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1 Introduction

Suppose that p € R[z| is a real polynomial in a single real variable. If p(xz) > 0
for all x € R, then an easy consequence of the Fundamental Theorem of Algebra
is that p can be written as a sum of two squares of polynomials. It is natural to
wonder what one can say if p(z) > 0 or p(x) > 0 for x in a fixed interval.

There are several such representations which resonate with more recent work in
real algebraic geometry. It has long been known that if p(z) > 0 for z € (—1,1),
then p can be written as a positive linear combination of polynomials (1—2z)!(1+z)’
for suitable integers ¢ and j (Bernstein); however, it might be necessary for i + j
to exceed the degree of p. And if p(z) > 0 for x € [—1,1], then one can write
p(z) = f(z) + (1 — 2%)g(x), where f(z),g(x) > 0 for all z (Fekete). It has also
long been known that if p(z) > 0 for x € [0, 00), then p can be written in the form
f1+ x fa, where each f; is a sum of two squares (Pélya-Szegd). The proofs of these
results are elementary, and are included in this paper.

This question can be viewed from a more abstract algebraic perspective. Re-
cently, K. Schmiidgen [20] has proved a remarkable theorem which can be viewed
as a broad generalization of these representations to positive functions. Roughly
speaking, if a compact set S in R” is defined by finitely many polynomial inequal-
ities, then any polynomial which is strictly positive on S can be written in terms
of the defining polynomials for S and sums of squares (of polynomials). The proof
of this result in [20] is neither elementary nor constructive. We now present the
requisite definitions.

Given non-constant polynomials fi, ..., f, € Rlzy, ..., xy], define S(f1,. .., fn)
to be the basic closed semi-algebraic set generated by the f;’s, i.e.,

S(fiy.oosfu) ={a e R"| fi(a) > 0 for 1 <i<n}.

Let Y denote the set of sums of squares Zj fi, with f; € Rz, ..., 2] For any
I c{1,..,n},let fr(x) = [[,c; fi(z), with the usual understanding that fy(z) = 1.
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Then we define P(fy,..., fn), the preorder generated by the f;’s, by

Pl ={ X snto) s es), )

Ic{1,...,n}

Note that since ¥ is closed under multiplication and f;f; = f?m,fmp, the pre-
order P(fi,..., f,) is also closed under multiplication.

For a set A C R™, let Psd(A) (resp. Pd(A)) denote the set of polynomials
p € Rlxy,...,z,] so that p(ay,...,a,) > 0 (resp. p(aq,...,a,) > 0) for every
(a1, ...,a,) € A. Such polynomials are said to be positive semidefinite (psd) on A
(resp. positive definite (pd) on A). These sets are also closed under multiplication.

Let P = P(fi,..., fn) and S = S(f1,..., fn), then clearly, P is contained in
Psd(S). Schmiidgen’s Theorem says that if S is compact then a stronger statement
is true:

Pd(S) C P C Psd(S).

In other words, if ¢ > 0 on compact S(fi,..., f,), then ¢ is in the preorder
generated by the f;’s. Schmiidgen’s Theorem is somewhat simpler in one variable.
As noted earlier, f € X iff f € Psd(R); that is, iff S(f) = R. (The situation is more
complicated for polynomials in more than one variable; see [17].) Thus, to give a
simple example, one consequence of Schmiidgen’s theorem is that if p(z) > 0 for
x € [—1,1], then one can write p(z) = f(x) + (1 — 2?)3g(x), where f(z),g(z) >0
for all x. This paper contains a constructive proof of this result, with degree
bounds for f and g which depend on the degree of p and the location of its roots.

In section two of this paper, we show that the study of Psd(I) and Pd(I) for
real intervals I essentially reduces to two cases: I = [—1,1] and I = [0,00). We
review the literature on this problem, which goes back to Hermite, and discuss
work of Goursat, Bernstein, Hausdorff, Polya and Szego, Fekete, Lukacs, Karlin
and Shapley and Karlin and Studden. (There is not much literature on Psd(A)
for A C R?, and we will not discuss the subject in this paper, but see [14].)

In section three, we combine recent results of de Loera and Santos with work of
Goursat, Polya and Szegd to give a constructive proof that, if p is in Pd([—1, 1]),
then for a computable value of m, there exist d;, > 0 so that

pla) = d(1—2)* (1 + )™ *.

(Without the information on m, this theorem is due to Bernstein.) Other compu-
tations of m have been made by Erdélyi and Erdélyi and Szabados.

In section four, we give an elementary and constructive proof of Schmiidgen’s
Theorem in one special case. Let h be a given polynomial for which S(h) = [—1, 1].
If p € PA([-1, 1]), we give a constructive proof of the existence of sq, s; € 3 so that
p = Sg+hs;. This includes an a priori bound on the degrees of sy and s;, based on



h, the degree of p, and the smallest absolute value of the roots of p. In the special
case h(r) = 1 — 2%, Lukdcs proved a stronger theorem: Psd([—1,1]) = P(1 — a?).
We shall give a necessary and sufficient condition on h so that Psd(|—1,1]) =
P(h). Our proof relies on a non-constructive result of Scheiderer, and so is not
constructive.

