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Then we de�ne P (f1; : : : ; fn), the preorder generated by the fi's, byP (f1; : : : ; fn) = � XI�f1;:::;ng sI(x)fI(x) j sI 2 ��: (1)Note that since � is closed under multiplication and fIfI0 = f 2I\I0fI4I0, the pre-order P (f1; : : : ; fn) is also closed under multiplication.For a set A � Rm , let Psd(A) (resp. Pd(A)) denote the set of polynomialsp 2 R[x1 ; : : : ; xm] so that p(a1; : : : ; am) � 0 (resp. p(a1; : : : ; am) > 0) for every(a1; : : : ; am) 2 A. Such polynomials are said to be positive semide�nite (psd) on A(resp. positive de�nite (pd) on A). These sets are also closed under multiplication.Let P = P (f1; : : : ; fn) and S = S(f1; : : : ; fn), then clearly, P is contained inPsd(S). Schm�udgen's Theorem says that if S is compact then a stronger statementis true: Pd(S) � P � Psd(S):In other words, if g > 0 on compact S(f1; : : : ; fn), then g is in the preordergenerated by the fi's. Schm�udgen's Theorem is somewhat simpler in one variable.As noted earlier, f 2 � i� f 2 Psd(R); that is, i� S(f) = R. (The situation is morecomplicated for polynomials in more than one variable; see [17].) Thus, to give asimple example, one consequence of Schm�udgen's theorem is that if p(x) > 0 forx 2 [�1; 1], then one can write p(x) = f(x) + (1� x2)3g(x), where f(x); g(x) � 0for all x. This paper contains a constructive proof of this result, with degreebounds for f and g which depend on the degree of p and the location of its roots.In section two of this paper, we show that the study of Psd(I) and Pd(I) forreal intervals I essentially reduces to two cases: I = [�1; 1] and I = [0;1). Wereview the literature on this problem, which goes back to Hermite, and discusswork of Goursat, Bernstein, Hausdor�, P�olya and Szeg�o, Fekete, Luk�acs, Karlinand Shapley and Karlin and Studden. (There is not much literature on Psd(A)for A � R2 , and we will not discuss the subject in this paper, but see [14].)In section three, we combine recent results of de Loera and Santos with work ofGoursat, P�olya and Szeg�o to give a constructive proof that, if p is in Pd([�1; 1]),then for a computable value of m, there exist dk � 0 so thatp(x) = mXk=0 dk(1� x)k(1 + x)m�k:(Without the information on m, this theorem is due to Bernstein.) Other compu-tations of m have been made by Erd�elyi and Erd�elyi and Szabados.In section four, we give an elementary and constructive proof of Schm�udgen'sTheorem in one special case. Let h be a given polynomial for which S(h) = [�1; 1].If p 2 Pd([�1; 1]), we give a constructive proof of the existence of s0; s1 2 � so thatp = s0+hs1. This includes an a priori bound on the degrees of s0 and s1, based on2



h, the degree of p, and the smallest absolute value of the roots of p. In the specialcase h(x) = 1� x2, Luk�acs proved a stronger theorem: Psd([�1; 1]) = P (1� x2).We shall give a necessary and su�cient condition on h so that Psd([�1; 1]) =P (h). Our proof relies on a non-constructive result of Scheiderer, and so is notconstructive.In section �ve, we turn our attention to the non-compact interval [0;1),to which Schm�udgen's Theorem does not apply. As noted earlier, P�olya andSzeg�o proved that, if p 2 Psd([0;1)), then there exist si 2 � so that p(x) =s0(x) + xs1(x). In this section, we prove that this is essentially the only casein which Schm�udgen's conclusion holds for [0;1): If S(f1; : : : ; fn) = [0;1) andPd([0;1)) � P (f1; : : : ; fn), then fj(x) = cx for some j.The �nal version of this paper was hammered out in October 1998, while theauthors were participating in the MSRI Workshop on Symbolic Computation inGeometry and Analysis. We happily acknowledge our gratitude to MSRI for itswarm hospitality.2 Background and Historical RemarksSuppose I � R is an interval. How can one describe Psd(I) and Pd(I)? At �rstglance, this question might seem to involve many cases, depending on whether I isopen or half-open or closed; �nite, half-in�nite or in�nite. In fact, there are reallyonly two cases.First observe that, by continuity, Psd(I) = Psd(�I); Pd(I) contains Pd(�I), withthe complement consisting of those polynomials which are positive on I but vanishat one or the other of its endpoints. If a 2 �I n I is a left-hand endpoint andp 2 Pd(I) n Pd(�I), then there exists an integer k so that p(x) = (x � a)kq(x),where q 2 Pd(I [ fag). A similar consideration applies if b 2 �I n I is a right-handendpoint. Thus, it su�ces to consider Psd(I) and Pd(I) for closed intervals I.Furthermore, if p 2 Psd(I) n Pd(I), then p has (�nitely many) zeroes in I. Ifp(t) = 0 and t is interior to I, then p(x) = (x� t)2kq(t) for some even integer 2k,and q 2 Psd(I). If a (resp. b) is a left-hand (resp. right-hand) endpoint of I andp(a) = 0 (resp. p(b) = 0), then p(x) = (x � a)kq(x) (resp. p(x) = (b � x)kq(x))for some q 2 Psd(I). In any event, p can only have a �nite number of zeroes, sop 2 Psd(I) for the closed interval I = [a; b] if and only ifp(x) = (x� a)k0� rYj=1(x� tj)2kj�(b� x)kr+1q(x) (2)for some non-negative integers kj, where tj 2 (a; b) and q 2 Pd(I). (If I is half-in�nite or in�nite, then this formula is modi�ed accordingly.)If I = (�1;1), then it is classically known that Psd(I) consists of the sumsof two squares of polynomials and Pd(I) consists of the sums of two squares of3



