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1 Introduction

Given a semialgebraic set K in R" defined by finitely many polynomial inequalities
{g1 > 0,...,9s > 0}, g; € R X] := R[z1,...,2,], let T be the preorder in R[X]
generated by the g;’'s. We consider three properties:

(1) VfeRX], f>0omK=feT.
(1) VfeRX], f>0onK = 3qé& T suchthatVreale>0,f+eqecT.

(%) {91, ..., 95} solves the moment problem for K

By the latter, we mean that the linear functionals on R[X| which come from
integration with respect to a positive Borel measure on K are characterized as
those which are non-negative on 7. For details, see, e.g., [6].

Clearly, (f) implies (), and Kuhlmann and Marshall [2] have shown that ()
implies (%). Schmiidgen [8] showed that if K is compact, then (*) and (f) hold,
regardless of the choice of generators {g;}. The proof of this result, which uses
functional analysis, is not constructive. Recently, Schweighofer [10] has given a
constructive proof of Schmiidgen’s theorem with degree bounds on the output
data.

If K is not compact, these properties do not hold in general and can depend
on the choice of generators. Scheiderer [7] has shown that () does not hold if K
is not compact and dim K > 3, or if dim K = 2 and K contains a 2-dimensional
cone. In [2] and [6], it is shown that if dim K > 2 and K contains an open cone,
then (%) does not hold.



In [6], the question of whether (x) holds is settled for closed semialgebraic
subsets of smooth affine curves; roughly speaking, the answer depends on the
behaviour of the real points at infinity. Finally, in [2], the case of non-compact
closed semialgebraic subsets of R is settled. In this case, () and (}) are equivalent
and hold only if a particular set of generators is chosen.

In this paper, we study these properties for the following general case, which
is not covered above: cylinders with compact cross-section, i.e., closed semi-
algebraic sets of the form K x U where K C R” is compact, and U C R is not
compact. We extend the Schweighofer algorithm to show in this case that (1) holds
for f with a certain boundedness property. As a corollary, we obtain property (1)
holds and hence (x). This settles Open Problem 1 in [2]. In [9], (*) is also proven
in this case, using entirely different methods.
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2 Notation and Background

Fixn > 1 and let R[X| be the polynomial ring in n variables: R[X] := R[X,..., X,].
We will write R[t] for the polynomial ring in one variable and R[ X, ¢] for R[zy, ..., z,, t].
S"R[X]?* denotes the set of sums of squares in R[X] and we say f is sos if

f e Y RXP IfS={g,...,95} is a finite set of polynomials in k variables,

let Kg denote the basic closed semialgebraic set in RF generated by S, i.e.,

Ks={a€R" | gi(a) 20,...,g,(c) > 0}.

Let Ts be the associated preorder in the appropriate real polynomial ring, i.e., Ts
consists of finite sums of elements of the form

€1 €,
ogy ...95°,

where o is sos and ¢; € {0,1}.
In addition to the three properties above, we can consider

() VfeRX], f>0onK=feT.

In other words, we replace > 0 by > 0 in the definition of (). In general, (1)
does not hold, even in the compact case. For example, in R[t], it is easy to see
that 1 — ¢ is not in the preorder generated by {(1 — ¢?)3} even though 1 —¢ > 0
on [—1, 1] = K{(l_xz)s}.



The case of non-compact closed semialgebraic subsets of R has been settled
completely by Kuhlmann and Marshall [2]. We recall their results.

Definition 1. Suppose K C R is a closed semialgebraic set. Define a set S C R]¢t]
as follows:

1. Ifa € K and (—o0,a) N K =0, then t —a € S.

2. Ifa € K and (a,00)NK =0, thena —t € S.

3. Ifa,be K,a<b,and (a,b) N K =0, then (t —a)(t—b) € S
4. S contains no other elements

S is called the natural set of generators for K

It is easy to see that if K and S are as in the definition, then K¢ = K. The
following is [2, 2.1]:

Theorem 1. Suppose K C R is closed semialgebraic, K is not compact, and
S C R[t] is such that Ks = K. Then (x) holds iff (1) holds iff S contains the
natural set of generators for K. Furthermore, if (1) holds for S, then (1') holds
also.

3 Extending the Schweighofer algorithm

We want to study the properties (1), (1), and (x) for basic closed semialgebraic sets
of the form Kg x K7, where ) # Kg C R" is compact and Ky C R is not compact.
By Theorem 1 above, we will need to use the natural set of generators for K. We
will show that (1) holds for all f which satisfy a certain boundedness condition
and as a corollary, we obtain (f) for all f and hence (x) for all semialgebraic sets
of this type.