In section five, we turn our attention to the non-compact interval [0, oc),
to which Schmiidgen’s Theorem does not apply. As noted earlier, Polya and
Szeg6 proved that, if p € Psd([0,00)), then there exist s; € ¥ so that p(z) =
so(x) + xs1(z). In this section, we prove that this is essentially the only case
in which Schmiidgen’s conclusion holds for [0, 00): If S(fi,..., f.) = [0,00) and
Pd([0,00)) C P(fi,..., fn), then fj(xz) = cz for some j.

The final version of this paper was hammered out in October 1998, while the
authors were participating in the MSRI Workshop on Symbolic Computation in
Geometry and Analysis. We happily acknowledge our gratitude to MSRI for its
warm hospitality.

2 Background and Historical Remarks

Suppose I C R is an interval. How can one describe Psd(7) and Pd(7)? At first
glance, this question might seem to involve many cases, depending on whether [ is
open or half-open or closed; finite, half-infinite or infinite. In fact, there are really
only two cases.

First observe that, by continuity, Psd(I) = Psd(I); Pd(I) contains Pd(I), with
the complement consisting of those polynomials which are positive on I but vanish
at one or the other of its endpoints. If a € I\ I is a left-hand endpoint and
p € PA(I) \ Pd(I), then there exists an integer k so that p(z) = (2 — a)*q(x),
where ¢ € Pd(T U {a}). A similar consideration applies if b € I\ I is a right-hand
endpoint. Thus, it suffices to consider Psd(I) and Pd(I) for closed intervals 1.
Furthermore, if p € Psd(I) \ Pd(I), then p has (finitely many) zeroes in I. If
p(t) = 0 and ¢ is interior to I, then p(z) = (z — t)?**q(t) for some even integer 2k,
and ¢ € Psd([). If a (resp. b) is a left-hand (resp. right-hand) endpoint of I and
p(a) = 0 (vesp. p(b) = 0), then p(z) = (x — a)*q(x) (resp. p(z) = (b — z)*q(x))
for some ¢ € Psd(I). In any event, p can only have a finite number of zeroes, so
p € Psd(I) for the closed interval I = [a,b] if and only if

T

p(e) = (& — a)fo (Hu - t;-)?’“f) (b - a)q(e) @

J=1

for some non-negative integers k;, where ¢; € (a,b) and ¢ € Pd(I). (If I is half-
infinite or infinite, then this formula is modified accordingly.)

If I = (—00,00), then it is classically known that Psd(I) consists of the sums
of two squares of polynomials and Pd(/) consists of the sums of two squares of



polynomials which have no common real zeros. If I is half-infinite, then I = [a, 00)
(resp. (—o00,b]), and if p € Pd(I) and f(x) = p(x — a) (resp. f(z) = p(b — x)),
then f € Pd(]|0,00)). Finally, if I = [a,b], p € Pd(I) and

f(T) _ p( (bfa)a:;»(b+a) ) :

then f € Pd([-1,1]). In other words, there are essentially only two cases: I =
[0,00) and T = [-1,1].

(It might seem more natural to identify [0, 1] as the archetypal finite interval,
and the early theorems of Bernstein and Hausdorff were cast in this way. The
interval [—1, 1] was preferred by analysts wanting to know which polynomials p
have the property that the trigonometric polynomial p(cos ) takes non-negative
values.)

It turns out that Pd(]0,00)) and Pd([—1,1]) are closely related to each other.
Given a polynomial f of exact degree m, we define the (m-th degree) Goursat
transform of f, f, by:

fla) = +2)"f (352) ()
It is worth noting that the Goursat transform is nearly its own inverse:

fla) = 1+ a)mF(552) = (1 +a)"(1+ 2 f (1 L ) —omf(z).  (4)

If deg f = m and deg f = m —k < m, then the (m — k)-th degree Goursat
transform of f is already a polynomial, hence (4) implies that (1 + z)*|f(x).

Lemma 1 (Goursat’s Lemma). Suppose f is a polynomial of degree m. Then
f € Pd([-1,1]) if and only if f € Pd([0,00)) and deg f = m; f € Psd([—1,1]) if
and only if f € Psd([0,00)) and deg f < m.
Proof. If z € (—1,1], then y = ;5% € [0,00). Since (1+ )™ > 0, we see from (3)
that f(z) > 0 (resp. f(z) > 0) if and only if f(y) > 0 (resp. f(y) > 0.) Write
f(z) = 3 apa®; the coefficient of 2™ in f(x) is Y5, ap(l — z)F(1 + 2)"* =
Yo Dfar = f(-1). .

It follows immediately that f € Pd([—1,1]) if and only if f € Pd(]0,0)) and

deg f = m. If we weaken the hypothesis from “positive” to “non-negative”, then
the same conclusions carry over, with the loss of information about the degree of

f. (Note that f(—1) > 0 by continuity, in any case.) O

This subject appears to have been inaugurated [10] in 1894 by the 71-year old
French mathematician Charles Hermite, in the first volume of the French problems
journal Interméd. des math. Let

Py = { > el a) (L +a) | ey > 0}. (5)

i+j<d



Hermite asked: if p € Pd([—1, 1]) has degree d, must it belong to P;? This question
was quickly answered in the negative, by E. Goursat [7], J. Sadier [18] and J. Franel
6], in several different ways. A later solution appeared in Pélya-Szegt [16, VI 48].
We present Goursat’s proof.