polynomials which have no common real zeros. If I is half-in�nite, then I = [a;1)(resp. (�1; b]), and if p 2 Pd(I) and f(x) = p(x � a) (resp. f(x) = p(b � x)),then f 2 Pd([0;1)). Finally, if I = [a; b], p 2 Pd(I) andf(x) = p� (b�a)x+(b+a)2 �;then f 2 Pd([�1; 1]). In other words, there are essentially only two cases: I =[0;1) and I = [�1; 1].(It might seem more natural to identify [0; 1] as the archetypal �nite interval,and the early theorems of Bernstein and Hausdor� were cast in this way. Theinterval [�1; 1] was preferred by analysts wanting to know which polynomials phave the property that the trigonometric polynomial p(cos �) takes non-negativevalues.)It turns out that Pd([0;1)) and Pd([�1; 1]) are closely related to each other.Given a polynomial f of exact degree m, we de�ne the (m-th degree) Goursattransform of f , ~f , by: ~f(x) = (1 + x)mf �1�x1+x� : (3)It is worth noting that the Goursat transform is nearly its own inverse:~~f(x) = (1 + x)m ~f�1�x1+x� = (1 + x)m(1 + 1�x1+x)mf  1� 1�x1+x1 + 1�x1+x! = 2mf(x): (4)If deg f = m and deg ~f = m � k < m, then the (m � k)-th degree Goursattransform of ~f is already a polynomial, hence (4) implies that (1 + x)kjf(x).Lemma 1 (Goursat's Lemma). Suppose f is a polynomial of degree m. Thenf 2 Pd([�1; 1]) if and only if ~f 2 Pd([0;1)) and deg f = m; f 2 Psd([�1; 1]) ifand only if ~f 2 Psd([0;1)) and deg ~f � m.Proof. If x 2 (�1; 1], then y = 1�x1+x 2 [0;1). Since (1 + x)m > 0, we see from (3)that f(x) > 0 (resp. f(x) � 0) if and only if ~f(y) > 0 (resp. ~f(y) � 0.) Writef(x) = Pmk=0 akxk; the coe�cient of xm in ~f(x) is Pmk=0 ak(1 � x)k(1 + x)m�k =Pmk=0(�1)kak = f(�1).It follows immediately that f 2 Pd([�1; 1]) if and only if ~f 2 Pd([0;1)) anddeg f = m. If we weaken the hypothesis from \positive" to \non-negative", thenthe same conclusions carry over, with the loss of information about the degree of~f . (Note that f(�1) � 0 by continuity, in any case.)This subject appears to have been inaugurated [10] in 1894 by the 71-year oldFrench mathematician Charles Hermite, in the �rst volume of the French problemsjournal Interm�ed. des math. LetPd := �Xi+j�d cij(1� x)i(1 + x)j j cij � 0�: (5)4



Hermite asked: if p 2 Pd([�1; 1]) has degree d, must it belong to Pd? This questionwas quickly answered in the negative, by E. Goursat [7], J. Sadier [18] and J. Franel[6], in several di�erent ways. A later solution appeared in P�olya-Szeg�o [16, VI 48].We present Goursat's proof.Suppose p 2 Pd and p(x) =Pi+j�d cij(1� x)i(1 + x)j, with cij � 0. Then~p(x) = Xi+j�d 2i+jcijxi(1 + x)d�i�j;so that the coe�cients of ~p are nonnegative. For � > 0, let p�(x) = x2 + �. Wehave ~p�(x) = �(1 + x)2 + (1� x)2 = (1 + �)� (2� 2�)x + (1 + �)x2:Clearly, if � > 0, then p 2 Pd([�1; 1]). But p 2 P2 if and only if the coe�cientsof ~p� are nonnegative, and this is true only for � � 1. Thus, for 0 < � < 1, p�provides a negative answer to Hermite's question.However, if p 2 Pd([�1; 1]), then it is true that p 2 Pm for su�ciently largem. This was proved by Bernstein [1] in 1915, although P�olya-Szeg�o attributes thisresult to Hausdor� [9, pp. 98-99] in 1921, as part of his solution of the classicalmoment problem on [0; 1]. Two proofs of this theorem are given in [16]. Oneuses Goursat's transform, combined with another theorem of P�olya's [15]. We willgive a computational version of the latter proof in the next section. Finally, itis worth noting that if 0 6= p 2 Psd([�1; 1]), and p(u) = 0 for u 2 (�1; 1), thenupon setting x = u in the equation p(x) = Pi;j cij(1 � x)i(1 + x)j, with cij � 0,we conclude that cij = 0 for all (i; j), a contradiction. It then follows easily that[mPm = Pd((�1; 1)).Two other results found in [16] give degree information absent in Schm�udgen'sTheorem. If p(x) 2 Psd([�1; 1]) and p has degree n, thenp(x) = �f(x)�2 + (1� x2)�g(x)�2for some polynomials f and g of degree at most n and n � 1 respectively. (Thisresult ([16, VI 46]) is attributed to M. Fekete, but no additional bibliographicdetails are given.) Under the same hypotheses, p can be written asp(x) = �f1(x)�2 + (1� x)�f2(x)�2 + (1 + x)�f3(x)�2 + (1� x2)�f4(x)�2so that each summand has degree � n. (This result ([16, VI 47]) is attributed toF. Luk�acs, again with no details.) Further, if n is even, then f2 = f3 = 0, and ifn is odd, then f1 = f4 = 0.Karlin and Shapley [11, p. 35] gave an even more precise representation. Sup-pose p(x) 2 Pd([�1; 1]) has even degree n = 2m, thenp(x) = � mYj=1(x� x2j�1)2 + �(1� x2)m�1Yj=1 (x� x2j)2:5