Let us fix S = {g1,-..,9m} € R[X] such that Kg # ) is compact. Also, fix
finite U C R[¢] such that Ky is not compact and U contains the natural set of
generators for Ky. Let K := Kgy = Kgx Ky and let T C R[ X, ¢] be the preorder
generated by SUU.

For b € R, define e, : R[X,t] — R[X] by ey(f)(x1,--.,2n) = f(z1,...,Zn,b)
and write f, for e,(f). Given f > 0 on K, then for each b € Ky, we have f, > 0
on Kg. Since K is compact, we can apply the Schweighofer construction to find a
representation of f, in Ts. The idea is to “glue together” these representations in
order to obtain a representation of f in 7. To do this, we need a universal bound
on the degree of the representation for all f;’s, which will require an additional
assumption on f.

The central idea of the algorithm in the compact case is to reduce to the case of
a homogeneous polynomial positive on a standard simplex and then apply Pdlya’s
Theorem. In particular, a constructive version of Pélya’s Theorem from [5] is used.



Definition 2. For k € N and a = (o, ..., o) € NF, define

(01 + - + )]
all...ak! .

c(a) ==

Given a polynomial g in k£ variables of degree d, let a, denote the coefficient of g
corresponding to the monomial with exponent a.. Then set

1 = (22

where the max is taken over o € N* with || < d. We call {—"} the normalized

c(a)

coefficients of g.
The following version of Pélya’s Theorem is [5, Theorem 1]:

Theorem 2. Suppose that F € R[X]| is homogeneous of degree d and F > 0 on
Ay = {(u1,...,u,) € [0,00)" | uy + - - -+ u, = 1}.
Then for N € N such that

d(d — 1) L(F)

N —
7T 2 min{F(u) | uei,)

d,

(T1 + -+ -+ z,)VF(X) has only positive coefficients.

Definition 3. Suppose f € R[X,¢] and K C R". Let m be the maximum degree
of fin t. We say f is fully m-ic on K if for all u € K, f(u,t) has degree m.
In other words, if h(X)t™ is the leading term of f as a polynomial in ¢, then f is
fully m-ic on K iff h(X) has no zeros in K.

Proposition 1. Let Kg X Ky be as above and suppose f € R[X,t] with f > 0 on
Kg x Ky. Let m be the degree of f int and suppose f is fully m-ic on Kg. For
each b € Ky, set Ly := L(fy) and pp := min{ fy(u) | u € Kg}.

1. There exists g(t) € R[t] with deg g = m such that for allb € Ky, Ly < g(b).

2. ﬁ and @ are bounded on Ky .

Mo Ho
Proof. Ky contains (—o0, a| or [a,00) for some a. '
1. Assume Ky contain [a,00). Write f = ) c(a)a, ; X, where the sum is over
a € N, j € Nwith [a| + j < deg f. Then in f;, the normalized coefficient of
X is {d_; aa, b} Thus L is the maximum over « of [ Y7, aq,;0’|. Since aq,; = 0
for j > m, for each « there exists 7(a) € R such that for sufficiently large b,
\Zj o] < r(a)b™. Then for some r; € R and w € N, L, < rb™ for b € Ky,
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b > w. If Ky does not contain an interval (—oo, a'], then let s = max{Ly | b < w}
and g(t) = rt™ + s satisfies L, < g(b) for all b € K. If Ky does contain some
(—00,a], then m must be even and and for sufficiently large [b], |>_; o 0| <
r(a)b™. In this case, let s = max{L, | |b| < w} and g(t) = rit™ + s.

The proof for Ky containing (—oo, a] and not an interval unbounded from above
is similar to the proof of the first case.

2. Again assume Ky contains [a,00). Write f as a polynomial in t:

FX, 1) = h(X)t™ + ) hy(X)t.

j<m

Since h(X) has no zeros on Kg, we must have h(X) > u on K for some u € R*.
Also, since Kg is compact, for each j < m there is M; € N such that h;(X) < M,
on Kg. Then, on Kg,

[o(X) Zuxb™ =Y M > rb™

J

for some constant r and for b sufficiently large. Then, since deg g = m, it follows

g(b)

L
easily that == is bounded. Finally, L, < g(b) for all b € Ky implies = s
M Mo
bounded. If Ky contains only (—oo, a], then the proof is similar.