Suppose p € Py and p(x) = Y., 4 ¢ij(1 — x)'(1 +x)7, with ¢;; > 0. Then

§ : 21+]CU 1—|—£E)d i— y
i+j5<d

so that the coefficients of p are nonnegative. For € > 0, let p.(z) = 22 +¢. We
have

P(z)=e(l+2)*+(1-2)=1+¢€) (2 26)7+ (1 +¢)x”
Clearly, if € > 0, then p € Pd(|-1,1]). But p € P, if and only if the coefficients
of p. are nonnegative, and this is true only for ¢ > 1. Thus, for 0 < € < 1, p,
provides a negative answer to Hermite’s question.

However, if p € Pd([—1,1]), then it is true that p € P, for sufficiently large
m. This was proved by Bernstein [1] in 1915, although Pélya-Szego attributes this
result to Hausdorff [9, pp. 98-99] in 1921, as part of his solution of the classical
moment problem on [0,1]. Two proofs of this theorem are given in [16]. One
uses Goursat’s transform, combined with another theorem of Pélya’s [15]. We will
give a computational version of the latter proof in the next section. Finally, it
is worth noting that if 0 # p € Psd(|-—1,1]), and p(u) = 0 for u € (—1,1), then
upon setting # = u in the equation p(z) = 3=, i ¢;;(1 — 2)'(1 + 2)/, with ¢;; > 0,
we conclude that ¢;; = 0 for all (7, j), a contradiction. It then follows easily that
UmnPm = Pd((—1,1)).

Two other results found in [16] give degree information absent in Schmiidgen’s
Theorem. If p(z) € Psd([—1, 1]) and p has degree n, then

p(z) = (f(2))" + (1~ 2?)(9(2))"

for some polynomials f and g of degree at most n and n — 1 respectively. (This
result ([16, VI 46]) is attributed to M. Fekete, but no additional bibliographic
details are given.) Under the same hypotheses, p can be written as

p(x) = (Hi(@)" + (1= 2)(fo2))" + (1 +2) (fs()” + (1 — 2% (ful))”

so that each summand has degree < n. (This result ([16, VI 47]) is attributed to
F. Lukacs, again with no details.) Further, if n is even, then fy = f3 = 0, and if
n is odd, then f; = f, = 0.

Karlin and Shapley [11, p. 35| gave an even more precise representation. Sup-
pose p(z) € Pd([—1, 1]) has even degree n = 2m, then

m m—1
p(x):aH(:r—xgj,l) + B(1 — 2?) H T — T9;)
7j=1 7j=1



If p has odd degree n = 2m + 1, then

3

m -1

p(a) = a(l +2) [ [ (& — 22;)* + B(1 - 2) | (z —x951).

These representations are unique under the additional condition that —1 < z; <
- < xp1 < 1. Karlin and Studden [12, p. 169] give a similarly interlaced
representation for polynomials in Pd([0, 00)).
We present now a short proof of the representation result [16, VI 45] for [0, 00).

Proposition 2 (Pdélya-Szegd). If p € Psd([0,00)), then p € P(x). More specif-
ically, there exist f,g € ¥ so that p(x) = f(z) + xg(x), and deg f,degzg < degp.

Proof. First observe that if p;, = f; + xg;, with deg f;, degxg; < deg p;, then

pi=pip2 = (fifo + 2°q192) + x(fig2 + fagqn) == f + g,

where deg f, deg zg < degp. Thus, it suffices to write p € Psd ([0, o0)) as a product
of factors, each of which satisfies the desired condition.

Now factor p over R[z]. Any positive roots appear to an even degree, hence
the linear factors of p will either appear to an even degree, or will be a product
of terms x + xg, with xy > 0. The irreducible quadratic factors of p are positive
definite. Since any psd factor ¢ is already in X, it can be written as ¢ + x - 0; the
linear factor x + ¢ can be written as xg + = - 1. In view of the first paragraph,
this completes the proof. ]

Proposition 2 implies a stronger conclusion than Schmiidgen’s Theorem for
P(1 —2?%) and P(1 — 2,1+ x).

Corollary 3. Psd([-1,1]) = P(1 —2?) = P(1 — z,1 + x).

Proof. Recall that if p € P(1 — x?), then p(z) = f(z)+ (1 — 2?)g(x) for f,g € T =
Psd(R), so p € Psd([—1,1]). A similar argument applies to P(1 — z,1 + x).

To prove the converse, suppose p € Psd([—1,1]) and degp = m. By Goursat’s
Lemma and the last Proposition 2, there exist f;, g; € Rlz], r; = deg f; < m/2 and
s; = degg; < m/2 so that

2 2
pla) =) fi@)+a) ().
i=1 i=1
Now perform another Goursat transform of degree m (c.f. (4)):
2 ) 2
o) = S (14 ) F ) + (1 - 2) (1 ) B ().
i=1 i=1



If m is even, we can absorb the extra factors of 1 + x to obtain:

2 2

27p(r) = S ((L+2)™> " (@) + (- 2) (14 2)™2 g (@),

i=1 i=1

so p € P(1 — z?%). If m is odd, then we obtain a similar, if longer, expression:

2"p(x) =

2
(1+2) Z((l + x)(m—l)/Q*n'fi(x))2 +(1-2) Z((l + x)(mfl)/Lsz-gi(x))?,
i=1 =1
hence p € P(1 —x,1+ x)
Finally, observe that P(f) = P(g) if and only if f € P(g) and g € P(f). We
are done if we can show that 1+ 2z € P(1—2?) and 1 —2* € P(1 —x,1+x). The
latter is immediate from (1 — 2?) = (1 — x)(1 + x), and the identity