If p has odd degree n = 2m+ 1, thenp(x) = �(1 + x) mYj=1(x� x2j)2 + �(1� x)m�1Yj=1 (x� x2j�1)2:These representations are unique under the additional condition that �1 < x1 <� � � < xn�1 < 1. Karlin and Studden [12, p. 169] give a similarly interlacedrepresentation for polynomials in Pd([0;1)).We present now a short proof of the representation result [16, VI 45] for [0;1).Proposition 2 (P�olya-Szeg�o). If p 2 Psd([0;1)), then p 2 P (x). More specif-ically, there exist f; g 2 � so that p(x) = f(x) + xg(x), and deg f; deg xg � deg p.Proof. First observe that if pi = fi + xgi, with deg fi; deg xgi � deg pi, thenp := p1p2 = (f1f2 + x2g1g2) + x(f1g2 + f2g1) := f + xg;where deg f; deg xg � deg p. Thus, it su�ces to write p 2 Psd([0;1)) as a productof factors, each of which satis�es the desired condition.Now factor p over R[x]. Any positive roots appear to an even degree, hencethe linear factors of p will either appear to an even degree, or will be a productof terms x + x0, with x0 � 0. The irreducible quadratic factors of p are positivede�nite. Since any psd factor q is already in �, it can be written as q + x � 0; thelinear factor x + x0 can be written as x0 + x � 1. In view of the �rst paragraph,this completes the proof.Proposition 2 implies a stronger conclusion than Schm�udgen's Theorem forP (1� x2) and P (1� x; 1 + x).Corollary 3. Psd([�1; 1]) = P (1� x2) = P (1� x; 1 + x).Proof. Recall that if p 2 P (1�x2), then p(x) = f(x)+ (1�x2)g(x) for f; g 2 � =Psd(R), so p 2 Psd([�1; 1]). A similar argument applies to P (1� x; 1 + x).To prove the converse, suppose p 2 Psd([�1; 1]) and deg p = m. By Goursat'sLemma and the last Proposition 2, there exist fi; gi 2 R[x], ri = deg fi � m=2 andsi = deg gi � m=2 so that~p(x) = 2Xi=1 f 2i (x) + x 2Xi=1 g2i (x):Now perform another Goursat transform of degree m (c.f. (4)):2mp(x) = 2Xi=1 (1 + x)m�2ri ~f 2i (x) + (1� x) 2Xi=1 (1 + x)m�1�2si~g2i (x):6



If m is even, we can absorb the extra factors of 1 + x to obtain:2mp(x) = 2Xi=1 �(1 + x)m=2�ri ~fi(x)�2 + (1� x2) 2Xi=1 �(1 + x)m=2�1�si~gi(x)�2;so p 2 P (1� x2). If m is odd, then we obtain a similar, if longer, expression:2mp(x) =(1 + x) 2Xi=1 �(1 + x)(m�1)=2�ri ~fi(x)�2 + (1� x) 2Xi=1 �(1 + x)(m�1)=2�si~gi(x)�2;hence p 2 P (1� x; 1 + x)Finally, observe that P (f) = P (g) if and only if f 2 P (g) and g 2 P (f). Weare done if we can show that 1� x 2 P (1� x2) and 1� x2 2 P (1� x; 1 + x). Thelatter is immediate from (1� x2) = (1� x)(1 + x), and the identity1� x = (1� x)22 + 12(1� x2) 2 P (1� x2):Note that 1� x2k = (1� x2)(1 + x2 + � � �+ x2k�2)and 1� x2 = (k � 1)� kx2 + x2kk + 1k�1� x2k�;where (k � 1) � kx2 + x2k is psd by the arithmetic-geometric inequality. Thus,P (1�x2) = P (1�x2k) for all positive integers k. However, Stengle [21] has shownthat 1�x2 =2 P ((1�x2)3), so S(f) = S(g) does not imply that P (f) = P (g). (Seealso Corollary 11 below.)3 Computing the Bernstein DegreeSuppose f 2 Pd([�1; 1]) has degree m. De�ne r(f) to be the smallest integer mso that f 2 Pm; r(f) has been called the Bernstein degree of f (by DeVore andLorentz [3]) and the Lorentz degree of f (by Borwein and Erd�elyi [2]). Our �rsttask in this section is to compute r(f).P�olya proved in 1928 [15] that if p 2 Pd(Rm+ ), then for su�ciently large d,(1 + Pmj=1 x2j)dp(x1; : : : ; xm) has positive coe�cients. In particular, if g 2Pd([0;1)), then for su�ciently large d, (1+x)dg(x) has non-negative coe�cients.Let ~r(g) denote the smallest integer d for which (1 + x)dg(x) has non-negativecoe�cients. Recently, De Loera and Santos [13, p. 232] have made an algorithmicanalysis of [15]; there are several unfortunate typos in [13], but the statementbelow is correct. We use this to give an upper bound for ~r(g).7