U
Our goal is to prove the following:

Theorem 3. With K and T as above, property (1) holds for any f € R[X, ]
which is fully m-ic on Kg. In other words, for such f, f >0 on K implies f € T.

As in [10], we make some convenient assumptions about S. First, we assume
that Kg C (—1,1)"; an easy scaling argument shows that this case implies the
general case. Fixe > 0so that Kg C [—142¢,1—2¢]™ and scale each g; by a positive
factor so that 2ne — (g1 + - - -+ gm) > 0 on Kg. Now we define M :=2n+m +1
polynomials {h;} in R[X] as follows:

hi=1—€¢+z1, ... hp=1—¢c+x,,
hpi1=1—€—x1, ... Lhoyy=1—€—1x,,
hony1 =91, -+ s hongm = ms

hayr =2ne— (g1 4+ + gm)-

Note that > h; = 2n and each h; is in Ts: hq, ..., ho, and hj; by Schmiidgen’s
Theorem and the remaining trivially. For ease of exposition, for 3 € NY, we
write H? for hfl e hﬁ}["’. By the previous remark, for « € R* and any o € NV,
aH® € Ts.



Let R[Y] denote R[y,...,yn] and let R[Y,¢] denote Ryi,...,yu,t]. Define
¢ : R[Y] — R[X] by é(y;) = h; and ¢ : R[Y, ] — R[X, ] similarly (with ¢(¢) = t).
We also have the maps e, on R[Y,¢] and R[X,¢]. These are all homomorphisms
and it is easy to see that the following diagram commutes:

RY,f] —°— RX, ]

%l %l
RY] —%— RX]

Define 7 := 2T T IM et ym € R[Y] and note that Z € ker¢ and degZ = 1. Z
is useful for homogenizing or raising the degree of a polynomial in R[Y'] without
changing its image under ¢.

Here is a rough outline of the Schweighofer algorithm: Given p > 0 on Kg,
construct a homogeneous @ € R[Y'| such that ¢(Q) = p and @ > 0 on Ay,. Using
Theorem 2, find N so that Z¥ @Q equals a polynomial with only positive coefficients.
Then, applying ¢ to both sides of this equation, we obtain p = ) a,H* and hence
a representation of p in Ts (modulo representations of the h;’s).

Definition 4. Given g € R[X| with degg = d, write g = Gy + - - - + G4, where
(G; is the homogeneous part of g of degree i. For any k& > d, define homogeneous
P®)(g) € R[Y] of degree k by

d 1 1 1 1 .
P(k)(g) = E Gz (§y1 - iyn+1’ ey Ey"‘H — §/y2n) . Zk—Z
1=0

Note that for all £ > d, ¢(P™*)(g)) = g. The construction now proceeds by
adding an element of ker ¢ to some P%)(p) in order to make it positive on Aj;.
We need to extract this part of the construction; the next result and its proof are
completely contained in the proof of [10, Lemma 9.

Lemma 1. We make the assumptions and definitions as above for compact Kg.
Then there are constants 1 < cgy, ca and a homogeneous polynomial Ry € ker ¢ of
degree dy such that the following holds: Given d > 1 and suppose p € R[X]| with
degp = d such that L(p) =1 and p > 0 on Ks. Let | = max{dy,d}, let p be the
minimum of p on Kg, and set R = Ry - Z'=%. Then for

2, d\ €0
\ = cod®n? (d_n) ,
1

we have

POp)+ AR > L

= 20m) on Ay



We need two generalizations of the lemma, which are easily obtained:

Corollary 1. We make all the assumptions and definitions as in Lemma 1, except
we only assume 1 < degp < d. Then the conclusion of Lemma 1 holds.

Proof. Let u = degp, if we apply Lemma 1 to p we obtain

W

PO(p )+)\R>2(2 2

where [ = max{dp,u} <l and

C
By 2 u U’2nu °
A= cun .
1

It is easy to see that PO (p) = PO(p)-Z'~Tand A > X. This implies PO (p)+ AR >
PO(p) +AR> —+— on A 0
( ) + (Zn)l on M-

We need the corollary without the assumption that L(p) = 1.