1+2)2 1
1i$:%+§(1x2) € P(1—2°).
U
Note that
12 =01 -2)(1+2>+-- +27%7)
and

1— %= -

x 2 + i
where (k — 1) — ka? + 22* is psd by the arithmetic-geometric inequality. Thus,
P(1—2?) = P(1—22%) for all positive integers k. However, Stengle [21] has shown
that 1 —2? ¢ P((1—2%)?%), so S(f) = S(g) does not imply that P(f) = P(g). (See
also Corollary 11 below.)

o (k1) —ka?+2% 1 (1 B :1:2’“)

3 Computing the Bernstein Degree

Suppose [ € Pd([—1,1]) has degree m. Define r(f) to be the smallest integer m
so that f € P,,; r(f) has been called the Bernstein degree of f (by DeVore and
Lorentz [3]) and the Lorentz degree of f (by Borwein and Erdélyi [2]). Our first
task in this section is to compute 7(f).

Polya proved in 1928 [15] that if p € PA(R?Y), then for sufficiently large d,
1 + Z;’;l x?)dp(xl,...,:rm) has positive coefficients. In particular, if ¢ €
Pd([0,00)), then for sufficiently large d, (1 +x)%g(z) has non-negative coefficients.
Let 7#(g) denote the smallest integer d for which (1 + z)%g(x) has non-negative
coefficients. Recently, De Loera and Santos [13, p. 232] have made an algorithmic
analysis of [15]; there are several unfortunate typos in [13], but the statement
below is correct. We use this to give an upper bound for 7(g).

7



Proposition 4 ([13]). Suppose q(z1,...,xm) is a real homogeneous polynomial
of degree d, the coefficients of q are bounded above in absolute value by L and
q(u) > A >0 forue A= {(ur,...,upn) | u; > 0,3 ;u; =1} If

Lmd?
r>

+ md,

then (Z] z;)"q(x1, ..., Tm) has positive coefficients.

This proposition has an immediate interpretation for (inhomogeneous) polyno-
mials of one variable:

Corollary 5. Suppose g(z) = Zj:[] bz’ € Pd([0,00)), |bj| < L and

A= min{zd:bjtj(l —t) 7 |t e [0,1]}.

J=0

Then

2d% L
7(g) <2d+ [ -‘ :
Proof. Let q(z,y) = Z;l:o bjxiy?J  and apply Proposition 4 to g, noting that
m = 2. For later reference, observe that A = inf{(1 — #)%g(+%) | t € [0,1)}.
[

Theorem 6. Suppose f(x) € Pd([—1,1]) has degree n. and let f(z) = >, et
Let X denote the minimum of f(x) for x € [—1,1] and let L denote max{|e;|}.
Then

r(f) = n+#(f) < 3n + [2”‘?} |

Proof. First suppose m = f(f), so that

m-+n

(T+a)™"f (2) = (L +a2)" f(a) = ) beat,

with by > 0. Apply the Goursat transform (of degree m + n) to both sides above,

to obtain
m—+n

2 f () = 3 bp(1 - @)F (L4 z)m R
k=0

Thus, r(f) < m +n = 7(f) +n. This proof of Bernstein’s theorem is in [16].
To prove the converse, we first observe that a representation

fla)=Y" c;(1—a)(1+a)

i+j<d



with non-negative c;; can always be homogenized:

fla) = D eyl —a) (14 ) (452 + L) ()
i+j<r
1 r—i—j
= Z Cz](l — 15)2(1 + x)]m Z (T7(2+]))(1 — ZE)E(l -+ l‘)ri(l‘kg‘k@

i+j<r =0
= di(1 - a)F(1+a)F
k=0

and if ¢;; > 0 for all 4, j, then dj, > 0 for all k£ as well. Thus, r(f) is always achieved
by a homogeneous representation.

If we have such a representation for f with d, > 0, then, upon taking the
Goursat transform of degree r > n, we get

L42)f () =0+2) " f(x —2Tder (6)
Thus, 7(f) < r(f) —n, and so r(f) =

,F
Finally, by Corollary 5, #(f) — n <
(1 —1t)"f(s5) for t € [0,1). However,

(f) +n.
{2

1 + 2n, where ) is the infimum of

5 1—-L
O—ﬂﬁﬁ%)zﬂ—ﬂ%ku%ﬁf< lﬁ)zfu—%»

I+

so that A is precisely the minimum of f on [-1,1].
U

Remark. Erdélyi [4] and Erdélyi and Szabados [5] have given detailed computa-
tions of r(f) for quadratic polynomials. For example, if the (complex) roots of the
definite quadratic f lie on the ellipse 2% + z—; =1, then 7(f) € [a™2, 1+ 2a"?], and
these bounds are essentially achieved. These results can be found in [2, pp.83-89)].
Ezample. We compute r(p,) for € > 0, where p.(z) = ¢ + 2? € Pd([-1,1]). Recall
that
P(z)=e(l+2)*+(1—2)=1+¢€) (2 26)7+ (1 +¢)a”

so that r(p.) = 2 if € > 1. Henceforth, assume € < 1, and that e * € (2k —1, 2k +1]
for some positive integer k. We shall show that r(p.) = 2k + 1, the least odd
integer > e !. (For e < 1/3, compare with Theorem 6: We have n = 2, A\ = ¢, and
¢ = max{1+e, 2—2¢}, which yields an upper bound of 3-24[2.2%.2=2] = [18]-10.)
Let gs(z) = 1 = (2 = 8)x + 2°, so that p, = (1 4 €)gs, where § = {2<. We have
d e [k_+1’ E) and 7(p.) = 7(gs)-




By the binomial theorem,

(1+2)"gs(z) = Z((T) —(2-9) (jrill) + (jTQ))xj;

a further calculation shows that

m+2

(L4 2)"g5(w) = D sty (m +2 = 2))° = (m 4 2) + j(m + 2 = j)d) /.