Proposition 4 ([13]). Suppose q(x1; : : : ; xm) is a real homogeneous polynomialof degree d, the coe�cients of q are bounded above in absolute value by L andq(u) � � > 0 for u 2 � = f(u1; : : : ; um) j uj � 0;Pj uj = 1g. Ifr � Lmd2� +md;then (Pj xj)rq(x1; : : : ; xm) has positive coe�cients.This proposition has an immediate interpretation for (inhomogeneous) polyno-mials of one variable:Corollary 5. Suppose g(x) =Pdj=0 bjxj 2 Pd([0;1)), jbjj � L and� = min( dXj=0 bjtj(1� t)d�j j t 2 [0; 1]) :Then ~r(g) � 2d+ �2d2L� � :Proof. Let q(x; y) = Pdj=0 bjxjyd�j, and apply Proposition 4 to q, noting thatm = 2. For later reference, observe that � = inff(1� t)dg( t1�t) j t 2 [0; 1)g.Theorem 6. Suppose f(x) 2 Pd([�1; 1]) has degree n. and let ~f(x) = Pj ejxj.Let � denote the minimum of f(x) for x 2 [�1; 1] and let L denote maxfjejjg.Then r(f) = n+ ~r( ~f) � 3n + �2n2L� � :Proof. First suppose m = ~r( ~f), so that(1 + x)m+nf �1�x1+x� = (1 + x)m ~f(x) = m+nXk=0 bkxk;with bk � 0. Apply the Goursat transform (of degree m+ n) to both sides above,to obtain 2m+nf(x) = m+nXk=0 bk(1� x)k(1 + x)m+n�k:Thus, r(f) � m + n = ~r( ~f) + n. This proof of Bernstein's theorem is in [16].To prove the converse, we �rst observe that a representationf(x) = Xi+j�d cij(1� x)i(1 + x)j8



with non-negative cij can always be homogenized:f(x) = Xi+j�r cij(1� x)i(1 + x)j(1�x2 + 1+x2 )r�(i+j)= Xi+j�r cij(1� x)i(1 + x)j 12r�(i+j) r�i�jX̀=0 �r�(i+j)` �(1� x)`(1 + x)r�(i+j+`):= rXk=0 dk(1� x)k(1 + x)r�k;and if cij � 0 for all i; j, then dk � 0 for all k as well. Thus, r(f) is always achievedby a homogeneous representation.If we have such a representation for f with dk � 0, then, upon taking theGoursat transform of degree r � n, we get(1 + x)rf �1�x1+x� = (1 + x)r�n ~f(x) = 2r rXk=0 dkxk: (6)Thus, ~r( ~f) � r(f)� n, and so r(f) = ~r( ~f) + n.Finally, by Corollary 5, ~r( ~f) � n � d2Ln2� e + 2n, where � is the in�mum of(1� t)d ~f( t1�t) for t 2 [0; 1). However,(1� t)d ~f � t1�t� = (1� t)d(1 + t1�t)df  1� t1�t1 + t1�t! = f(1� 2t);so that � is precisely the minimum of f on [�1; 1].Remark. Erd�elyi [4] and Erd�elyi and Szabados [5] have given detailed computa-tions of r(f) for quadratic polynomials. For example, if the (complex) roots of thede�nite quadratic f lie on the ellipse x2 + y2a2 = 1, then r(f) 2 [a�2; 1+ 2a�2], andthese bounds are essentially achieved. These results can be found in [2, pp.83{89].Example. We compute r(p�) for � > 0, where p�(x) = �+ x2 2 Pd([�1; 1]). Recallthat ~p�(x) = �(1 + x)2 + (1� x)2 = (1 + �)� (2� 2�)x + (1 + �)x2;so that r(p�) = 2 if � � 1. Henceforth, assume � < 1, and that ��1 2 (2k�1; 2k+1]for some positive integer k. We shall show that r(p�) = 2k + 1, the least oddinteger � ��1. (For � � 1=3, compare with Theorem 6: We have n = 2, � = �, and` = maxf1+�; 2�2�g, which yields an upper bound of 3�2+d2�22� 2�2�� e = d16� e�10.)Let g�(x) = 1 � (2 � �)x + x2, so that ~p� = (1 + �)g�, where � = 4�1+� . We have� 2 [ 2k+1 ; 2k), and ~r(~p�) = ~r(g�). 9



