark before, the moment problem can be solved by < 4 polynomials for
any closed semialgebraic subset K of C(R) C R?. Using the criterion from 3.10, it
is easy to verify, for example, that the moment problem for K; = C(R) N {z > 0}
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is solved by z, f, —f, that the moment problem for K; U {(—1,0)} is solved by
z+y+1, —y, £f, and that the moment problem for K = C(R) is solved by +f.

3. Let C be the plane hyperbola with equation y2 = z? + 1. The moment
problem for the set C'(R) C R? is solved by (3% — z? — 1). The moment problem
for C(R) N {xz >0, y > 0} is solved by z +y — 1, £(y?> — 22 — 1); and so on.

4. Let ¢(z) € R[z] be a square-free polynomial, and let K be a closed semi-
algebraic subset of C(R) := {(z,y) € R?: y? = q(z)}. If deg(q) < 2, then the
moment problem for K can be solved by finitely many polynomials, since the curve
y? = q(=) is rational. If deg(q) > 3 and K is not compact, the moment problem
for K cannot be solved by finitely many polynomials (3.8). In the case K = C(R),
this is also shown directly in [15, 3.7].

5. Generalizing part of the last example, let C' be an irreducible smooth plane
curve with equation z" + f(z,y) = 0, where every monomial in f(z,y) has total
degree < n — 1. If n > 3, then the moment problem cannot be solved by finitely
many polynomials for any non-compact closed semialgebraic subset of C(R) (in
particular, for C(R) itself, since C(R) is not compact). Indeed, C has precisely one
point at infinity, and this point is real; moreover, C' is not rational. So the assertion
follows from 3.8.

6. We remark that our questions from the introduction are completely settled
for (closed semialgebraic) subsets K of R, in [15, §2].

Finally, we can settle some of the open problems raised in [15]. Open Problem 4
asks for an irreducible smooth affine curve over R for which the sums of squares
are not closed. Such a curve cannot exist:

3.14. Corollary. If C is an irreducible smooth affine curve over R, then the pre-
order SR[C)? of all sums of squares is closed in R[C].

Proof. If C has a nonreal point at infinity, then SR[C]? is even saturated ([21]; if C
is not rational, this is also contained in Thm. 3.10 as a special case; if C is rational,
it is clear anyway). If all points of C at infinity are real, 3.8 applies. |

We can also answer Open Problems 6 and 7 from [15]. Namely, the preorders
P, := PO(z,1 —z) and P, := PO(1 + 2,1 — 2,14+ y,1 —y) in R[z,y] are both
saturated, and in particular, are closed. This is proved in [21]. Problem 7 asked
whether P; is closed. Problem 6 asked whether for every f € Sat(P;) it is true that
f+ee P for all € > 0.
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