Thus 7(gs) is the smallest m so that
(m+2-2)2-~(m+2)+jm+2-756>0 forall0<j<m+2. (7

Suppose (7) holds for even m = 2s. The inequality for j = s + 1 implies that

2 . . .
0 > 55,80 s > k. And the algebraic identity

(25 +2—2)2 — (25 +2) +j (25 +2 — 5)§ = 22HEHIT 4 5095 49— 5)(6 — 2)

shows that (7) holds when ¢ > 5%1 Similarly, if (7) holds for odd m = 2s — 1,

then j = s implies § > S%, so s > k, and the identity

(25+1—2j)% = (2s+1)+(2s+1— j)6 = 22U 4 (9541 —5) (5 25)

shows that (7) holds when § > 5%1’ since j is an integer-valued variable.

Since we wished to find the smallest m so that (7) holds, for given §, we conclude
that 7(gs) = 2k—1, and so r(p.) = 7(p.) +2 = 7(gs) +2 = 2k+1. The computation
in this example is quite similar to [8, pp. 59 60].

4 Schmiidgen’s Theorem for [—1, 1]

In this section, we give a constructive proof of Schmiidgen’s Theorem in the special
case that there is a single polynomial h such that S(h) = [—1,1]. That is, if
[—1,1] = {x : h(z) > 0}, and p(z) > 0 for = € [—1, 1], then we construct psd real
polynomials s and ¢ so that

p=s-+th. (8)

(As noted earlier, in one variable ¥ consists of the psd polynomials, so it suffices
to show that s and ¢ are non-negative on R.)

We begin with some simple remarks. First, if S(h) = [—1, 1], then h(x) changes
sign only at z = +1, and can have zeroes with even degree only in (—1,1). Thus
h(z) = (1 — 2)°(1+ z)%q(x), where q(£1) # 0 and ¢ and d are both odd. Further-
more, ¢(x) > 0 on (—1,1) and ¢(z) > 0 for |z| > 1. It follows from (1) that, for

10



any polynomial ¢, P(h) D P(¢*h). Thus, since ¢ — d is even, we can multiply h
by an even power of 1 + z and assume that ¢ = d =: r is odd.

Fix h(z) = (1 — 2?)"q(x) so that S(h) = [~1,1]. Since ¢ is a polynomial in
one variable, g(z) /4 0 as x — oo, so there exists a so that ¢(z) > a > 0 for
xr € (—oc,1J]U[1,00). Since ¢ is continuous, there exists  so that 0 < ¢(z) < 3
for x € [-1,1].

The main technical result is the following:

Theorem 7. Suppose € > 0, and h(x) = (1 — 2*)"q(x), where q(x) > a > 0 for
z € [-1,1] and 0 < q(z) < B for x € (—oo,1]U[1,00). Let

1 :
A= ——, and m = i ﬂ ,
r2rer—lo 2¢ \ ra

and set F(r) =1+ ¢+ x — Ax*™h(z). Then F(x) is psd.

Remark. This theorem implies that F € ¥, hence 14+ €+ 2 = F + Az"h €
P(h). Let h(x) = h(—x), then, with the same values for «, 5, A and M, we have

1+ e+ x € P(h); upon taking x — —z, we see that 1 + € —x € P(h). Thus,
l+etz=Fi(x)+ Gye(x)h(z),
where F}, G4 € ¥, and deg F.y, deg Gh are bounded above by

1 1
F <£> +degh < r <£> + deg h.
e \ra e \ra

Proof. We want to show that F'(z) > 0 for all x € R. Observe that 1 +¢+x > 0
for x > —1 — € and —Az*"h(z) > 0 for |x| > 1. Thus we need only consider
z € (—o0,—1—¢€)U(=1,1).

First, write x € (=00, —1 —€) as © = —1 — € — y, where y > 0. We must show
that

Flz)=-y—A(l+e+y)* (1 - 1+e+y)?) q(-1—e—y) >0.

We have the estimates (1 + ¢ + y)*™ > 1 and ¢(—1 — € — y) > «, and since r is
odd,
(I=(I4+e+y)”) =Q+e+y) (e+y) =2'(re'y).