By the binomial theorem,(1 + x)mg�(x) = m+2Xj=0 ��mj �� (2� �)� mj�1�+ � mj�2��xj;a further calculation shows that(1 + x)mg�(x) = m+2Xj=0 m!j!(m+2�j)! ((m+ 2� 2j)2 � (m + 2) + j(m+ 2� j)�)xj:Thus ~r(g�) is the smallest m so that(m+ 2� 2j)2 � (m + 2) + j(m+ 2� j)� � 0 for all 0 � j � m + 2. (7)Suppose (7) holds for even m = 2s. The inequality for j = s + 1 implies that� � 2s+1 , so s � k. And the algebraic identity(2s+ 2� 2j)2� (2s+2) + j(2s+ 2� j)� = 2(2s+1)(s+1�j)2s+1 + j(2s+2� j)(�� 2s+1)shows that (7) holds when � � 2s+1 . Similarly, if (7) holds for odd m = 2s � 1,then j = s implies � � 2s+1 , so s � k, and the identity(2s+1�2j)2�(2s+1)+j(2s+1�j)� = 2(2s+1)(s�(j�1))(s�j)s+1 +j(2s+1�j)(�� 2s+1)shows that (7) holds when � � 2s+1 , since j is an integer-valued variable.Since we wished to �nd the smallestm so that (7) holds, for given �, we concludethat ~r(g�) = 2k�1, and so r(p�) = ~r(~p�)+2 = ~r(g�)+2 = 2k+1. The computationin this example is quite similar to [8, pp. 59{60].4 Schm�udgen's Theorem for [�1; 1]In this section, we give a constructive proof of Schm�udgen's Theorem in the specialcase that there is a single polynomial h such that S(h) = [�1; 1]. That is, if[�1; 1] = fx : h(x) � 0g, and p(x) > 0 for x 2 [�1; 1], then we construct psd realpolynomials s and t so that p = s+ t h: (8)(As noted earlier, in one variable � consists of the psd polynomials, so it su�cesto show that s and t are non-negative on R.)We begin with some simple remarks. First, if S(h) = [�1; 1], then h(x) changessign only at x = �1, and can have zeroes with even degree only in (�1; 1). Thush(x) = (1� x)c(1 + x)dq(x), where q(�1) 6= 0 and c and d are both odd. Further-more, q(x) � 0 on (�1; 1) and q(x) > 0 for jxj � 1. It follows from (1) that, for10



any polynomial �, P (h) � P (�2h). Thus, since c � d is even, we can multiply hby an even power of 1� x and assume that c = d =: r is odd.Fix h(x) = (1 � x2)rq(x) so that S(h) = [�1; 1]. Since q is a polynomial inone variable, q(x) 6! 0 as x ! 1, so there exists � so that q(x) � � > 0 forx 2 (�1; 1] [ [1;1). Since q is continuous, there exists � so that 0 � q(x) � �for x 2 [�1; 1].The main technical result is the following:Theorem 7. Suppose � > 0, and h(x) = (1 � x2)rq(x), where q(x) � � > 0 forx 2 [�1; 1] and 0 � q(x) � � for x 2 (�1; 1] [ [1;1). LetA = 1r2r�r�1�; and m = � r2� � �r�� 1r�;and set F (x) = 1 + � + x� Ax2mh(x). Then F (x) is psd.Remark. This theorem implies that F 2 �, hence 1 + � + x = F + Ax2mh 2P (h). Let �h(x) = h(�x), then, with the same values for �; �; A and M , we have1 + �+ x 2 P (�h); upon taking x! �x, we see that 1 + �� x 2 P (h). Thus,1 + �� x = F�(x) +G�(x)h(x);where F�, G� 2 �, and degF�; degG�h are bounded above by$r� � �r�� 1r%+ deg h � r� � �r�� 1r + deg h:Proof. We want to show that F (x) � 0 for all x 2 R. Observe that 1 + �+ x � 0for x � �1 � � and �Ax2mh(x) � 0 for jxj � 1. Thus we need only considerx 2 (�1;�1� �) [ (�1; 1).First, write x 2 (�1;�1� �) as x = �1� �� y, where y > 0. We must showthat F (x) = �y � A(1 + � + y)2m�1� (1 + �+ y)2�rq(�1� �� y) � 0:We have the estimates (1 + � + y)2m � 1 and q(�1 � � � y) � �, and since r isodd, �1� (1 + � + y)2�r = (2 + �+ y)r(� + y)r � 2r(r�r�1y):(The last inequality follows from �; y � 0, and the selection of one term from thebinomial expansion of (�+ y)r.) Thus it su�ces to show that�y + A2rr�r�1y� = y(A�2rr�r�1 � 1) � 0;and this follows directly from the de�nition of A.11