Corollary 2. We make the assumptions and definitions as above for compact K.
Then there are constants 1 < ¢y, co, and a homogeneous polynomial Ry € ker ¢ of
degree dy such that the following holds: Given d > 1 and suppose p € R[X] of
degree < d with p > 0 on Kg. Let | = max{dy,d}, p = min{p(u) | u € Kg} and
set R = Ry - Z'=%. Then for

co
A\ = cod®n? (dQnd@) ,

7
we have u
PO Lpp)-A\-R> A
(0)+ L)X B2 s on Ay
Proof. Let p' = %, then obviously L(p') = 1. It is easy to see that P*)(p') =
p
P®(p)
and the minimum of p' on Kg is Applying Corollary 1, we obtain
L(p) L(p)
P®(p) 1 p
+AR> ————

L(p) L(p) 2(2n)!

on Ay and, multiplying by L(p), we obtain the desired result. O

Proof of Theorem 3: We are given f € R[X,¢] with f > 0 on K such that
deg, f = m and f is fully m-ic on Kg. Let d be the maximum degree in X of f.
For each b € Ky, let p, denote the minimum of f, on Kg and write L, for L(f;).
Let ¢y, co, Rp and dj be as in Corollary 2 and set | = max{dy, d} and R = Ry-Z'~%,
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Decompose f = Fy + - - -+ Fy, where F; is the part of f which is degree 7 in X.
Define @ € R[Y, ] by

1 1 y
Q ZF( yn+1,...,§yn—§y2n’t>,zl i

Note that ey(F;) is the degree i part of f, (or zero if there is no degree i part),

hence e,(Q) = PO(f,). Also, d(Q) = 3. Fi(z1, ..., Tn, t) = f-
By Proposition 1, there exists g(t) € R[¢], degg = m, so that L, < g(b) for all
b € Ky. Also by the proposition, we can find W € N such that for all b € Ky,

ESWandﬂgW. Let
Hp Hy

A = cod?®n? (d*n W)
and define

Q:=Q+g(t)-A-R.
Write @ for e5(Q), then ¢(Q) = ¢(Q) = f and @, = PU(fy) +g(b) - A+ R.

For each b € Ky, let
L\ @
o = cod’n? <d2nd—b> ,

Hy
Note that A > A, for all b.
Applying Corollary 2 for each b, we then have

l Mo
Since A\, < X and L; < g(b), (1) implies
) — (l) . . > Ho
(2) Q=P (fy) +9(b)-A-R> >2n) on Ay

Claim 1: There exists N € N so that for each b € Ky, (y1 + -+ + yM)NQb has
only positive coefficients. ~
Proof of claim: By Theorem 2, (3 ;)" @, has only positive coefficients for

(-1 L(Gy)

Ny > = :
2 min{Qy(u) | v € Ay}
0 (d+1)
From the proof of [10, Lemma 9], we have L(PY(f;)) < 51 L, and L(R) <
L
(o) , hence
(2n)t—do
~ d + 1 L(R
L(@s) < Ly+g(b) - A (275)713210-



L
Ho Recall we have —2 < W and

By (2), the minimum of Qb on Ay is > (2n)i—do L

g(b)

—— < W, hence
o

L(Qs) (2n)"% (d+1 oy L(Ro)
min{@b(u)|u€AM}S 1 ( o Tt o) (2n)l—d°>

<W ( (QZ;dO (d+1)+ /\L(R0)>

This implies that if N € N with
!

I(1-1) n
M= W(@

) (d+1)+X- L(RO)) :

then N, < N and the claim holds.

Consider (3 1;,)VQ € R[Y,t] and write this as a polynomial in y1, ...,y with
coefficients in R[¢]:

(3) S wQ =Y Aye.

acRM

Applying ¢ to both sides yields an expression

4 (n)"f = 3 Aalt) - H"

a€ERM

Claim: For each «, A,(b) > 0 for all b € K.
Proof of claim: By the previous claim, (y; + --- + yM)NQQ has only positive
coefficients. Applying e, to both sides of (3) yields (>_v:)VQp = . A4(b) - Y,
which implies A, (b) > 0 for each .

Since A, > 0 on Ky, by Theorem 1, A, is in Ty, the preorder in R[] generated
by U. Substituting representations of the A,’s in Ty into (4) yields a representation
of f in T, proving Theorem 3. O

Corollary 3. Given the above notations and assumptions. Then (1) holds for K
and T, i.e., given f >0 on Kg X Ky, there exists ¢ € T such that for all € > 0,
f+eqeT.

Proof. Assume f has degree m in t and let ¢ = t>™. Clearly, f + eq is fully 2m-ic
on K. Therefore, we are done by Theorem 3. O

Theorem 4. Let K, T be as above. Then property () holds, i.e., SUU solves
the moment problem for K.

Remark 1. Theorem 4 is also proven in [3] using different methods.
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