(The last inequality follows from €,y > 0, and the selection of one term from the
binomial expansion of (¢ + y)".) Thus it suffices to show that

—y+ A2"re" 'ya = y(Aa2're ! — 1) >0,

and this follows directly from the definition of A.
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Now suppose x € (—1,1). An easy calculus exercise shows that if a and b are

positive and 0 < ¢ < 1, then t¢(1 )" < % Using this argument with ¢ = 22,

we have

m™mr”

Flz)=1+e+x—A@*)™(1 —2%)"q(z) > e — G

- (m 4 r)mtr

But " <1, and since m +1r > (%)W, we have
m™r" r " I} r "
A _B>e—A —e(1-Z2(—— ) ) >0
‘ (m—l—r)m“ﬁ ‘ ﬁ(m—i—r) 6< ro <26(m+r)> ) -
O

Remark. For A € Rt and m € N, let F(m, A;z) := 1+e+x— Az*"h(x). We have
not attempted to be precise in the calculation of m, and as one might suspect, for
particular examples F'(m, A; z) will be psd for a smaller value of m than the one
asserted above. Note for example that the argument of the last theorem works
with the value of m reduced roughly by r, provided € is small enough that this
integer is non-negative.

Consider h(z) = 1 — 22, for which, as we’ve seen, no additional machinery is
required to prove Schmiidgen’s Theorem. The following identity shows that m = 0
will actually work: if a > 1, then a+x = %(z £ 1)? + -1 4+ 4(1 — 42). If we take
h(z) = (1 — 2%)?, then r = 3 and ¢(z) =1, so a = § = 1, and the bound for m is
32/3

T 1'—34 —3. More precise results can be computed in this specific case. It can
be shown, for example, that the minimum of z — (1 — 2?) on R is approximately
—1.11987, hence, for example, with e = .12, F(0,1;2) = 1.124x — (1 —2?)? is psd.
On the other hand, set e = .01 and consider F(0, A;z) = 1.01 + z — A(1 — 2?)?.
If F(0, 4;0) > 0, then 1.01 > A, but if (0, A; —1.02) > 0, then A(.0404)* > .01,
hence A > 150. Thus, F'(0, A, z) is not psd for any A. (This does not imply that
1.01 + 2z ¢ P((1 — 2?)?), merely that there is no expression of this simple form.)
We can repeat this argument for m = 1: F(1, A; —.6) > 0 implies A < 4.3445...
and F'(1, A; —.1.02) > 0 implies A > 145.764... These arguments can be repeated
to show that if 1.01 + 2 — Ax?™ is psd, then m > 11, and a numerical argument
shows that for all x,

F(11,140; 2) = 1.01 + 2 — 1402**(1 — 2*)* > .0002 > 0.

The following quantitative special case of Schmiidgen’s Theorem contains de-
gree information unavailable in the original. Observe that, if p is positive on
[—1,1], then by continuity, it is positive on [—1 — €, 1 + €] for some € > 0.
Corollary 8. Suppose h(z) = (1 — 2?)"q(z), where 0 < q(x) < 8 for |x| <1 and
q(z) > a > 0 for |x| > 1. Suppose p(z) € Pd([—1,1]) has degree n, and p has s
real roots w;, with |uj| > u > 1. Then there exist polynomials F,G € X, so that

p=F+Gh,

12



where the degrees of F' and G are bounded above by

(m (g)idegh) s

Proof. Factor p over R[z] into linear factors x —u; and irreducible quadratic factors
gr € 3. Then |u;| > u > 1. Observe that +(z — u;) = |u;| — sgn(u;)z, with the
sign chosen so that the factor is positive on [—1,1]; thus,

[

plz) = f[(|uj|  sgnluge ) ().

j=1

Now use Theorem 6 to write |u;| — sgn(uj)z = F; + hG;, with the degrees <
1 1
- (ﬁ) "+ degh < 5 (g) " 4+ deg h, and substitute above. O]

2(Juj|—1) \a 2(u—1)

There is no degree dependence in Fekete’s Theorem on the location of the roots
of p. On the other hand, Stengle has shown [21, p. 170] that there is a constant
C such that given s; € ¥ with

1—2° +e=so(x) + s1(x)(1 — 2%),

then degs; > Ce /2. He also [21, p. 171] constructed such a representation in
which deg s; < Ce~'/2|loge|. This implies that if » > 3, then there is no bound for
the degrees of F' and GG which depends solely on the degree of p and information
about h. It also suggests that a better construction might reduce the exponent on
u—1 from 1 to %

Corollary 8 states that Pd([—1,1]) C P(h). In view of the results of Fekete and
Lukacs, as well as Corollary 3, it is natural to wonder when we have the stronger
result that Psd([—1, 1]) = P(h). We are able to answer that question completely:
this happens if and only if h(x) = (1—2?)q(z), where q is as before, and ¢(£1) > 0.
Our proof relies on a very recent result of Scheiderer [19, 4.8].

Lemma 9 (Scheiderer). Suppose f,g € Rlx| satisfy the following conditions:
1. f and g are relatively prime,
2. {z | f(x) <0}n{zx|g(x) <0} =0, and
3. S(f,g) is bounded.

Then there exist s,t € X such that sf +tg = 1.

Proposition 10. Suppose h € Rlz| such that S(h) = [-1,1] and h has a root of
multiplicity a at © =1 and a root of multiplicity b at x = —1. Then (1 — x)* and
(1+ )b are in P(h).

13



Proof. We give the proof for (1 — z)%; the proof for (1 + z) is similar. Write
h(z) = (1 — x)%(z), and note that @ must be odd. We want to apply Lemma
9 to the polynomials (1 — z)® and ¢(z). They are clearly relatively prime. We
have {z | (1 — z)* < 0} = [1,00), and ¢(x) > 0 on [1,00) by its definition.
Hence conditions (2) and (3) of the lemma hold. Thus there exist s, € ¥ so
that 1 = s(z)(1 — x)* + #(x)g(z). Multiplying both sides by (1 — z)* yields
(1—2)*=s(z)(1 —x)* +t(x)h(zx) € P(h). O

Remark. The proof of Lemma 9 is not constructive, hence this does not yield a
constructive method for finding an explicit representation of (1 —z)® and (1 + x)°
in the preorder.