Now suppose x 2 (�1; 1). An easy calculus exercise shows that if a and b arepositive and 0 � t � 1, then ta(1�t)b � aabb(a+b)a+b . Using this argument with t = x2,we have F (x) = 1 + �+ x� A(x2)m(1� x2)rq(x) � �� A mmrr(m + r)m+r�:But mm+r < 1, and since m+ r > r2� � �r��1=r, we have�� A mmrr(m + r)m+r� > �� A� � rm + r�r = ��1� �r� � r2�(m + r)�r� � 0:Remark. For A 2 R+ and m 2 N , let F (m;A; x) := 1+�+x�Ax2mh(x). We havenot attempted to be precise in the calculation of m, and as one might suspect, forparticular examples F (m;A; x) will be psd for a smaller value of m than the oneasserted above. Note for example that the argument of the last theorem workswith the value of m reduced roughly by r, provided � is small enough that thisinteger is non-negative.Consider h(x) = 1 � x2, for which, as we've seen, no additional machinery isrequired to prove Schm�udgen's Theorem. The following identity shows that m = 0will actually work: if a > 1, then a� x = a2 (x� 1a)2 + a2�12a + a2(1� x2). If we takeh(x) = (1� x2)3, then r = 3 and q(x) = 1, so � = � = 1, and the bound for m is32=32� �3 � 1:04� �3. More precise results can be computed in this speci�c case. It canbe shown, for example, that the minimum of x� (1� x2)3 on R is approximately�1:11987, hence, for example, with � = :12, F (0; 1; x) = 1:12+x�(1�x2)3 is psd.On the other hand, set � = :01 and consider F (0; A; x) = 1:01 + x � A(1 � x2)3.If F (0; A; 0) � 0, then 1:01 � A, but if F (0; A;�1:02) � 0, then A(:0404)3 � :01,hence A > 150. Thus, F (0; A; x) is not psd for any A. (This does not imply that1:01 + x =2 P ((1� x2)3), merely that there is no expression of this simple form.)We can repeat this argument for m = 1: F (1; A;�:6) � 0 implies A � 4:3445:::and F (1; A;�:1:02) � 0 implies A � 145:764::: These arguments can be repeatedto show that if 1:01 + x � Ax2m is psd, then m � 11, and a numerical argumentshows that for all x,F (11; 140; x) = 1:01 + x� 140x22(1� x2)3 � :0002 > 0:The following quantitative special case of Schm�udgen's Theorem contains de-gree information unavailable in the original. Observe that, if p is positive on[�1; 1], then by continuity, it is positive on [�1� �; 1 + �] for some � > 0.Corollary 8. Suppose h(x) = (1� x2)rq(x), where 0 � q(x) � � for jxj � 1 andq(x) � � > 0 for jxj � 1. Suppose p(x) 2 Pd([�1; 1]) has degree n, and p has sreal roots uj, with jujj � u > 1. Then there exist polynomials F;G 2 �, so thatp = F +Gh;12



where the degrees of F and G are bounded above bys r2(u� 1) ���� 1r + deg h!+ n� s:Proof. Factor p over R[x] into linear factors x�uj and irreducible quadratic factorsqk 2 �. Then jujj � u > 1. Observe that �(x � uj) = jujj � sgn(uj)x, with thesign chosen so that the factor is positive on [�1; 1]; thus,p(x) = sYj=1�jujj � sgn(uj)x� n�s2Yk=1 qk(x):Now use Theorem 6 to write jujj � sgn(uj)x = Fj + hGj, with the degrees �r2(juj j�1) ���� 1r + deg h � r2(u�1) ���� 1r + deg h, and substitute above.There is no degree dependence in Fekete's Theorem on the location of the rootsof p. On the other hand, Stengle has shown [21, p. 170] that there is a constantC such that given si 2 � with1� x2 + � = s0(x) + s1(x)(1� x2)3;then deg si � C��1=2. He also [21, p. 171] constructed such a representation inwhich deg si � C��1=2j log �j. This implies that if r � 3, then there is no bound forthe degrees of F and G which depends solely on the degree of p and informationabout h. It also suggests that a better construction might reduce the exponent onu� 1 from 1 to 12 .Corollary 8 states that Pd([�1; 1]) � P (h). In view of the results of Fekete andLukacs, as well as Corollary 3, it is natural to wonder when we have the strongerresult that Psd([�1; 1]) = P (h). We are able to answer that question completely:this happens if and only if h(x) = (1�x2)q(x), where q is as before, and q(�1) > 0.Our proof relies on a very recent result of Scheiderer [19, 4.8].Lemma 9 (Scheiderer). Suppose f; g 2 R[x] satisfy the following conditions:1. f and g are relatively prime,2. fx j f(x) � 0g \ fx j g(x) � 0g = ;, and3. S(f; g) is bounded.Then there exist s; t 2 � such that sf + tg = 1.Proposition 10. Suppose h 2 R[x] such that S(h) = [�1; 1] and h has a root ofmultiplicity a at x = 1 and a root of multiplicity b at x = �1. Then (1� x)a and(1 + x)b are in P (h). 13



Proof. We give the proof for (1 � x)a; the proof for (1 + x)b is similar. Writeh(x) = (1 � x)aq(x), and note that a must be odd. We want to apply Lemma9 to the polynomials (1 � x)a and q(x). They are clearly relatively prime. Wehave fx j (1 � x)a � 0g = [1;1), and q(x) > 0 on [1;1) by its de�nition.Hence conditions (2) and (3) of the lemma hold. Thus there exist s; t 2 � sothat 1 = s(x)(1 � x)a + t(x)q(x). Multiplying both sides by (1 � x)a yields(1� x)a = s(x)(1� x)2a + t(x)h(x) 2 P (h).Remark. The proof of Lemma 9 is not constructive, hence this does not yield aconstructive method for �nding an explicit representation of (1� x)a and (1+ x)bin the preorder.Corollary 11. Suppose S(h) = [�1; 1] and p 2 Psd([�1; 1]). Then p 2 P (h) ifand only if for y = �1, the order of p at y is either even or at least as big as theorder of h at y. In particular, P (h) = Psd([�1; 1]) if and only if the order of h atboth �1 is 1.Proof. Write h(x) = (1� x)a(1+ x)bq(x), where q(x) > 0 for jxj � 1 and q(x) � 0for jxj < 1. Every p 2 Psd([�1; 1]) can be written asp(x) = (1 + x)c� rYj=1(x� xj)2kj�(1� x)dq(x);where jxjj < 1 and q 2 Pd([�1; 1]). If c is even or c � a � 0 is even and if d iseven or d� b � 0 is even, then by Corollary 8 and Proposition 10, p is a productof factors from P (h), hence p 2 P (h).Now suppose c < a is odd or d < b is odd. The proofs are similar, and wegive the �rst. Suppose we could write p = s + th, with s; t 2 �. Then (1 + x)cjpand (1 + x)ajh, hence (1 + x)cjs. But s is psd, so any linear factors appear to aneven degree. Thus, (1 + x)c+1js, and c + 1 < a implies that (1 + x)c+1jp, whichcontradicts the de�nition of c.There are several other directions in which these results could be generalized.The most obvious is to allow ff1; : : : ; fng with n � 2 so that S(f1; : : : ; fn) =[�1; 1]. (As noted earlier, any compact interval might as well be [�1; 1], butSchm�udgen's Theorem also applies when the semialgebraic set is a union of closedintervals.) Stengle proved [21] that if S(f1; : : : ; fn) = [�1; 1], then there exists asingle h in P (f1; : : : ; fn) so that S(h) = [�1; 1]. His proof requires various non-constructive Stellens�atze, and we have been unable to �nd a constructive proof.Nevertheless, we can present here some remarks towards a constructive proof.Suppose S(f1; : : : ; fn) = [�1; 1]. Assume each fi has a factor of 1 � x2. (If not,replace fi by (1 � x2)2fi 2 P (f1; : : : ; fn)), so that fi = (1 � x2)gi.) There is noreal � so that gi(�) < 0 for all i. Our goal is to �nd psd p1; : : : ; pk such thatp1g1 + � � �+ pkgk is positive de�nite. Setting h =Pk pkfk = (1� x2)P pkgk, wethen have S(h) = [�1; 1], and we can apply Theorem 7.14



Example. Suppose f1 = (1� x2)(x+ a) and f2 = b2 � x2, where 1 < b < a. ThenS(f1; f2) = f� : f1(�) � 0g \ f� : f2(�) � 0g = �(�1;�a) [ [�1; 1]�\[�b; b] =[�1; 1]. An algebraic identity shows thath(x) = 2b(b2 � 1)f1(x) + (1� x2)2f2(x)= 2b(b2 � 1)(1� x2)(x+ a) + (1� x2)2(b2 � x2)= (1� x2) �2b(b2 � 1)(x+ b+ (a� b)) + (1� x2)(b2 � x2)�= (1� x2) �(x + b)2�(x� b)2 + b2 � 1�+ 2b(b2 � 1)(a� b)� :Since (x + b)2�(x � b)2 + b2 � 1� + 2b(b2 � 1)(a � b) � 2b(b2 � 1)(a � b) > 0, wehave S(h) = [�1; 1]. In other words, we have used the above construction withg1 = x + a, g2 = (1� x2)(b2 � x2), p1 = 2b(b2 � 1), and p2 = 1.It is di�cult to apply Theorem 7 directly to h in this case, because of thecomputation of � and �. For concreteness, set a = 3 and b = 2, so that 2b(b2�1) =12, h(x) = (1 � x2)(x4 � 5x2 + 12x + 40) and r = 1. It is routine to verify thatq(x) = x4 � 5x2 + 12x + 40 is increasing on [�1; 1], hence � = h(1) = 48, andq(x) = 12 + (x+ 2)2(x2 � 4x+ 7), hence � = 12. If we set � = 1, then Theorem 7tells us that, with A = 112 and m = 1,H(x) := 2 + x� 112x2(1� x2)(x4 � 5x2 + 12x+ 40)is psd. (This can easily be con�rmed by graphing it.) That is, we can explicitlywrite 2 + x 2 Pd([�1; 1]) as an element of P (f1; f2):2 + x = H(x) + 112x2h(x) = H(x) + 12x2f1(x) + 112x2(1� x2)2f2(x):5 The semi-in�nite intervalA simple example shows that there exists h so that S(h) = [0;1), but Pd([0;1))is not contained in P (h).Example. Observe that S(x3) = [0;1), and that 1 + x 2 Pd([0;1)). But if f1 + x 2 P (x3), then there would exist g; h 2 � = Psd(R) so that1 + x = g(x) + x3h(x):Observe that the degrees of g and h are even. Hence, the degrees of g(x) andx3h(x); namely, 2m and 2n + 3, are di�erent, and hence the degree of their sumis maxf2m; 2n+ 3g, which must equal 1, a clear contradiction.This example generalizes considerably. We �rst need a familiar folk-lemma.Lemma 12. Suppose �1 < a < b < 1 are given. Then for every positiveinteger n, there exists C(a; b; n) so that, if jPnj=0 ajxjj � M for x 2 [a; b], thenjajj � MC(a; b; n). 15