Corollary 11. Suppose S(h) = [—-1,1] and p € Psd([—1,1]). Then p € P(h) if
and only if for y = +1, the order of p at y is either even or at least as big as the
order of h at y. In particular, P(h) = Psd([—1,1]) if and only if the order of h at
both +1 s 1.

Proof. Write h(z) = (1 — 2)%(1+ z)%q(z), where q(x) > 0 for |z| > 1 and ¢(x) > 0
for |x| < 1. Every p € Psd(|—1,1]) can be written as

r

plz) = (1+2)° (H(g; - xj)%f> (1 — z)%(x),

J=1

where |z;| < 1 and ¢ € Pd([—1,1]). If ¢ is even or ¢ — a > 0 is even and if d is
even or d — b > 0 is even, then by Corollary 8 and Proposition 10, p is a product
of factors from P(h), hence p € P(h).

Now suppose ¢ < a is odd or d < b is odd. The proofs are similar, and we
give the first. Suppose we could write p = s+ th, with s, € ¥. Then (1 + x)|p
and (1 + x)%h, hence (1 + 2)°s. But s is psd, so any linear factors appear to an
even degree. Thus, (1 + x)“"![s, and ¢ + 1 < a implies that (1 + z)“"'|p, which
contradicts the definition of c. O

There are several other directions in which these results could be generalized.
The most obvious is to allow {fi,..., f,} with n > 2 so that S(fi,..., f.) =
[—1,1]. (As noted earlier, any compact interval might as well be [-1,1], but
Schmiidgen’s Theorem also applies when the semialgebraic set is a union of closed
intervals.) Stengle proved [21] that if S(fi,..., f,) = [—1,1], then there exists a
single h in P(f1,..., fu) so that S(h) = [—1,1]. His proof requires various non-
constructive Stellensatze, and we have been unable to find a constructive proof.

Nevertheless, we can present here some remarks towards a constructive proof.
Suppose S(f1,..., fn) = [=1,1]. Assume each f; has a factor of 1 — z%. (If not,
replace f; by (1 — 2*)%f; € P(f1,..., fn)), so that f; = (1 — 2?)g;.) There is no
real a so that g;(a) < 0 for all i. Our goal is to find psd py,...,p, such that
P1g1 + - -+ + prgx s positive definite. Setting h =Y, prfe = (1 — 2%) D prgx, we
then have S(h) = [—1, 1], and we can apply Theorem 7.
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Ezample. Suppose f1 = (1 — 2%)(z + a) and fy = b* — 2%, where 1 < b < a. Then
S(f1, f2) = {a: fila) > 0} n{a: fola) > 0} = ((—oo, —a) U [-1, 1])0[—6, b =
[—1,1]. An algebraic identity shows that
hr) = 20— DAi() + (1 2 fola)
=20(b* — 1)(1 — 2?)(z + a) + (1 — %)% (b* — 2?)
= (12 (266> ~ 1)(x+ b+ (a— b)) + (1 — 2°)(b* — 2%))
=(1=2*) ((z+b)*((x —b)>+0*—1) +2b(b> = 1)(a — b))

Since (z +b)*((x — b)? +b* — 1) + 2b(b*> — 1)(a — b) > 2b(b* — 1)(a — b) > 0, we
have S(h) = [—1,1]. In other words, we have used the above construction with
g =x+a,g=(1—2?)(0*—2?), p = 2b(b*> — 1), and p, = 1.

It is difficult to apply Theorem 7 directly to h in this case, because of the
computation of a and 3. For concreteness, set a = 3 and b = 2, so that 2b(b* —1) =
12, h(z) = (1 — 2?)(2* — 52% + 122 + 40) and r = 1. It is routine to verify that
q(x) = 2* — 52 + 122 + 40 is increasing on [—1,1], hence 3 = h(1) = 48, and
q(z) =12+ (v + 2)*(2* — 4o + 7), hence a = 12. If we set ¢ = 1, then Theorem 7
tells us that, with A = % and m =1,

H(z):=2+z — Lt2*(1 —2%) (2 — 52” + 122 + 40)

is psd. (This can easily be confirmed by graphing it.) That is, we can explicitly
write 2 + x € Pd([—1,1]) as an element of P(f1, f2):

2+ 2= H(z)+ 52°h(z) = H(z) + 122° f1(2) + 527 (1 — 2°) fa(=).

5 The semi-infinite interval

A simple example shows that there exists h so that S(h) = [0, 00), but Pd([0, o))
is not contained in P(h).

Exzample. Observe that S(x*) = [0,00), and that 1 + z € Pd([0,00)). But if f
1+ x € P(z?), then there would exist g, h € ¥ = Psd(R) so that

1+2=g(z)+2°h(z).

Observe that the degrees of g and h are even. Hence, the degrees of g(r) and
23h(z); namely, 2m and 2n + 3, are different, and hence the degree of their sum
is max{2m, 2n + 3}, which must equal 1, a clear contradiction.

This example generalizes considerably. We first need a familiar folk-lemma.