Proof. Let p(x) =Pnj=0 ajxj and choose nodes a = x0 < x1 < � � � < xn = b. Thefollowing system of n + 1 equations in the n+ 1 unknowns fajg:p(xk) = nXj=0 xjkaj:has Vandermonde determinant Q0�j<k�n(xj � xk) 6= 0, hence there exist cj;k sothat aj = nXk=0 cj;kp(xk):The assertion is now immediate.Remark. We note the following useful property of P (f1; : : : ; fn) in the case whereS(f1; : : : ; fn) = [0;1): Each fi and each s 2 � has positive leading coe�cient.Thus, there can be no cancellation in the highest degree terms. In particular, ifp =P fIsI , then for each I, deg p � deg sIfI .Theorem 13. Suppose [0;1) = S(f1; : : : ; fn) and suppose fpmg � P (f1; : : : ; fn)satisfy deg pm = deg p and pm ! p coe�cientwise. Then p 2 P (f1; : : : ; fn).Proof. Write pm(x) = s0;m(x) + XI�f1;:::;ng sI;m(x)Yi2I fi(x); (9)with s0;m; sI;m 2 �, and any summand which is zero has been deleted from thesum. For each m, deg p = deg pm = maxfdeg sI;m +Pi2I deg fig, hence there isa uniform bound on the degrees of deg sI;m. Each fi(x) is a polynomial which isnon-negative on [0;1), hence there exists an interval (0; �i) on which fi(x) > 0.Let � = mini �i. Then there exists � > 0 so that fi(x) � � for x 2 [�3 ; 2�3 ] := [a; b].Since pm ! p, there exists T so that pm(x) � T for all m and x 2 [a; b]. It followsfrom (9) that, for every subset I, and x 2 [a; b],T � pm(x) � sI;m(x)Yi2I fi(x) � �jIjsI;m(x):Thus, sI;m(x) � ��jIjT for x 2 [a; b], and deg sI;m � deg p. It follows from Lemma12 that there is a uniform upper bound to the coe�cients of sI;m(x). Thus thereexists a convergent subsequence fmrg so that, for each I, sI;mr(x)! sI(x) coe�-cientwise. We conclude from (9) thatp(x) = s0(x) + XI�f1;:::;ng sI(x)Yi2I fi(x):16



Corollary 14. Suppose S(f1; : : : ; fn) = [0;1) and �+x 2 P (f1; : : : ; fn) for every� > 0. Then fj(x) = cx for some j and positive c.Proof. In view of Theorem 13, it su�ces to show that x 2 P (f1; : : : ; fn) impliesthat some fj is a multiple of x. Suppose otherwise, and writex = s;(x) + XI�f1;:::;ng sI(x)Yi2I fi(x):Each summand has degree � 1. Since sI 2 �, it must be a non-negative constant:sI(x) = �I . Further, if �I > 0, then degQi2I fi(x) � 1, so I is a singleton,I = fjg, where fj(x) = ajx + bj is linear. Since fj(x) � 0 on [0;1), we haveaj; bj � 0, and bj > 0 by hypothesis. After a suitable relabeling, we obtain theidentity x = �0 + rXj=1 �j(ajx + bj):By setting x = 0, we conclude that �0 = �1 = � � � = �r = 0, a contradiction.Example. Let p(x) = x + x3; clearly, S(p) = [0;1). We show that, for every oddinteger m, and � su�ciently small, xm+ � =2 P (p). It su�ces to show by inductionon odd m that xm =2 P (p). Suppose otherwise. There would exist g; h 2 � so thatxm = (x + x3)g(x) + h(x):Observe that m = maxf3 + deg g; deg hg, where deg g; deg h are even. This isimpossible for m = 1. Suppose we have shown this impossible for m � 2, wherem � 3. We have h(0) = 0, and so xjh(x), and since h 2 �, it follows thath(x) = x2�h(x) for some �h 2 �. Thus,xm�1 = (1 + x2)g(x) + x�h(x):But this implies that g(0) = 0, so xjg(x) and so g(x) = x2�g(x), with �g 2 �, hencexm�2 = (x + x3)�g(x) + �h(x);which contradicts the induction hypothesis.Added in proof: Very recently, we have discovered that there is a gap in theproof of [13, Theorem 1.1]: The procedure given to �nd the maximum of the linearform Pxi on the region G is reduced to �nding the maximum on another regionG0, however the containment G � G0 is wrong. For example, with F (x; y) =x2 � 1:9xy+ y2, the region G is f(x; y) j x2 + y2� 1:9(x+ 2)(y+2) � 0g while G0is f(x; y) j x2 � 1:9xy + y2 � 2(1:9x + 1:9y) � 0g. However, we have been able to�nd an alternate proof of the bound in [13] for the two variable case, in fact wecan improve the bound slightly. 17
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