Lemma 12. Suppose —oc < a < b < oo are giwen. Then for every positive
integer n, there exists C'(a,b,n) so that, if | Z]n':(] ajx’| < M for x € [a,b], then
laj| < MC(a,b,n).
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Proof. Let p(x) = Y7 ;a;a’ and choose nodes a = 29 < 21 < -+ < @, = b. The
following system of n + 1 equations in the n + 1 unknowns {a,}:

n
— J
xy) = g z.a;.
J=0

has Vandermonde determinant []o_;_,,(¥; — 2x) # 0, hence there exist c;x so

that .
a; =Y ciup(ay).
k=0

The assertion is now immediate. O

Remark. We note the following useful property of P(f,..., f,) in the case where
S(fi,---5 fn) = [0,00): Each f; and each s € ¥ has positive leading coefficient.
Thus, there can be no cancellation in the highest degree terms. In particular, if
p =Y frsr, then for each I, degp > deg s/ f.

Theorem 13. Suppose [0,00) = S(f1,..., fn) and suppose {p,} C P(fr1,..., fn)
satisfy degp,, = degp and p,, — p coefficientwise. Then p € P(fi,..., fa).

Proof. Write

(@) = soml@) + Y srm(e) [] i), (9)

Ic{1,..,n} iel

with sgm,Srm € 2, and any summand which is zero has been deleted from the
sum. For each m, degp = degp,, = max{deg sy, + > .., deg fi}, hence there is
a uniform bound on the degrees of degs;,,. Each f;(z) is a polynomial which is
non-negative on [0, 0c), hence there exists an interval (0, \;) on which f;(x) > 0.
Let A = min; A;. Then there exists € > 0 so that f;(z) > € for z € [3, %] := [a,b].
Since p,, — p, there exists T' so that p,,(x) < T for all m and z € [a, b]. Tt follows
from (9) that, for every subset I, and z € [a, b],

szm >SIm Hfl (.’E)

el

Thus, s7,,(7) < e T for x € [a,b], and deg sy, < degp. It follows from Lemma
12 that there is a uniform upper bound to the coefficients of s;,,(x). Thus there
exists a convergent subsequence {m,} so that, for each I, s;,,, (x) = s;(z) coeffi-
cientwise. We conclude from (9) that

pla) = sole)+ 3 sila) [ i)

Icq{l,...,n} i€l
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Corollary 14. Suppose S(f1,..., fn) =[0,00) and e+z € P(fy,..., fn) for every
€ > 0. Then f;(z) = cx for some j and positive c.

Proof. In view of Theorem 13, it suffices to show that x € P(fy,..., f,) implies
that some f; is a multiple of x. Suppose otherwise, and write

x = sp(x) + Z sl(x)Hfl(x)

Ic{1,..,n} iel

Each summand has degree < 1. Since s; € ¥, it must be a non-negative constant:
si(x) = o;. Further, if o; > 0, then deg[[,., fi(x) < 1, so I is a singleton,
I = {j}, where f;(z) = ajz + b; is linear. Since f;(x) > 0 on [0,00), we have
aj,bj > 0, and b; > 0 by hypothesis. After a suitable relabeling, we obtain the
identity

T
x =0+ Zoj(a,j.r +b;).

7=1
By setting = 0, we conclude that 0y = 01 =--- = 0, =0, a contradiction. [

Ezample. Let p(z) = x + 23; clearly, S(p) = [0,00). We show that, for every odd
integer m, and e sufficiently small, ™ +¢€ ¢ P(p). It suffices to show by induction
on odd m that 2™ ¢ P(p). Suppose otherwise. There would exist g, h € ¥ so that

o™ = (x +a%)g(w) + h(z).

Observe that m = max{3 + degg,degh}, where degg,degh are even. This is
impossible for m = 1. Suppose we have shown this impossible for m — 2, where
m > 3. We have h(0) = 0, and so z|h(z), and since h € X, it follows that

h(z) = 2?h(z) for some h € ¥. Thus,
2™ = (1 +2%)g(x) + zh(z).

But this implies that ¢(0) = 0, so z|g(z) and so g(x) = 2%g(z), with g € 3, hence

™ = (z+2”)g(x) + h(z),

which contradicts the induction hypothesis.

Added in proof: Very recently, we have discovered that there is a gap in the
proof of [13, Theorem 1.1]: The procedure given to find the maximum of the linear
form > x; on the region G is reduced to finding the maximum on another region
G’, however the containment G C G’ is wrong. For example, with F(z,y) =
z? — 1.92y + y?, the region G is {(z,y) | z* + y* — 1.9(x + 2)(y + 2) < 0} while G’
is {(7,y) | * — 1.92y + y* — 2(1.97 + 1.9y) < 0}. However, we have been able to
find an alternate proof of the bound in [13] for the two variable case, in fact we
can improve the bound slightly.
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Theorem 15. Suppose f(x,y) is a homogeneous polynomial of degree d whose
coefficients are bounded above by L and suppose p(x,y) > X > 0 for x,y > 0,z +

y=1.If
L
T+d20d2x,

where o is such that 20 > €7 (for example, if 0 = 2), then the coefficients of
(x +y)" f(x,y) are positive.

Substituting this theorem for Proposition 4, we obtain our results. The theorem
above, and its generalization to n variables, will be the subject of a forthcoming

paper.
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